Simon King
      
	 
	 
	 
      
    
      
    
        David J. Green
     
      
    
      Cohomology
        →Theory
        →Implementation
     
      
    
      Jena:
     
          
     
      Faculty
     
      
    
      External links:
     
       
     
    Singular
     
    Gap
      
     | 
    
            
       
          
         
      
  Cohomology of group number 7 of order 81
 
 
  General information on the group
  -  The group is also known as Syl3(A9), the Sylow 3-subgroup of A_9.
  
 
  - The group has 2 minimal generators and exponent 9.
  
 
  -  It is non-abelian.
  
 
  -  It has p-Rank 3.
  
 
  -  Its center has rank 1.
  
 
  -  It has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 2 and 3, respectively.
  
 
 
 
  Structure of the cohomology ring
  General information
  -  The cohomology ring is of dimension 3 and depth 2.
  
 
  -  The depth exceeds the Duflot bound, which is 1.
  
 
  -  The Poincaré series is    
|  − 1 |        
  |  | (t  −  1)3 · (t2  +  t  +  1) |  
     
     -  The a-invariants are -∞,-∞,-3,-3.  They were obtained using the filter regular HSOP of the Benson test.
  
 
 
  
  
 
  Ring generators
 The cohomology ring has 16 minimal generators of maximal degree 7:
 
  -  a_1_0, a nilpotent element of degree 1
  
 
  -  a_1_1, a nilpotent element of degree 1
  
 
  -  a_2_1, a nilpotent element of degree 2
  
 
  -  b_2_0, an element of degree 2
  
 
  -  b_2_2, an element of degree 2
  
 
  -  a_3_2, a nilpotent element of degree 3
  
 
  -  a_3_3, a nilpotent element of degree 3
  
 
  -  a_3_4, a nilpotent element of degree 3
  
 
  -  a_4_5, a nilpotent element of degree 4
  
 
  -  b_4_6, an element of degree 4
  
 
  -  a_5_7, a nilpotent element of degree 5
  
 
  -  a_5_8, a nilpotent element of degree 5
  
 
  -  a_6_9, a nilpotent element of degree 6
  
 
  -  b_6_10, an element of degree 6
  
 
  -  c_6_11, a Duflot regular element of degree 6
  
 
  -  a_7_14, a nilpotent element of degree 7
  
 
 
  
 
  Ring relations
 There are 8 "obvious" relations: 
     a_1_02, a_1_12, a_3_22, a_3_32, a_3_42, a_5_72, a_5_82, a_7_142
 
Apart from that, there are 80 minimal relations of maximal degree 13:
 
  -  a_1_0·a_1_1
  
 
  -  a_2_1·a_1_1
  
 
  -  a_2_1·a_1_0
  
 
  -  b_2_0·a_1_1
  
 
  -  b_2_2·a_1_0
  
 
  -  a_2_12
  
 
  -  a_2_1·b_2_0
  
 
  -  b_2_0·b_2_2
  
 
  -   − a_2_1·b_2_2 + a_1_1·a_3_2
  
 
  -  a_1_0·a_3_2
  
 
  -  a_1_1·a_3_3
  
 
  -  a_1_0·a_3_4
  
 
  -  b_2_0·a_3_2
  
 
  -  a_2_1·a_3_2
  
 
  -  a_2_1·a_3_3
  
 
  -  b_2_0·a_3_4
  
 
  -   − b_2_2·a_3_3 + a_2_1·a_3_4
  
 
  -   − b_2_2·a_3_3 + a_4_5·a_1_1
  
 
  -  a_4_5·a_1_0
  
 
  -  b_4_6·a_1_0
  
 
  -  a_3_2·a_3_3
  
 
  -  a_3_3·a_3_4
  
 
  -  b_2_0·a_4_5
  
 
  -  a_2_1·a_4_5
  
 
  -  b_2_0·b_4_6
  
 
  -   − b_2_2·a_4_5 + a_2_1·b_4_6 + a_3_2·a_3_4
  
 
  -   − b_2_2·a_4_5 + a_3_2·a_3_4 + a_1_1·a_5_7
  
 
  -  a_1_0·a_5_7
  
 
  -  a_1_0·a_5_8
  
 
  -  a_4_5·a_3_3
  
 
  -  a_4_5·a_3_2
  
 
  -  b_4_6·a_3_3 − a_4_5·a_3_4
  
 
  -  b_2_0·a_5_7
  
 
  -  a_2_1·a_5_7
  
 
  -  b_2_0·a_5_8
  
 
  -   − a_4_5·a_3_4 + a_2_1·a_5_8
  
 
  -  a_6_9·a_1_1 − a_4_5·a_3_4
  
 
  -  a_6_9·a_1_0
  
 
  -  b_6_10·a_1_1 + b_4_6·a_3_2 − b_2_2·a_5_7
  
 
  -  b_6_10·a_1_0
  
 
  -  a_4_52
  
 
  -  a_3_3·a_5_7
  
 
  -  a_3_3·a_5_8
  
 
  -  a_3_2·a_5_7 − b_4_6·a_1_1·a_3_4 + b_2_2·a_1_1·a_5_8 + b_2_2·a_1_1·a_5_7
  
 
  -   − a_4_5·b_4_6 + a_3_2·a_5_8
  
 
  -  b_2_0·a_6_9
  
 
  -  b_2_2·a_6_9 + a_3_4·a_5_7 + a_3_2·a_5_7
  
 
  -  a_2_1·a_6_9
  
 
  -  b_2_0·b_6_10
  
 
  -  a_2_1·b_6_10 + a_3_2·a_5_7
  
 
  -  a_4_5·b_4_6 + a_3_4·a_5_7 + a_3_2·a_5_7 + a_1_1·a_7_14
  
 
  -  a_1_0·a_7_14
  
 
  -  a_4_5·a_5_8
  
 
  -   − a_4_5·a_5_7 − a_1_1·a_3_4·a_5_8 + a_1_1·a_3_2·a_5_8
  
 
  -  a_6_9·a_3_3
  
 
  -  a_6_9·a_3_4 − a_4_5·a_5_7
  
 
  -  a_6_9·a_3_2 + a_4_5·a_5_7
  
 
  -  b_6_10·a_3_3 − a_4_5·a_5_7
  
 
  -  b_6_10·a_3_2 − b_4_62·a_1_1 + b_2_2·b_4_6·a_3_4 − b_2_2·b_4_6·a_3_2 − b_2_22·a_5_8
  
 
  -  b_2_0·a_7_14
  
 
  -   − b_6_10·a_3_4 + b_4_6·a_5_7 − b_4_62·a_1_1 + b_2_2·a_7_14 + b_2_2·b_4_6·a_3_4
    − b_2_2·b_4_6·a_3_2 − b_2_22·a_5_8
   
  -   − a_4_5·a_5_7 + a_2_1·a_7_14
  
 
  -  a_4_5·a_6_9
  
 
  -  b_4_6·a_6_9 − a_5_7·a_5_8 − c_6_11·a_1_1·a_3_2
  
 
  -  a_4_5·b_6_10 − b_4_6·a_1_1·a_5_8 + b_2_2·a_3_4·a_5_8 − b_2_2·a_3_2·a_5_8
  
 
  -  a_3_3·a_7_14
  
 
  -   − a_5_7·a_5_8 + a_3_4·a_7_14 + b_4_6·a_1_1·a_5_8 − b_2_2·a_3_4·a_5_8 + b_2_2·a_3_2·a_5_8
    − c_6_11·a_1_1·a_3_2
   
  -  a_3_2·a_7_14 − b_4_6·a_1_1·a_5_8 + b_2_2·a_3_4·a_5_8 − b_2_2·a_3_2·a_5_8
  
 
  -  a_6_9·a_5_7
  
 
  -  a_6_9·a_5_8 − a_2_1·c_6_11·a_3_4
  
 
  -  b_6_10·a_5_7 + b_4_62·a_3_4 + b_4_62·a_3_2 − b_2_2·b_4_6·a_5_8 + b_2_2·b_4_6·a_5_7
    + b_2_22·c_6_11·a_1_1
   
  -  a_4_5·a_7_14
  
 
  -   − b_6_10·a_5_8 + b_4_6·a_7_14 − b_2_2·c_6_11·a_3_2
  
 
  -  a_6_92
  
 
  -  b_6_102 + b_4_63 + b_2_2·b_4_6·b_6_10 + b_2_23·c_6_11
  
 
  -   − a_6_9·b_6_10 + a_5_7·a_7_14
  
 
  -   − a_6_9·b_6_10 − b_4_6·a_3_4·a_5_8 + b_4_6·a_1_1·a_7_14 + b_2_2·a_3_4·a_7_14
    + b_2_2·b_4_6·a_1_1·a_5_8 − b_2_22·a_3_4·a_5_8 + b_2_22·a_3_2·a_5_8    − b_2_2·c_6_11·a_1_1·a_3_4 − b_2_2·c_6_11·a_1_1·a_3_2
   
  -  a_5_8·a_7_14 + c_6_11·a_3_2·a_3_4 + c_6_11·a_1_1·a_5_7
  
 
  -  b_6_10·a_7_14 + b_4_62·a_5_8 + b_2_2·b_4_6·a_7_14 − b_2_2·b_4_6·c_6_11·a_1_1
    + b_2_22·c_6_11·a_3_4 + b_2_22·c_6_11·a_3_2
   
  -  a_6_9·a_7_14
  
 
 
 
  
 
  Data used for Benson′s test
   
    -  Benson′s completion test succeeded in degree 13.
    
 
    -  The completion test was perfect: It applied in the last degree in which a generator or relation was found.
    
 
    -  The following is a filter regular homogeneous system of parameters:
    
      - c_6_11, a Duflot regular element of degree 6
      
 
      -  − b_4_63 + b_2_22·b_4_62 + b_2_26 + b_2_06, an element of degree 12
      
 
      -  − b_2_22·b_4_63 + b_2_24·b_4_62, an element of degree 16
      
 
     
         -  The Raw Filter Degree Type of that HSOP is [-1, -1, 15, 31].
    
 
    -  The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
    
 
    -  We found that there exists some filter regular HSOP formed by the first term of the above HSOP, together with 2 elements of degree 4.
    
 
   
  
 
  Restriction maps
  
    Restriction map to the greatest central el. ab. subgp., which is of rank 1
  
    
      -  a_1_0 → 0, an element of degree 1
      
 
      -  a_1_1 → 0, an element of degree 1
      
 
      -  a_2_1 → 0, an element of degree 2
      
 
      -  b_2_0 → 0, an element of degree 2
      
 
      -  b_2_2 → 0, an element of degree 2
      
 
      -  a_3_2 → 0, an element of degree 3
      
 
      -  a_3_3 → 0, an element of degree 3
      
 
      -  a_3_4 → 0, an element of degree 3
      
 
      -  a_4_5 → 0, an element of degree 4
      
 
      -  b_4_6 → 0, an element of degree 4
      
 
      -  a_5_7 → 0, an element of degree 5
      
 
      -  a_5_8 → 0, an element of degree 5
      
 
      -  a_6_9 → 0, an element of degree 6
      
 
      -  b_6_10 → 0, an element of degree 6
      
 
      -  c_6_11 → c_2_03, an element of degree 6
      
 
      -  a_7_14 → 0, an element of degree 7
      
 
     
  
    Restriction map to a maximal el. ab. subgp. of rank 2
  
    
      -  a_1_0 → a_1_1, an element of degree 1
      
 
      -  a_1_1 → 0, an element of degree 1
      
 
      -  a_2_1 → 0, an element of degree 2
      
 
      -  b_2_0 → c_2_2, an element of degree 2
      
 
      -  b_2_2 → 0, an element of degree 2
      
 
      -  a_3_2 → 0, an element of degree 3
      
 
      -  a_3_3 →  − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
      
 
      -  a_3_4 → 0, an element of degree 3
      
 
      -  a_4_5 → 0, an element of degree 4
      
 
      -  b_4_6 → 0, an element of degree 4
      
 
      -  a_5_7 → 0, an element of degree 5
      
 
      -  a_5_8 → 0, an element of degree 5
      
 
      -  a_6_9 → 0, an element of degree 6
      
 
      -  b_6_10 → 0, an element of degree 6
      
 
      -  c_6_11 →  − c_2_1·c_2_22 + c_2_13, an element of degree 6
      
 
      -  a_7_14 → 0, an element of degree 7
      
 
     
  
    Restriction map to a maximal el. ab. subgp. of rank 3
  
    
      -  a_1_0 → 0, an element of degree 1
      
 
      -  a_1_1 → a_1_1, an element of degree 1
      
 
      -  a_2_1 →  − a_1_1·a_1_2, an element of degree 2
      
 
      -  b_2_0 → 0, an element of degree 2
      
 
      -  b_2_2 → c_2_4, an element of degree 2
      
 
      -  a_3_2 → c_2_5·a_1_1 − c_2_4·a_1_2, an element of degree 3
      
 
      -  a_3_3 →  − a_1_0·a_1_1·a_1_2, an element of degree 3
      
 
      -  a_3_4 →  − c_2_5·a_1_2 − c_2_5·a_1_1 − c_2_4·a_1_2 + c_2_4·a_1_0 + c_2_3·a_1_1, an element of degree 3
      
 
      -  a_4_5 →  − c_2_5·a_1_0·a_1_1 + c_2_4·a_1_0·a_1_2 − c_2_3·a_1_1·a_1_2, an element of degree 4
      
 
      -  b_4_6 →  − c_2_52 + c_2_4·c_2_5 − c_2_3·c_2_4, an element of degree 4
      
 
      -  a_5_7 → c_2_52·a_1_2 − c_2_4·c_2_5·a_1_2 − c_2_3·c_2_5·a_1_1 + c_2_3·c_2_4·a_1_2
    − c_2_3·c_2_4·a_1_1, an element of degree 5
       
      -  a_5_8 →  − c_2_52·a_1_0 + c_2_4·c_2_5·a_1_0 + c_2_3·c_2_5·a_1_2 + c_2_3·c_2_5·a_1_1
    + c_2_3·c_2_4·a_1_2 − c_2_3·c_2_4·a_1_0 + c_2_32·a_1_1, an element of degree 5
       
      -  a_6_9 →  − c_2_52·a_1_0·a_1_2 + c_2_4·c_2_5·a_1_0·a_1_2 + c_2_3·c_2_5·a_1_1·a_1_2
    + c_2_3·c_2_5·a_1_0·a_1_1 − c_2_3·c_2_4·a_1_1·a_1_2 − c_2_3·c_2_4·a_1_0·a_1_2    + c_2_3·c_2_4·a_1_0·a_1_1 − c_2_32·a_1_1·a_1_2, an element of degree 6
       
      -  b_6_10 → c_2_53 − c_2_4·c_2_52 − c_2_3·c_2_42, an element of degree 6
      
 
      -  c_6_11 →  − c_2_3·c_2_52 + c_2_3·c_2_4·c_2_5 + c_2_32·c_2_4 + c_2_33, an element of degree 6
      
 
      -  a_7_14 → c_2_53·a_1_0 − c_2_4·c_2_52·a_1_0 − c_2_3·c_2_52·a_1_2 − c_2_3·c_2_52·a_1_1
    − c_2_3·c_2_4·c_2_5·a_1_2 + c_2_3·c_2_4·c_2_5·a_1_1 − c_2_3·c_2_42·a_1_2    − c_2_3·c_2_42·a_1_0 − c_2_32·c_2_5·a_1_1 + c_2_32·c_2_4·a_1_2 + c_2_32·c_2_4·a_1_1, an element of degree 7
       
     
 
 
               
              
              
                
               
               |