Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Reverse Engineering by Artificial Network Evolution

Thomas Hinze Ines Heiland Benedict Schau Thorsten Lenser Stefan Schuster

Friedrich-Schiller University Jena Department of Bioinformatics at School of Biology and Pharmacy

thomas.hinze@uni-jena.de

October 09, 2009

Reverse Engineering by Artificial Network Evolution

Reaction Network Reconstruction from Scratch

- Partially unknown topology
- Some behavioural data available
- Reconstruction of appropriate reaction network candidates
- Capturing ideas and inspirations for network topologies and parameterisation suitable for specific task

• Exponential growth of search space: *n* species $\longrightarrow 2^{2n}$ possible first-order reactions

Finding homologies

• Employ synergetic effects: known networks with similar functionality could be adapted

Bottom-up engineering

• Provide small functional units and combine them towards entire network (constructive approach)

Learning strategies

• Reduce a huge full network by successive weighting of reactions along with available behavioural data

Artificial network evolution

• Universal heuristics adopted from biological evolution

Reverse Engineering by Artificial Network Evolution

Exponential growth of search space:
 n species → 2²ⁿ possible first-order reactions

Finding homologies

• Employ synergetic effects: known networks with similar functionality could be adapted

Bottom-up engineering

• Provide small functional units and combine them towards entire network (constructive approach)

Learning strategies

• Reduce a huge full network by successive weighting of reactions along with available behavioural data

Artificial network evolution

• Universal heuristics adopted from biological evolution

Reverse Engineering by Artificial Network Evolution

Exponential growth of search space:
 n species → 2²ⁿ possible first-order reactions

Finding homologies

• Employ synergetic effects: known networks with similar functionality could be adapted

Bottom-up engineering

• Provide small functional units and combine them towards entire network (constructive approach)

Learning strategies

• Reduce a huge full network by successive weighting of reactions along with available behavioural data

Artificial network evolution

• Universal heuristics adopted from biological evolution

Reverse Engineering by Artificial Network Evolution

Exponential growth of search space:
 n species → 2²ⁿ possible first-order reactions

Finding homologies

• Employ synergetic effects: known networks with similar functionality could be adapted

Bottom-up engineering

• Provide small functional units and combine them towards entire network (constructive approach)

Learning strategies

• Reduce a huge full network by successive weighting of reactions along with available behavioural data

Artificial network evolution

• Universal heuristics adopted from biological evolution

Reverse Engineering by Artificial Network Evolution

Exponential growth of search space:
 n species → 2²ⁿ possible first-order reactions

Finding homologies

• Employ synergetic effects: known networks with similar functionality could be adapted

Bottom-up engineering

• Provide small functional units and combine them towards entire network (constructive approach)

Learning strategies

• Reduce a huge full network by successive weighting of reactions along with available behavioural data

Artificial network evolution

Universal heuristics adopted from biological evolution

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Why Artificial Evolution for Network Reverse Engineering

- Systems Biology deals with interplay of biological components rather than components themselves.
- Accumulation of small modifications in component's interplay can result in a new quality of the entire network.
 Artificial evolution can explore network struct
- Help in understanding emergence of biological complexity.
 ⇒ Evolution becomes observable.
- Furthermore, bio-inspired approaches provide a flexible, fault-tolerant, reliable paradigm.

Artificial evolution can find unexpected, unconventional solutions.

Reverse Engineering by Artificial Network Evolution

T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster

www.wordpress.com

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Why Artificial Evolution for Network Reverse Engineering

- Systems Biology deals with interplay of biological components rather than components themselves.
- Accumulation of small modifications in component's interplay can result in a new quality of the entire network.

www.wordpress.com

 \implies Artificial evolution can explore network structure.

- Help in understanding emergence of biological complexity.
 ⇒ Evolution becomes observable.
- Furthermore, bio-inspired approaches provide a flexible, fault-tolerant, reliable paradigm.

Artificial evolution can find unexpected, unconventional solutions.

Reverse Engineering by Artificial Network Evolution

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Why Artificial Evolution for Network Reverse Engineering

- Systems Biology deals with interplay of biological components rather than components themselves.
- Accumulation of small modifications in component's interplay can result in a new quality of the entire network.
 Artificial evolution can explore network

www.wordpress.com

- \Rightarrow Artificial evolution can explore network structure.
- Help in understanding emergence of biological complexity.

 => Evolution becomes observable.
- Furthermore, bio-inspired approaches provide a flexible, fault-tolerant, reliable paradigm.

Artificial evolution can find unexpected, unconventional solutions.

Reverse Engineering by Artificial Network Evolution

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Why Artificial Evolution for Network Reverse Engineering

- Systems Biology deals with interplay of biological components rather than components themselves.
- Accumulation of small modifications in component's interplay can result in a new quality of the entire network.
 Artificial evolution can explore network

www.wordpress.com

 \Rightarrow Artificial evolution can explore network structure.

- Help in understanding emergence of biological complexity.

 => Evolution becomes observable.
- Furthermore, bio-inspired approaches provide a flexible, fault-tolerant, reliable paradigm.

⇒ Artificial evolution can find unexpected, unconventional solutions.

Reverse Engineering by Artificial Network Evolution

Artificial Evolution

SBMLevolver 00000000 Evolved Networks

Circadian Systems

Outline

Reverse Engineering by Artificial Network Evolution

- 1. Artificial evolution at a glance
- 2. The SBMLevolver: a two-level evolutionary algorithm
- 3. Evolved networks: a selection
- 4. Ongoing study: control system-based specification of circadian oscillators
- 5. Perspective: hierarchical evolution

Evolved Networks

Circadian Systems

Evolutionary Computing

- Abstraction and formalisation of evolutionary processes
- Individuals (genotype, phenotype) and population
- Evolutionary operators along with fitness evaluation
- Heuristical optimisation technique, experimentally driven

Artificial evolution

- Initiated by Friedmann 1956
- Pioneers: Rechenberg, Schwefel, Fogel, Holland, Banzhaf, Koza, Sauro, ...

pics.goingon.com

Reverse Engineering by Artificial Network Evolution

Artificial Evolution

SBMLevolver 00000000 Evolved Networks

Circadian Systems

Facets and Specialties

Reverse Engineering by Artificial Network Evolution

Artificial Evolution

SBMLevolver 00000000 Evolved Networks

Circadian Systems

Facets and Specialties

Reverse Engineering by Artificial Network Evolution

Central Loop in Evolutionary Algorithms

Reverse Engineering by Artificial Network Evolution

SBMLevolver: Two-Level Evolutionary Algorithm

- Separation of structural evolution from parameter fitting
- Idea: parameters can adapt to mutated network structure

- Upper level: network structure
- Lower level: kinetic parameter fitting
- ⇒ open-source freeware: http://users.minet.uni-jena.de/~biosys/esignet

Reverse Engineering by Artificial Network Evolution

Reverse Engineering by Artificial Network Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Initialization of Network Population

Initial population configurable, typically 50...100 network individuals as SBML files

Empty

Network reconstruction from scratch

Randomly choosen

 Individual networks randomly chosen, upper/lower limits for numbers of species, reactions, and kinetic parameter values

Taken from imported SBML file

- Generate a number of file copies
- Dedicated species, reactions, and kinetic parameters can be marked as fixed during evolution

Reverse Engineering by Artificial Network Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Initialization of Network Population

Initial population configurable, typically 50...100 network individuals as SBML files

Empty

Network reconstruction from scratch

Randomly choosen

 Individual networks randomly chosen, upper/lower limits for numbers of species, reactions, and kinetic parameter values

Taken from imported SBML file

- Generate a number of file copies
- Dedicated species, reactions, and kinetic parameters can be marked as fixed during evolution

Reverse Engineering by Artificial Network Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Initialization of Network Population

Initial population configurable, typically 50...100 network individuals as SBML files

Empty

Network reconstruction from scratch

Randomly choosen

 Individual networks randomly chosen, upper/lower limits for numbers of species, reactions, and kinetic parameter values

Taken from imported SBML file

- Generate a number of file copies
- Dedicated species, reactions, and kinetic parameters can be marked as fixed during evolution

SBMLevolver

Evolved Networks

Circadian Systems

Fitness Evaluation

Specification of dynamical behaviour

- Input/output table: desired course of input and output species at discrete points in time
- Distinction between finite number of cases (runs) in input/output table
- Penalties can be set

Fitness evaluation

- Numerical integration of reaction network using ODE solver (SOSlib)
- Currently, mass-action kinetics
- Fitness measure given by weighted squared distance to target time course (output species)
- Minimisation of fitness value (!)

Reverse Engineering by Artificial Network Evolution

Initial input concentrations # Starting with * sets the concentr Only one number means the concent Case 0 0 * 0 # Case 1 + 10 # Case 2 ± 10 + 0 # Case 3 * 10 + 10 # Now the output data comes # Case 0 # Case 1 10 # Case 2

SBMLevolver

Evolved Networks

Circadian Systems

Fitness Evaluation

Specification of dynamical behaviour

- Input/output table: desired course of input and output species at discrete points in time
- Distinction between finite number of cases (runs) in input/output table
- Penalties can be set

Fitness evaluation

- Numerical integration of reaction network using ODE solver (SOSlib)
- Currently, mass-action kinetics
- Fitness measure given by weighted squared distance to target time course (output species)
- Minimisation of fitness value (!)

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Mutation Operators

Seven mutations available, randomly selected

- Addition/deletion of a species
- Addition/deletion of a reaction
- Connection/removal of existing species to/from a reaction
- Duplication of a species with all its reactions

Network size can be limited.

⇒ One or several mutations per turn

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Parameter Fitting

- Adaptation of networks after structural mutation(s)
- Separate evolutionary algorithm
- Generate copies of networks resulted from structural mutation(s)
- Random selection of one or several kinetic parameters
- Mutation: addition of Gauss variable
- Plausibility check
- No recombination
- Environmental selection

parameter increment / decrement

Evolved Networks

Circadian Systems

Environmental Selection

Small population size

- Due to high computational costs of fitness evaluation
- **Self-adaptation of strategy parameters** (Gaussian distribution)
 - Balancing between exploration of search space and fine-tuning
- Non-overlapping generations
 - Comma-selection supports self adaptation
- Parameter settings copied from parent to offspring
 - Incremental parameter fitting
- **Fitness proportional selection**
 - Combines survival of the fittest with ability to leave local optima and keeps diversity of population

Evolved Networks

Circadian Systems

Environmental Selection

Small population size

• Due to high computational costs of fitness evaluation

Self-adaptation of strategy parameters

- (Gaussian distribution)
 - Balancing between exploration of search space and fine-tuning

Non-overlapping generations

- Comma-selection supports self adaptation
- Parameter settings copied from parent to offspring
 - Incremental parameter fitting

Fitness proportional selection

Evolved Networks

Circadian Systems

Environmental Selection

Small population size

• Due to high computational costs of fitness evaluation

Self-adaptation of strategy parameters

- (Gaussian distribution)
 - Balancing between exploration of search space and fine-tuning

Non-overlapping generations

Comma-selection supports self adaptation

Parameter settings copied from parent to offspring

• Incremental parameter fitting

Fitness proportional selection

Evolved Networks

Circadian Systems

Environmental Selection

Small population size

• Due to high computational costs of fitness evaluation

Self-adaptation of strategy parameters

- (Gaussian distribution)
 - Balancing between exploration of search space and fine-tuning

Non-overlapping generations

Comma-selection supports self adaptation

Parameter settings copied from parent to offspring

Incremental parameter fitting

Fitness proportional selection

Evolved Networks

Circadian Systems

Environmental Selection

Small population size

Due to high computational costs of fitness evaluation

Self-adaptation of strategy parameters

- (Gaussian distribution)
 - Balancing between exploration of search space and fine-tuning

Non-overlapping generations

Comma-selection supports self adaptation

Parameter settings copied from parent to offspring

Incremental parameter fitting

Fitness proportional selection

Circadian Systems

Termination and Final Network Simplification

Termination

- Best fitness below configurable threshold (ideally = 0)
- After configurable number of generations
- After configurable number of fitness evaluations

Final network simplification

• Optional, only deletion of species keeping minimal fitness

Challenges and insufficiencies

- Premature convergence along with low diversity of population
- Overfitting (perfect replication of test cases but no further functionality of network)

Circadian Systems

Termination and Final Network Simplification

Termination

- Best fitness below configurable threshold (ideally = 0)
- After configurable number of generations
- After configurable number of fitness evaluations

Final network simplification

• Optional, only deletion of species keeping minimal fitness

Challenges and insufficiencies

- Premature convergence along with low diversity of population
- Overfitting (perfect replication of test cases but no further functionality of network)

Circadian Systems

Termination and Final Network Simplification

Termination

- Best fitness below configurable threshold (ideally = 0)
- After configurable number of generations
- After configurable number of fitness evaluations

Final network simplification

Optional, only deletion of species keeping minimal fitness

Challenges and insufficiencies

- Premature convergence along with low diversity of population
- Overfitting (perfect replication of test cases but no further functionality of network)

SBMLevolver 00000000 Evolved Networks

Circadian Systems

Introductory Example: Arithmetic Addition

Task: addition of two positive real numbers

- R0, R1, R2 identify reactions
- input1, input2, output1: dedicated species
- X1, X2: auxiliary species
- Stepwise modification of network structure and kinetic parameters

Reverse Engineering by Artificial Network Evolution

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Third Root Network

initial conc. of input species \mapsto steady state conc. of output species

T. Lenser, T. Hinze, B. Ibrahim, P. Dittrich. Towards Evolutionary Network Reconstruction Tools for Systems Biology-In E. Marchiori, J.H. Moore, J.C. Rajapakse (Eds.), Proceedings Fifth European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, Springer LNCS 4447:132-142, 2007

Reverse Engineering by Artificial Network Evolution

on Artificial Evolution SB

BMLevolver

Evolved Networks

Circadian Systems

Addition

$$\frac{dx_1}{dt} = 0 \qquad \frac{dx_2}{dt} = 0 \qquad \frac{dy}{dt} = k_1 x_1 + k_2 x_2 - k_3 y$$

Let $k_1 = k_2 = k_3 > 0$.

Steady state: $y = \lim_{t \to \infty} (1 - e^{-k_1 t}) \cdot (x_1 + x_2) = x_1 + x_2$

B. Schau, T. Hinze, T. Lenser, I. Heiland, S. Schuster. Control System-Based Reverse Engineering of Circadian Oscillators. In I. Grosse, S. Neumann, S. Posch, F. Schreiber, P. Stadler (Eds.), Proceedings German Conference on Bioinformatics (GCB2009), p. 126-127, Martin-Luther University Halle-Wittenberg, 2009

Reverse Engineering by Artificial Network Evolution

vation Artificial Evolution SBMLevolver Evolved Networks Circadian System on one of the operation of the ope

Non-Negative Subtraction

$$\frac{dx_1}{dt} = 0 \qquad \qquad \frac{dx_2}{dt} = 0$$
$$\frac{dy}{dt} = -k_2yz - k_1y + k_1x_1 \qquad \frac{dz}{dt} = k_1x_2 - k_2yz$$

Let $k_1 > 0$ and $k_2 > 0$.

Steady state: $y = \begin{cases} x_1 - x_2 \text{ iff } x_1 > x_2 \\ 0 \text{ otherwise} \end{cases}$

Reverse Engineering by Artificial Network Evolution

FORSYS Partner Initiative

 Motivation
 Artificial Evolution
 SBMLevolver
 Evolved Networks

 0000
 000
 00000000
 00000000

Multiplication

$$\frac{dx_1}{dt} = 0 \qquad \frac{dx_2}{dt} = 0 \qquad \frac{dy}{dt} = k_1 x_1 x_2 - k_2 y$$

Let $k_1 = k_2 > 0$.

Steady state: $y = \lim_{t \to \infty} (1 - e^{-k_1 t}) \cdot x_1 \cdot x_2 = x_1 \cdot x_2$

B. Schau, T. Hinze, T. Lenser, I. Heiland, S. Schuster. Control System-Based Reverse Engineering of Circadian Oscillators. In I. Grosse, S. Neumann, S. Posch, F. Schreiber, P. Stadler (Eds.), Proceedings German Conference on Bioinformatics (GCB2009), p. 126-127, Martin-Luther University Halle-Wittenberg, 2009

Reverse Engineering by Artificial Network Evolution

 Motivation
 Artificial Evolution
 SBMLevolver
 Evolved Networks
 Circa

 0000
 000
 0000000
 0000000
 0000000
 0000000

Division

$$\frac{dx_1}{dt} = 0 \qquad \frac{dx_2}{dt} = 0 \qquad \frac{dy}{dt} = k_2 x_2 - k_1 x_1 y$$
Let $k_1 = k_2 > 0$. Steady state:

$$y = \begin{cases} \lim_{t \to \infty} (1 - e^{-k_1 t}) \cdot \frac{x_2}{x_1} & \text{iff } x_1 > 0 \\ \lim_{t \to \infty} \int k_2 x_2 dt & \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{x_2}{x_1} & \text{iff } x_1 > 0 \\ \to \infty & \text{iff } x_1 = 0 & \text{and } x_2 > 0 \\ 0 & \text{iff } x_1 = 0 & \text{and } x_2 = 0 \end{cases}$$

FORSYS Partner Initiative

Reverse Engineering by Artificial Network Evolution

 $BubR1_X^* + Cdc20_Y \quad \rightarrow \quad Mad2_X + Cdc20_Y$

T. Lenser, T. Hinze, B. Ibrahim, P. Dittrich. Springer LNCS 4447:132-142, 2007

Reverse Engineering by Artificial Network Evolution

T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster

Artificial Evolution

SBMLevolver 00000000 Evolved Networks

Circadian Systems

Circadian Systems

Characteristics

- Self-sustained biochemical oscillators
- Period of approx. 24 hours persisting under constant environmental conditions (e.g. constant darkness)
- Temperature compensation within physiological range
- Capability of entrainment by external stimuli (e.g. light/dark or temperature cycles)
- Reaction system with at least one feedback loop

High scientific impact because

- · Circadian clock as a potential universal property of life
- Self-sustainability and high precision of bio-oscillators
- Chronobiological control systems for manifold processes
- Several independent evolutionary origins assumed

Artificial Evolution

SBMLevolver 00000000 Evolved Networks

Circadian Systems

Representation as Control System

Separation of the system into smaller functional components

Reverse Engineering by Artificial Network Evolution

Circadian Entrainment as Phase Locking Loop

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Perspective: Hierarchical Evolution

- Consecutive phases of evolution
- Fix fittest individuals after each phase and compose them
- Emerging complex systems within reduced search space

Artificial Evolution

SBMLevolver 00000000 Evolved Networks

Circadian Systems

Special Thanks go to ...

... my coworkers

Benedict Schau Department Bioinformatics, FSU Jena

Ines Heiland Department Bioinformatics, FSU Jena

Thorsten Lenser Bio Systems Analysis Group, FSU Jena

Stefan Schuster Department Bioinformatics, FSU Jena

... the funding organization

German Federal Ministry of Education and Research, project 0315260A within Research Initiative in Systems Biology

... you for your attention. Questions?

Bundesministerium für Bildung und Forschung

Reverse Engineering by Artificial Network Evolution