Reverse Engineering by Artificial Network Evolution

Thomas Hinze Ines Heiland Benedict Schau
Thorsten Lenser Stefan Schuster

Friedrich-Schiller University Jena
Department of Bioinformatics at School of Biology and Pharmacy

thomas.hinze@uni-jena.de

October 09, 2009
Reaction Network Reconstruction from Scratch

- Partially unknown topology
- Some behavioural data available
- Reconstruction of appropriate reaction network candidates
- Capturing ideas and inspirations for network topologies and parameterisation suitable for specific task
Reaction Network Reconstruction: A Challenging Task

Exhaustive candidate enumeration

- Exponential growth of search space:
 \[n \text{ species} \rightarrow 2^{2n} \text{ possible first-order reactions} \]

Finding homologies

- Employ synergetic effects: known networks with similar functionality could be adapted

Bottom-up engineering

- Provide small functional units and combine them towards entire network (constructive approach)

Learning strategies

- Reduce a huge full network by successive weighting of reactions along with available behavioural data

Artificial network evolution

- Universal heuristics adopted from biological evolution
Reaction Network Reconstruction: A Challenging Task

Exhaustive candidate enumeration

- Exponential growth of search space:
 \(n \) species \(\rightarrow 2^{2n} \) possible first-order reactions

Finding homologies

- Employ synergetic effects: known networks with similar functionality could be adapted

Bottom-up engineering

- Provide small functional units and combine them towards entire network (constructive approach)

Learning strategies

- Reduce a huge full network by successive weighting of reactions along with available behavioural data

Artificial network evolution

- Universal heuristics adopted from biological evolution

Reverse Engineering by Artificial Network Evolution

T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster
Reaction Network Reconstruction: A Challenging Task

Exhaustive candidate enumeration

- Exponential growth of search space: n species $\rightarrow 2^{2n}$ possible first-order reactions

Finding homologies

- Employ synergetic effects: known networks with similar functionality could be adapted

Bottom-up engineering

- Provide small functional units and combine them towards entire network (constructive approach)

Learning strategies

- Reduce a huge full network by successive weighting of reactions along with available behavioural data

Artificial network evolution

- Universal heuristics adopted from biological evolution
Reaction Network Reconstruction: A Challenging Task

Exhaustive candidate enumeration

- Exponential growth of search space:
 \[n \text{ species} \rightarrow 2^{2n} \text{ possible first-order reactions} \]

Finding homologies

- Employ synergetic effects: known networks with similar functionality could be adapted

Bottom-up engineering

- Provide small functional units and combine them towards entire network (constructive approach)

Learning strategies

- Reduce a huge full network by successive weighting of reactions along with available behavioural data

Artificial network evolution

- Universal heuristics adopted from biological evolution
Reaction Network Reconstruction: A Challenging Task

Exhaustive candidate enumeration
- Exponential growth of search space:
 \[n \text{ species} \rightarrow 2^{2n} \text{ possible first-order reactions} \]

Finding homologies
- Employ synergetic effects: known networks with similar functionality could be adapted

Bottom-up engineering
- Provide small functional units and combine them towards entire network (constructive approach)

Learning strategies
- Reduce a huge full network by successive weighting of reactions along with available behavioural data

Artificial network evolution
- Universal heuristics adopted from biological evolution
Why Artificial Evolution for Network Reverse Engineering

- Systems Biology deals with interplay of biological components rather than components themselves.
- Accumulation of small modifications in component’s interplay can result in a new quality of the entire network.
 \[\Rightarrow\] Artificial evolution can explore network structure.
- Help in understanding emergence of biological complexity.
 \[\Rightarrow\] Evolution becomes observable.
- Furthermore, bio-inspired approaches provide a flexible, fault-tolerant, reliable paradigm.
 \[\Rightarrow\] Artificial evolution can find unexpected, unconventional solutions.
Motivation

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Why Artificial Evolution for Network Reverse Engineering

• Systems Biology deals with interplay of biological components rather than components themselves.

• Accumulation of small modifications in component’s interplay can result in a new quality of the entire network.

 ⇒ Artificial evolution can explore network structure.

• Help in understanding emergence of biological complexity.

 ⇒ Evolution becomes observable.

• Furthermore, bio-inspired approaches provide a flexible, fault-tolerant, reliable paradigm.

 ⇒ Artificial evolution can find unexpected, unconventional solutions.
Why Artificial Evolution for Network Reverse Engineering

- Systems Biology deals with interplay of biological components rather than components themselves.
- Accumulation of small modifications in component’s interplay can result in a new quality of the entire network.
 \[\Rightarrow\] Artificial evolution can explore network structure.
- Help in understanding emergence of biological complexity.
 \[\Rightarrow\] Evolution becomes observable.
- Furthermore, bio-inspired approaches provide a flexible, fault-tolerant, reliable paradigm.
 \[\Rightarrow\] Artificial evolution can find unexpected, unconventional solutions.
Why Artificial Evolution for Network Reverse Engineering

- Systems Biology deals with interplay of biological components rather than components themselves.

- Accumulation of small modifications in component’s interplay can result in a new quality of the entire network.
 \[\Rightarrow\] Artificial evolution can explore network structure.

- Help in understanding emergence of biological complexity.
 \[\Rightarrow\] Evolution becomes observable.

- Furthermore, bio-inspired approaches provide a flexible, fault-tolerant, reliable paradigm.
 \[\Rightarrow\] Artificial evolution can find unexpected, unconventional solutions.
Outline
Reverse Engineering by Artificial Network Evolution

1. Artificial evolution at a glance
2. The SBMLevolver: a two-level evolutionary algorithm
3. Evolved networks: a selection
4. Ongoing study: control system-based specification of circadian oscillators
5. Perspective: hierarchical evolution
Evolutionary Computing

- Abstraction and formalisation of evolutionary processes
- Individuals (genotype, phenotype) and population
- Evolutionary operators along with fitness evaluation
- Heuristical optimisation technique, experimentally driven

Artificial evolution

- Initiated by Friedmann 1956
- Pioneers: Rechenberg, Schwefel, Fogel, Holland, Banzhaf, Koza, Sauro, …
Facets and Specialties

Evolutionary Computing

- Evolutionary Algorithms
- Evolution Strategies
- Evolutionary Programming

- Genetic Algorithms
- Genetic Programming

phenotype-based
genotype-based
Facets and Specialties

Evolutionary Computing

Evolutionary Algorithms

Evolution Strategies

Evolutionary Programming

Genetic Algorithms

Genetic Programming

phenotype-based
genotype-based
Central Loop in Evolutionary Algorithms

1. initialize population
2. fitness evaluation
3. selection of mating partners
4. recombination
5. mutation
6. fitness evaluation
7. environmental selection
8. termination test
SBMLEvolver: Two-Level Evolutionary Algorithm

- Separation of structural evolution from parameter fitting
- Idea: parameters can adapt to mutated network structure

- Upper level: network structure
- Lower level: kinetic parameter fitting

⇒ open-source freeware: http://users.minet.uni-jena.de/~biosys/esignet

Reverse Engineering by Artificial Network Evolution
T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster
Motivation

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Reverse Engineering by Artificial Network Evolution

T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster
Initialization of Network Population

Initial population configurable, typically 50...100 network individuals as SBML files

Empty
- Network reconstruction from scratch

Randomly choosen
- Individual networks randomly chosen, upper/lower limits for numbers of species, reactions, and kinetic parameter values

Taken from imported SBML file
- Generate a number of file copies
- Dedicated species, reactions, and kinetic parameters can be marked as fixed during evolution
Initialization of Network Population

Initial population configurable, typically 50...100 network individuals as SBML files

Empty
- Network reconstruction from scratch

Randomly chosen
- Individual networks randomly chosen, upper/lower limits for numbers of species, reactions, and kinetic parameter values

Taken from imported SBML file
- Generate a number of file copies
- Dedicated species, reactions, and kinetic parameters can be marked as fixed during evolution
Initialization of Network Population

Initial population configurable, typically 50…100 network individuals as SBML files

Empty
- Network reconstruction from scratch

Randomly chosen
- Individual networks randomly chosen, upper/lower limits for numbers of species, reactions, and kinetic parameter values

Taken from imported SBML file
- Generate a number of file copies
- Dedicated species, reactions, and kinetic parameters can be marked as fixed during evolution
Fitness Evaluation

Specification of dynamical behaviour

- Input/output table: desired course of input and output species at discrete points in time
- Distinction between finite number of cases (runs) in input/output table
- Penalties can be set

Fitness evaluation

- Numerical integration of reaction network using ODE solver (SOSlib)
- Currently, mass-action kinetics
- Fitness measure given by weighted squared distance to target time course (output species)
- Minimisation of fitness value (!)
Fitness Evaluation

Specification of dynamical behaviour

- Input/output table: desired course of input and output species at discrete points in time
- Distinction between finite number of cases (runs) in input/output table
- Penalties can be set

Fitness evaluation

- Numerical integration of reaction network using ODE solver (SOSlib)
- Currently, mass-action kinetics
- Fitness measure given by weighted squared distance to target time course (output species)
- Minimisation of fitness value (!)

Initial input concentrations
Starting with * sets the concentr
Only one number means the concent
Case 0
* 0
* 0
Case 1
* 0
* 10
Case 2
* 10
* 0
Case 3
* 10
* 10

Now the output data comes
Case 0
0
Case 1
10
Case 2

Fitness development (best, average, worst)
Motivation

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Mutation Operators

Seven mutations available, randomly selected

- Addition/deletion of a species
- Addition/deletion of a reaction
- Connection/removal of existing species to/from a reaction
- Duplication of a species with all its reactions

Network size can be limited.

⇒ One or several mutations per turn
Parameter Fitting

- Adaptation of networks after structural mutation(s)
- Separate evolutionary algorithm
- Generate copies of networks resulted from structural mutation(s)
- Random selection of one or several kinetic parameters
- Mutation: addition of **Gauss variable**
- Plausibility check
- No recombination
- Environmental selection

![Normal Distribution](N(0,\sigma))

- Parameter increment / decrement
- Probability

Motivation

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems
Environmental Selection

Small population size
- Due to high computational costs of fitness evaluation

Self-adaptation of strategy parameters (Gaussian distribution)
- Balancing between exploration of search space and fine-tuning

Non-overlapping generations
- Comma-selection supports self-adaptation

Parameter settings copied from parent to offspring
- Incremental parameter fitting

Fitness proportional selection
- Combines survival of the fittest with ability to leave local optima and keeps diversity of population
Environmental Selection

Small population size
- Due to high computational costs of fitness evaluation

Self-adaptation of strategy parameters
(Gaussian distribution)
- Balancing between exploration of search space and fine-tuning

Non-overlapping generations
- Comma-selection supports self adaptation

Parameter settings copied from parent to offspring
- Incremental parameter fitting

Fitness proportional selection
- Combines survival of the fittest with ability to leave local optima and keeps diversity of population
Environmental Selection

Small population size
- Due to high computational costs of fitness evaluation

Self-adaptation of strategy parameters
(Gaussian distribution)
- Balancing between exploration of search space and fine-tuning

Non-overlapping generations
- Comma-selection supports self adaptation

Parameter settings copied from parent to offspring
- Incremental parameter fitting

Fitness proportional selection
- Combines survival of the fittest with ability to leave local optima and keeps diversity of population
Environmental Selection

Small population size
- Due to high computational costs of fitness evaluation

Self-adaptation of strategy parameters
(Gaussian distribution)
- Balancing between exploration of search space and fine-tuning

Non-overlapping generations
- Comma-selection supports self adaptation

Parameter settings copied from parent to offspring
- Incremental parameter fitting

Fitness proportional selection
- Combines survival of the fittest with ability to leave local optima and keeps diversity of population
Environmental Selection

Small population size
- Due to high computational costs of fitness evaluation

Self-adaptation of strategy parameters
(Gaussian distribution)
- Balancing between exploration of search space and fine-tuning

Non-overlapping generations
- Comma-selection supports self adaptation

Parameter settings copied from parent to offspring
- Incremental parameter fitting

Fitness proportional selection
- Combines survival of the fittest with ability to leave local optima and keeps diversity of population
Termination and Final Network Simplification

Termination
- Best fitness below configurable threshold (ideally $= 0$)
- After configurable number of generations
- After configurable number of fitness evaluations

Final network simplification
- Optional, only deletion of species keeping minimal fitness

Challenges and insufficiencies
- Premature convergence along with low diversity of population
- Overfitting (perfect replication of test cases but no further functionality of network)
Termination and Final Network Simplification

Termination

- Best fitness below configurable threshold (ideally $= 0$)
- After configurable number of generations
- After configurable number of fitness evaluations

Final network simplification

- Optional, only deletion of species keeping minimal fitness

Challenges and insufficiencies

- Premature convergence along with low diversity of population
- Overfitting (perfect replication of test cases but no further functionality of network)
Termination and Final Network Simplification

Termination

- Best fitness below configurable threshold (ideally $= 0$)
- After configurable number of generations
- After configurable number of fitness evaluations

Final network simplification

- Optional, only deletion of species keeping minimal fitness

Challenges and insufficiencies

- Premature convergence along with low diversity of population
- Overfitting (perfect replication of test cases but no further functionality of network)
Introductory Example: Arithmetic Addition

Task: addition of two positive real numbers

- **R0, R1, R2** identify reactions
- **input1, input2, output1**: dedicated species
- **X1, X2**: auxiliary species
- Stepwise modification of network structure and kinetic parameters
Third Root Network

initial conc. of input species \rightarrow steady state conc. of output species

Motivation Artificial Evolution SBMLevolver Evolved Networks Circadian Systems

Addition

\[
\begin{align*}
\frac{dx_1}{dt} &= 0 & \frac{dx_2}{dt} &= 0 & \frac{dy}{dt} &= k_1 x_1 + k_2 x_2 - k_3 y
\end{align*}
\]

Let \(k_1 = k_2 = k_3 > 0 \).

Steady state:
\[
y = \lim_{t \to \infty} \left(1 - e^{-k_1 t} \right) \cdot (x_1 + x_2) = x_1 + x_2
\]

Reverse Engineering by Artificial Network Evolution T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster
Non-Negative Subtraction

\[\frac{dx_1}{dt} = 0 \]
\[\frac{dx_2}{dt} = 0 \]
\[\frac{dy}{dt} = -k_2 yz - k_1 y + k_1 x_1 \]
\[\frac{dz}{dt} = k_1 x_2 - k_2 yz \]

Let \(k_1 > 0 \) and \(k_2 > 0 \).

Steady state:

\[y = \begin{cases}
 x_1 - x_2 & \text{iff } x_1 > x_2 \\
 0 & \text{otherwise}
\end{cases} \]
Motivation
Artificial Evolution
SBMLEvolver
Evolved Networks
Circadian Systems

Multiplication

\[\frac{dx_1}{dt} = 0 \quad \frac{dx_2}{dt} = 0 \quad \frac{dy}{dt} = k_1 x_1 x_2 - k_2 y \]

Let \(k_1 = k_2 > 0 \).

Steady state:
\[y = \lim_{t \to \infty} \left(1 - e^{-k_1 t} \right) \cdot x_1 \cdot x_2 = x_1 \cdot x_2 \]

Motivation

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Division

\[
\frac{dx_1}{dt} = 0 \quad \frac{dx_2}{dt} = 0 \quad \frac{dy}{dt} = k_2 x_2 - k_1 x_1 y
\]

Let \(k_1 = k_2 > 0 \). Steady state:

\[
y = \begin{cases}
\lim_{t \to \infty} (1 - e^{-k_1 t}) \cdot \frac{x_2}{x_1} & \text{iff } x_1 > 0 \\
\lim_{t \to \infty} \int k_2 x_2 dt & \text{otherwise} \\
\frac{x_2}{x_1} & \text{iff } x_1 > 0 \\
\rightarrow \infty & \text{iff } x_1 = 0 \text{ and } x_2 > 0 \\
0 & \text{iff } x_1 = 0 \text{ and } x_2 = 0
\end{cases}
\]
Case Study: Human Spindle Assembly Checkpoint

- 17 species, 11 reactions
- Compartments represent chromosomes X, Y
- Structural evolution adds two (unrealistic) reactions:

 \[
 \begin{align*}
 \text{BubR1}_Y & \rightarrow \text{Mad1}_X^* + \text{BubR1}_Y^* \\
 \text{BubR1}_X^* + \text{Cdc20}_Y & \rightarrow \text{Mad2}_X + \text{Cdc20}_Y
 \end{align*}
 \]

Circadian Systems

Characteristics

- Self-sustained biochemical oscillators
- Period of approx. 24 hours persisting under constant environmental conditions (e.g. constant darkness)
- Temperature compensation within physiological range
- Capability of entrainment by external stimuli (e.g. light/dark or temperature cycles)
- Reaction system with at least one feedback loop

High scientific impact because . . .

- Circadian clock as a potential universal property of life
- Self-sustainability and high precision of bio-oscillators
- Chronobiological control systems for manifold processes
- Several independent evolutionary origins assumed
Representation as Control System
Separation of the system into smaller functional components

Reverse Engineering by Artificial Network Evolution
T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster
Circadian Entrainment as Phase Locking Loop

- Motivation
 - Artificial Evolution
 - SBMLevolver
 - Evolved Networks
 - Circadian Systems

Circadian Systems

Motivation

Artificial Evolution

SBMLevolver

Evolved Networks

Circadian Systems

Reverse Engineering by Artificial Network Evolution

T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster
Perspective: Hierarchical Evolution

- Consecutive phases of evolution
- Fix fittest individuals after each phase and compose them
- Emerging complex systems within reduced search space

Phase 1: Elementary network units

Phase 2: First-order composed networks

Phase 3: ...
Special Thanks go to...

... my coworkers

Benedict Schau
Department Bioinformatics, FSU Jena

Ines Heiland
Department Bioinformatics, FSU Jena

Thorsten Lenser
Bio Systems Analysis Group, FSU Jena

Stefan Schuster
Department Bioinformatics, FSU Jena

... the funding organization

German Federal Ministry of Education and Research, project 0315260A within Research Initiative in Systems Biology

... you for your attention. Questions?