Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 7 of order 81
General information on the group
- The group is also known as Syl3(A9), the Sylow 3-subgroup of A_9.
- The group has 2 minimal generators and exponent 9.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 2 and 3, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
− 1 |
| (t − 1)3 · (t2 + t + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 16 minimal generators of maximal degree 7:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_1, a nilpotent element of degree 2
- b_2_0, an element of degree 2
- b_2_2, an element of degree 2
- a_3_2, a nilpotent element of degree 3
- a_3_3, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- a_4_5, a nilpotent element of degree 4
- b_4_6, an element of degree 4
- a_5_7, a nilpotent element of degree 5
- a_5_8, a nilpotent element of degree 5
- a_6_9, a nilpotent element of degree 6
- b_6_10, an element of degree 6
- c_6_11, a Duflot regular element of degree 6
- a_7_14, a nilpotent element of degree 7
Ring relations
There are 8 "obvious" relations:
a_1_02, a_1_12, a_3_22, a_3_32, a_3_42, a_5_72, a_5_82, a_7_142
Apart from that, there are 80 minimal relations of maximal degree 13:
- a_1_0·a_1_1
- a_2_1·a_1_1
- a_2_1·a_1_0
- b_2_0·a_1_1
- b_2_2·a_1_0
- a_2_12
- a_2_1·b_2_0
- b_2_0·b_2_2
- − a_2_1·b_2_2 + a_1_1·a_3_2
- a_1_0·a_3_2
- a_1_1·a_3_3
- a_1_0·a_3_4
- b_2_0·a_3_2
- a_2_1·a_3_2
- a_2_1·a_3_3
- b_2_0·a_3_4
- − b_2_2·a_3_3 + a_2_1·a_3_4
- − b_2_2·a_3_3 + a_4_5·a_1_1
- a_4_5·a_1_0
- b_4_6·a_1_0
- a_3_2·a_3_3
- a_3_3·a_3_4
- b_2_0·a_4_5
- a_2_1·a_4_5
- b_2_0·b_4_6
- − b_2_2·a_4_5 + a_2_1·b_4_6 + a_3_2·a_3_4
- − b_2_2·a_4_5 + a_3_2·a_3_4 + a_1_1·a_5_7
- a_1_0·a_5_7
- a_1_0·a_5_8
- a_4_5·a_3_3
- a_4_5·a_3_2
- b_4_6·a_3_3 − a_4_5·a_3_4
- b_2_0·a_5_7
- a_2_1·a_5_7
- b_2_0·a_5_8
- − a_4_5·a_3_4 + a_2_1·a_5_8
- a_6_9·a_1_1 − a_4_5·a_3_4
- a_6_9·a_1_0
- b_6_10·a_1_1 + b_4_6·a_3_2 − b_2_2·a_5_7
- b_6_10·a_1_0
- a_4_52
- a_3_3·a_5_7
- a_3_3·a_5_8
- a_3_2·a_5_7 − b_4_6·a_1_1·a_3_4 + b_2_2·a_1_1·a_5_8 + b_2_2·a_1_1·a_5_7
- − a_4_5·b_4_6 + a_3_2·a_5_8
- b_2_0·a_6_9
- b_2_2·a_6_9 + a_3_4·a_5_7 + a_3_2·a_5_7
- a_2_1·a_6_9
- b_2_0·b_6_10
- a_2_1·b_6_10 + a_3_2·a_5_7
- a_4_5·b_4_6 + a_3_4·a_5_7 + a_3_2·a_5_7 + a_1_1·a_7_14
- a_1_0·a_7_14
- a_4_5·a_5_8
- − a_4_5·a_5_7 − a_1_1·a_3_4·a_5_8 + a_1_1·a_3_2·a_5_8
- a_6_9·a_3_3
- a_6_9·a_3_4 − a_4_5·a_5_7
- a_6_9·a_3_2 + a_4_5·a_5_7
- b_6_10·a_3_3 − a_4_5·a_5_7
- b_6_10·a_3_2 − b_4_62·a_1_1 + b_2_2·b_4_6·a_3_4 − b_2_2·b_4_6·a_3_2 − b_2_22·a_5_8
- b_2_0·a_7_14
- − b_6_10·a_3_4 + b_4_6·a_5_7 − b_4_62·a_1_1 + b_2_2·a_7_14 + b_2_2·b_4_6·a_3_4
− b_2_2·b_4_6·a_3_2 − b_2_22·a_5_8
- − a_4_5·a_5_7 + a_2_1·a_7_14
- a_4_5·a_6_9
- b_4_6·a_6_9 − a_5_7·a_5_8 − c_6_11·a_1_1·a_3_2
- a_4_5·b_6_10 − b_4_6·a_1_1·a_5_8 + b_2_2·a_3_4·a_5_8 − b_2_2·a_3_2·a_5_8
- a_3_3·a_7_14
- − a_5_7·a_5_8 + a_3_4·a_7_14 + b_4_6·a_1_1·a_5_8 − b_2_2·a_3_4·a_5_8 + b_2_2·a_3_2·a_5_8
− c_6_11·a_1_1·a_3_2
- a_3_2·a_7_14 − b_4_6·a_1_1·a_5_8 + b_2_2·a_3_4·a_5_8 − b_2_2·a_3_2·a_5_8
- a_6_9·a_5_7
- a_6_9·a_5_8 − a_2_1·c_6_11·a_3_4
- b_6_10·a_5_7 + b_4_62·a_3_4 + b_4_62·a_3_2 − b_2_2·b_4_6·a_5_8 + b_2_2·b_4_6·a_5_7
+ b_2_22·c_6_11·a_1_1
- a_4_5·a_7_14
- − b_6_10·a_5_8 + b_4_6·a_7_14 − b_2_2·c_6_11·a_3_2
- a_6_92
- b_6_102 + b_4_63 + b_2_2·b_4_6·b_6_10 + b_2_23·c_6_11
- − a_6_9·b_6_10 + a_5_7·a_7_14
- − a_6_9·b_6_10 − b_4_6·a_3_4·a_5_8 + b_4_6·a_1_1·a_7_14 + b_2_2·a_3_4·a_7_14
+ b_2_2·b_4_6·a_1_1·a_5_8 − b_2_22·a_3_4·a_5_8 + b_2_22·a_3_2·a_5_8 − b_2_2·c_6_11·a_1_1·a_3_4 − b_2_2·c_6_11·a_1_1·a_3_2
- a_5_8·a_7_14 + c_6_11·a_3_2·a_3_4 + c_6_11·a_1_1·a_5_7
- b_6_10·a_7_14 + b_4_62·a_5_8 + b_2_2·b_4_6·a_7_14 − b_2_2·b_4_6·c_6_11·a_1_1
+ b_2_22·c_6_11·a_3_4 + b_2_22·c_6_11·a_3_2
- a_6_9·a_7_14
Data used for Benson′s test
- Benson′s completion test succeeded in degree 13.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_6_11, a Duflot regular element of degree 6
- − b_4_63 + b_2_22·b_4_62 + b_2_26 + b_2_06, an element of degree 12
- − b_2_22·b_4_63 + b_2_24·b_4_62, an element of degree 16
- The Raw Filter Degree Type of that HSOP is [-1, -1, 15, 31].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
- We found that there exists some filter regular HSOP formed by the first term of the above HSOP, together with 2 elements of degree 4.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_0 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_4_5 → 0, an element of degree 4
- b_4_6 → 0, an element of degree 4
- a_5_7 → 0, an element of degree 5
- a_5_8 → 0, an element of degree 5
- a_6_9 → 0, an element of degree 6
- b_6_10 → 0, an element of degree 6
- c_6_11 → c_2_03, an element of degree 6
- a_7_14 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_0 → c_2_2, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_4_5 → 0, an element of degree 4
- b_4_6 → 0, an element of degree 4
- a_5_7 → 0, an element of degree 5
- a_5_8 → 0, an element of degree 5
- a_6_9 → 0, an element of degree 6
- b_6_10 → 0, an element of degree 6
- c_6_11 → − c_2_1·c_2_22 + c_2_13, an element of degree 6
- a_7_14 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_2_1 → − a_1_1·a_1_2, an element of degree 2
- b_2_0 → 0, an element of degree 2
- b_2_2 → c_2_4, an element of degree 2
- a_3_2 → c_2_5·a_1_1 − c_2_4·a_1_2, an element of degree 3
- a_3_3 → − a_1_0·a_1_1·a_1_2, an element of degree 3
- a_3_4 → − c_2_5·a_1_2 − c_2_5·a_1_1 − c_2_4·a_1_2 + c_2_4·a_1_0 + c_2_3·a_1_1, an element of degree 3
- a_4_5 → − c_2_5·a_1_0·a_1_1 + c_2_4·a_1_0·a_1_2 − c_2_3·a_1_1·a_1_2, an element of degree 4
- b_4_6 → − c_2_52 + c_2_4·c_2_5 − c_2_3·c_2_4, an element of degree 4
- a_5_7 → c_2_52·a_1_2 − c_2_4·c_2_5·a_1_2 − c_2_3·c_2_5·a_1_1 + c_2_3·c_2_4·a_1_2
− c_2_3·c_2_4·a_1_1, an element of degree 5
- a_5_8 → − c_2_52·a_1_0 + c_2_4·c_2_5·a_1_0 + c_2_3·c_2_5·a_1_2 + c_2_3·c_2_5·a_1_1
+ c_2_3·c_2_4·a_1_2 − c_2_3·c_2_4·a_1_0 + c_2_32·a_1_1, an element of degree 5
- a_6_9 → − c_2_52·a_1_0·a_1_2 + c_2_4·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_5·a_1_1·a_1_2
+ c_2_3·c_2_5·a_1_0·a_1_1 − c_2_3·c_2_4·a_1_1·a_1_2 − c_2_3·c_2_4·a_1_0·a_1_2 + c_2_3·c_2_4·a_1_0·a_1_1 − c_2_32·a_1_1·a_1_2, an element of degree 6
- b_6_10 → c_2_53 − c_2_4·c_2_52 − c_2_3·c_2_42, an element of degree 6
- c_6_11 → − c_2_3·c_2_52 + c_2_3·c_2_4·c_2_5 + c_2_32·c_2_4 + c_2_33, an element of degree 6
- a_7_14 → c_2_53·a_1_0 − c_2_4·c_2_52·a_1_0 − c_2_3·c_2_52·a_1_2 − c_2_3·c_2_52·a_1_1
− c_2_3·c_2_4·c_2_5·a_1_2 + c_2_3·c_2_4·c_2_5·a_1_1 − c_2_3·c_2_42·a_1_2 − c_2_3·c_2_42·a_1_0 − c_2_32·c_2_5·a_1_1 + c_2_32·c_2_4·a_1_2 + c_2_32·c_2_4·a_1_1, an element of degree 7
|