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Reaction Network Reconstruction from Scratch

?
• Partially unknown topology
• Some behavioural data available
• Reconstruction of appropriate reaction network candidates
• Capturing ideas and inspirations for network topologies

and parameterisation suitable for specific task
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Reaction Network Reconstruction: A Challenging Task
Exhaustive candidate enumeration

• Exponential growth of search space:
n species −→ 22n possible first-order reactions

Finding homologies
• Employ synergetic effects: known networks with similar

functionality could be adapted

Bottom-up engineering
• Provide small functional units and combine them towards

entire network (constructive approach)

Learning strategies
• Reduce a huge full network by successive weighting of

reactions along with available behavioural data

Artificial network evolution
• Universal heuristics adopted from biological evolution
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Why Artificial Evolution for
Network Reverse Engineering

• Systems Biology deals with interplay of
biological components rather than components
themselves.

• Accumulation of small modifications in
component’s interplay can result in a
new quality of the entire network.
=⇒ Artificial evolution can explore network structure.

• Help in understanding emergence of biological complexity.
=⇒ Evolution becomes observable.

• Furthermore, bio-inspired approaches provide a flexible,
fault-tolerant, reliable paradigm.
=⇒ Artificial evolution can find unexpected,

unconventional solutions.
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Outline
Reverse Engineering by Artificial Network Evolution

1. Artificial evolution at a glance

2. The SBMLevolver:
a two-level evolutionary algorithm

3. Evolved networks: a selection

4. Ongoing study: control system-based
specification of circadian oscillators

5. Perspective: hierarchical evolution

Reverse Engineering by Artificial Network Evolution T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster
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Evolutionary Computing
• Abstraction and formalisation of evolutionary processes
• Individuals (genotype, phenotype) and population
• Evolutionary operators along with fitness evaluation
• Heuristical optimisation technique, experimentally driven

Artificial evolution
• Initiated by Friedmann 1956
• Pioneers: Rechenberg, Schwefel, Fogel, Holland, Banzhaf,

Koza, Sauro, . . .

pics.goingon.com
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Facets and Specialties

Evolutionary
Programming

Evolutionary Computing

Genetic
Algorithms

Genetic
Programming

Evolution
Strategies

Evolutionary Algorithms

phenotype−based genotype−based
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Central Loop in Evolutionary Algorithms

1.

2.

3.

4.

5.
6.

7.

8.

fitness evaluation

initialize population

recombination

selection of mating partners
termination test

environmental selection

mutation
fitness evaluation
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SBMLevolver: Two-Level Evolutionary Algorithm
• Separation of structural evolution from parameter fitting
• Idea: parameters can adapt to mutated network structure
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Parameter Fitting & Fitness Evaluation

Selection
&

Offspring
Creation

Population

• Upper level: network structure
• Lower level: kinetic parameter fitting

=⇒ open-source freeware:
http://users.minet.uni-jena.de/∼biosys/esignet
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Structural Evolution

1.

2.

3.

4.

5.

7.

6.

8.

fitness evaluation

initialize population

recombination

return population

parameter fitting

mutation
hand over to parameter fitting

selection of mating partners
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Initialization of Network Population

Initial population configurable,
typically 50 . . . 100 network individuals as SBML files

Empty
• Network reconstruction from scratch

Randomly choosen
• Individual networks randomly chosen, upper/lower limits for

numbers of species, reactions, and kinetic parameter
values

Taken from imported SBML file
• Generate a number of file copies

• Dedicated species, reactions, and kinetic parameters can
be marked as fixed during evolution
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Fitness Evaluation
Specification of dynamical behaviour

• Input/output table: desired course
of input and output species
at discrete points in time

• Distinction between finite number of
cases (runs) in input/output table

• Penalties can be set
Fitness evaluation

• Numerical integration of reaction
network using ODE solver (SOSlib)

• Currently, mass-action kinetics
• Fitness measure given by weighted

squared distance to target
time course (output species)

• Minimisation of fitness value (!)
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Mutation Operators

Seven mutations available,
randomly selected

• Addition/deletion of a species

• Addition/deletion of a reaction

• Connection/removal of existing
species to/from a reaction

• Duplication of a species with
all its reactions

Network size can be limited.

=⇒ One or several mutations
per turn

Reverse Engineering by Artificial Network Evolution T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster

addition of a species

deletion of a species

addition of a reaction

deletion of a reaction

disconnection of species

connection of species

species duplication
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Parameter Fitting

• Adaptation of networks after structural mutation(s)

• Separate evolutionary algorithm

• Generate copies of networks
resulted from structural
mutation(s)

• Random selection of one or
several kinetic parameters

• Mutation: addition of
Gauss variable

• Plausibility check

• No recombination

• Environmental selection

Reverse Engineering by Artificial Network Evolution T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster
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Environmental Selection
Small population size

• Due to high computational costs of fitness evaluation

Self-adaptation of strategy parameters
(Gaussian distribution)

• Balancing between exploration of search space and
fine-tuning

Non-overlapping generations
• Comma-selection supports self adaptation

Parameter settings copied from parent to offspring
• Incremental parameter fitting

Fitness proportional selection
• Combines survival of the fittest with ability to leave local

optima and keeps diversity of population
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Termination and Final Network Simplification

Termination
• Best fitness below configurable threshold (ideally = 0)

• After configurable number of generations

• After configurable number of fitness evaluations

Final network simplification
• Optional, only deletion of species keeping minimal fitness

Challenges and insufficiencies
• Premature convergence along with low diversity of

population

• Overfitting (perfect replication of test cases but no further
functionality of network)
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Introductory Example: Arithmetic Addition

Task: addition of two positive real numbers

R0

output1

X1

input1

R1

X2

R2

input2

R0

X1 output1

input2

R2 R1

input1

snapshots of artificial network evolution

• R0, R1, R2 identify reactions
• input1 , input2 , output1 :

dedicated species
• X1, X2: auxiliary species
• Stepwise modification of network

structure and kinetic parameters
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Third Root Network
initial conc. of input species 7→ steady state conc. of output species

T. Lenser, T. Hinze, B. Ibrahim, P. Dittrich. Towards Evolutionary Network Reconstruction Tools for Systems Biology.
In E. Marchiori, J.H. Moore, J.C. Rajapakse (Eds.), Proceedings Fifth European Conference on Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics, Springer LNCS 4447:132-142, 2007
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Addition

dx1

dt
= 0

dx2

dt
= 0

dy
dt

= k1x1 + k2x2 − k3y

Let k1 = k2 = k3 > 0.

Steady state:
y = lim

t→∞

(

1 − e−k1t
)

· (x1 + x2) = x1 + x2

B. Schau, T. Hinze, T. Lenser, I. Heiland, S. Schuster. Control System-Based Reverse Engineering of Circadian
Oscillators. In I. Grosse, S. Neumann, S. Posch, F. Schreiber, P. Stadler (Eds.), Proceedings German
Conference on Bioinformatics (GCB2009), p. 126-127, Martin-Luther University Halle-Wittenberg, 2009
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Non-Negative Subtraction

dx1
dt = 0 dx2

dt = 0

dy
dt = −k2yz − k1y + k1x1

dz
dt = k1x2 − k2yz

Let k1 > 0 and k2 > 0.

Steady state:

y =

{

x1 − x2 iff x1 > x2

0 otherwise

Reverse Engineering by Artificial Network Evolution T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster
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Multiplication

dx1

dt
= 0

dx2

dt
= 0

dy
dt

= k1x1x2 − k2y

Let k1 = k2 > 0.

Steady state:
y = lim

t→∞

(

1 − e−k1t
)

· x1 · x2 = x1 · x2

B. Schau, T. Hinze, T. Lenser, I. Heiland, S. Schuster. Control System-Based Reverse Engineering of Circadian
Oscillators. In I. Grosse, S. Neumann, S. Posch, F. Schreiber, P. Stadler (Eds.), Proceedings German
Conference on Bioinformatics (GCB2009), p. 126-127, Martin-Luther University Halle-Wittenberg, 2009
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Division

dx1

dt
= 0

dx2

dt
= 0

dy
dt

= k2x2 − k1x1y

Let k1 = k2 > 0. Steady state:

y =

{

lim
t→∞

(

1 − e−k1t
)

·
x2
x1

iff x1 > 0

lim
t→∞

∫

k2x2dt otherwise

=







x2
x1

iff x1 > 0
→ ∞ iff x1 = 0 and x2 > 0
0 iff x1 = 0 and x2 = 0

Reverse Engineering by Artificial Network Evolution T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster
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Case Study: Human Spindle Assembly Checkpoint

• 17 species, 11 reactions

• Compartments represent
chromosomes X , Y

• Structural evolution adds two
(unrealistic) reactions:

BubR1Y → Mad1∗X + BubR1∗Y
BubR1∗X + Cdc20Y → Mad2X + Cdc20Y

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Phases

S
te

ad
y 

st
at

e 
le

ve
l o

f A
P

C
:C

dc
20

target: ———low——— –high–

T. Lenser, T. Hinze, B. Ibrahim, P. Dittrich. Springer LNCS 4447:132-142, 2007
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Circadian Systems
Characteristics

• Self-sustained biochemical oscillators

• Period of approx. 24 hours persisting under constant
environmental conditions (e.g. constant darkness)

• Temperature compensation within physiological range

• Capability of entrainment by external stimuli (e.g. light/dark
or temperature cycles)

• Reaction system with at least one feedback loop

High scientific impact because . . .

• Circadian clock as a potential universal property of life

• Self-sustainability and high precision of bio-oscillators

• Chronobiological control systems for manifold processes

• Several independent evolutionary origins assumed

Reverse Engineering by Artificial Network Evolution T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster
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Representation as Control System
Separation of the system into smaller functional components

Reverse Engineering by Artificial Network Evolution T. Hinze, I. Heiland, B. Schau, T. Lenser, S. Schuster
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Circadian Entrainment as Phase Locking Loop

plant and
sensor

controller

actuator

basis oscillator

time

moving average element (low pass filter)

time

difference element

time

plant input
affects frequency

accumulated signal

difference signal

activation
inhibition

reference value (external light/dark rhythms)
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Perspective: Hierarchical Evolution
• Consecutive phases of evolution
• Fix fittest individuals after each phase and compose them
• Emerging complex systems within reduced search space

phase 1 phase 2 phase 3 ...
elementary network units first−order composed networks ...

fix fittest individualsfix fittest individuals

time in generations
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