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1 SBML and CVODE based ODE Solver

1.1 Summary

Abstract The SBML ODE Solver is a programming library, accessible
also as a simple command-line tool, for (1) constructing a system of ordi-
nary differential equations (ODE) from chemical reaction networks and (2)
numerically integrating the time course of concentrations of chemical species
and (3) basic visualization of model structure and integration results. It is
based on SBML, the recently developed standard for description of biologi-
cal reaction networks, the SBML library libSBML for parsing SBML and
constructing the ODE system, and on CV ODE for numerical integration
of the derived system of ODEs. Optional data visualization modules allow
printing of integration results directly to Grace and drawing graphs of the
reaction network, and a Jacobian interaction graph of the ODE system via
graphviz’ graph drawing library.
The SBML ODE Solver is written in ANSI C - and therefor platform in-
dependent, and provides bindings for SWIG and Perl5.

Availability http://www.tbi.univie.ac.at/~raim/odeSolver
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1.2 Introduction

Background Mathematical modeling of chemical reactions, and especially
biochemical reaction networks involves a variety of techniques and theories
and has long been applied for various purposes in research and technology.
Diverse but potentially complementary approaches have been taken to an-
alyze networks of chemical reactions, roughly dividable in ‘dynamical’ and
’structural’ analysis.
Dynamical analysis tries to understand the time-dependent development of
reaction rates and molecular concentrations, including intuitively hardly rec-
ognizable properties that ‘emerge’ due to complex feedback cycles within
reaction networks. Given a complete reaction network, including a rate law
description for each reaction, one can either derive a system of ordinary dif-
ferential equations (ODE) for the time-change of the participating chemical
species, or a so-called chemical master-equation for discrete stochastic mod-
eling. Both formulations assume a well-stirred homogeneous solution of all
reactants. If interested in diffusion regulated processes the researcher can set
up a series of partial differential equations (PDE), additionally describing
space-dependence of the concentration of chemical species. Several other ap-
proaches adapted from various mathematical and computational techniques
have been explored, including multiple agent systems, petri nets [9, 4], which
naturally resemble a bipartite reaction graph and it’s stoichiometry, or the
π-calculus for analysis of concurrent parallel processes [11], and grammar
models, semantical and logic descriptions.
Some of the latter methods overlap conceptually with the second class, the
‘structural’ network analysis. Those methods include graph theory based
approaches to describe global network structure, that are essentially ‘graph
walking’ and ‘graph partitioning’ problems. More specialized techniques
- derived from theoretical chemistry, such as mass conservation analysis,
metabolic control or regulation analysis, allow to identify e.g. sensitivities
of the reaction network to a subset of parameters or minimal steady state
modules such as so-called ‘elementary flux modes’ or the related ‘extreme
pathways’.
Another interesting class of computational models of reaction network would
be constituted by the already wide range of metabolic pathway databases,
such as KEGG or MetaCyc. At least for the former, an SBML export
already exists. A very recent development provides for curated databases
of signal transduction and regulatory pathways, as derived from experi-
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mental knowledge in literature. ‘Domain experts’ extract the most estab-
lished knowledge on signaling networks and comprehend them into activa-
tion and inhibition diagrams. Adequately, such approaches are taken by
or in collaboration with the big journals, such as Science’s Signal Trans-
duction Knowledge Environment STKE, http://www.stke.org) or ‘the sig-
naling gateway’ of the ‘Alliance for Cellular Signaling’ (AfCS) and Nature
(http://www.signaling-gateway.org/). Both of the latter are currently
implementing SBML export of their models.
And finally, the ‘biomodels initiative’ will provide curated quantitative mod-
els of biological reaction networks of any kind (metabolic, signaling, and gene
regulatory) at http://www.biomodels.net.

SBML - the Systems Biology Markup Language Accordingly, many
tools for all kinds of computing platforms have been created, each relying on
their own data format for describing reactions networks and their parameters.
The need for exchange and merging of models motivated collaborative efforts
to develop a standard format for describing the common chemical reaction
networks underlying the various derived mathematical descriptions. Of two
competing XML based formats, SBML (Systems Biology Markup Language)
[15, 2, 5] and CellML (Cell Markup Language) [8] the former now seems to be
widely accepted in the modeling community and is supported by a growing
number of long-existing as well as newly emerging tools.

Motivation The available tools (see e.g. website [15]) cover a variety of
methods to edit and analyze a reaction network and its dynamics and/or
structure. However, they are designed either as - often platform specific -
standalone tools whose functionality is only accessible via more or less com-
plex user interfaces (Jarnac/SCAMP, Copasi, Genesis/KKit, ...) or depend
on commercial tools for mathematical analysis (the ‘SBML Toolbox’ for Mat-
lab, ‘MathSBML’ for Mathematica).
The SBML ODE Solver in its first released versions (1.0 and 1.5) is a
minimal ODE construction and integration tool with some additional (op-
tional) features for graph drawing and result visualization, entirely written
in C and based mainly on libSBML, the C/C++ library for parsing and
editing SBML [7], and CV ODE, a stiff and non-stiff ODE solver in C [12],
the same tool that is also used in SCAMP, a classic tool for model simula-
tion and metabolic control analysis [13]. The SBML ODE Solver is tar-
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geted at bioinformaticists, biomathematicians and ‘command-line friendly’
biochemists and biologists.

Possible Applications Through it’s easy-to-use and stripped down func-
tionality, the SBML ODE Solver offers itself for a variety of purposes, both
as a stand-alone tool for quickly exploring system structure and dynamics
and as a simple and reliable programming library, surrounded by other ad-
ditional and higher-level analysis or visualization tools. The program might
be most interesting for a use in batch integration of models, e.g. via a calling
script or program that interprets results and changes SBML structure or
parameters accordingly. Such a use is indicated by the green path in figure
1. Examples for a possible usage of the program via short Perl scripts, de-
pending on the Perl5 binding for libSBML, are included in the distribution.

High-throughput simulation:
While many users will only study a few models, with a few simulation runs,
other applications will require high-throughput numerical analysis of auto-
matically constructed models. The study of evolution of network struc-
ture and dynamics, will e.g. require quick identification and classification
of specific dynamics such as oscillations or multiple steady states (multi-
stationarity) of large series of models, derived from each other by mutations.
Another obvious use would be the test parameter sets, derived from optimiza-
tion techniques, for the desired dynamics, as e.g. measured in experiments.
Parameter optimization/identification and the inverse problem of
chemical kinetics would be the buzzwords for this area of research. Besides
heuristic ‘black-box’ methods, such as neural networks or genetic algorithms
- several analytic methods exist, which employ an ODE system’s ‘Jacobian
matrix’ and derivatives thereof. The SBML ODE Solvers formula manipu-
lation routines include formula evaluation and symbolic differentiation, which
will be highly useful for such approaches.

A general ODE solver:
At this point it is worth pointing out that the SBML ODE Solver’s use is
not restricted to chemical or biological problems. Through libSBML’s for-
mula parsing and data structure, the SBML ODE Solver opens CV ODE
for a use with general ODE systems. SBML can encode any system of
ODEs. In fact the program itself produces such a model to represent ODE
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systems (see chapter 1.3.1). Thus the program qualifies as a general ODE
solver, opening CVODE’s capabilities to library use, without the need to
hard-code ODE models.

A low-level tool for education:
Last but not least, it should be emphasized that the SBML ODE Solver’s
development has always considered its potential as a convenient tool for ed-
ucational purposes. The programs’ command-line usage, including the
optional data visualization modules, comprises a very low-level interface to
SBML models and their structure. Without ‘blinding’ of back-end function-
ality, as within complex GUI tools, it allows an introduction the principals
of chemical reaction networks and the standard SBML, as well as to ODE
construction from such reaction networks. For bioinformatics programing
courses, the source-code exemplifies the use of libSBML for handling re-
action networks, and the use as a library extends libSBML natively for
manipulation and theoretical analysis of SBML models. Plans for further
development of the tool will especially consider easy and quick, and informa-
tive visualization of model structure and dynamics.

1.3 Usage and Basic Architecture

The SBML ODE Solver is a very simple, command-line driven ANSI C
program and programming library, stripped down to the basic functionalities
of

(1) construction of an ODE system
from an SBML encoded reaction network

(2) numerical integration of an ODE system
encoded in a defined subset of (semantically incorrect) SBML

and
(3) printing and basic visualization

of model structure and integration results

It is distributed as source code under the LGPL (GNU Lesser/Library Gen-
eral Public License) and can be compiled via the usual ‘GNU-style’ config-
ure/make procedure requiring the automake tool to be installed. See the file
INSTALL in the distribution for detailed instructions.
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Table 1 lists all available procedures and the command-line options to call
them. Figure 1 shows the program’s work-flow of of data parsing, data con-
version, ODE construction, ODE integration, and output of the program.
The steps (1-3) are labeled as above. Plain-text nodes represent accessible
data, while elliptic nodes represent program functionality. The green path
indicates a possible use by an external script or program. Each step is de-
scribed in detail in the following chapters 1.3.1-1.3.3. For more details, please
consult the extensive documentation of the source code.

(1) (2) (3)

SBML

C
ODE I

reaction
network

G
jacobian
matrix

results
some

calling
script

X
XMGrace
datafile

ps/jpg/svg/...
image file

Figure 1: Basic data-flow architecture of the SBML ODE Solver, see chap-
ters 1.3.1-1.3.3 for details

1.3.1 Constructing ODEs from Reaction Networks

See node C in figure 1: SBML parsing, ODE construction, data conver-
sions; depending on libSBML.

The simple SBML ODE Solver makes heavy use of the ANSI C/C++
SBML library libSBML [7] for parsing SBML encoded reaction networks
and constructing ODEs and other formulas and finally for evaluating their
current values, e.g. during an integration run. The libSBML’s Abstract
Syntax Tree (AST) convention for representation of mathematical formulas
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was especially useful for the latter purpose.

The steps implemented by the functions subsumed in node C of figure 1
can be outlined as follows (italic symbols ODE.xml and SBML.xml resemble
nodes ODE and SBML in the figure):

• C.1 Load, validate and parse SBML file
The input file is an SBML encoded model SBML.xml of chemical re-
actions and all other possible SBML definitions. LibSBML provided
functions are used to parse the model, and access its data in the fol-
lowing steps. The data can optionally be validated towards SBML’s
schema definitions before anything else is done.

• C.2 Copy predefined ODEs
A new model ODE.xml with compartment size 1 is created; predefined
ODEs, i.e. SBML ‘rate rules’ are copied from SBML.xml, and their
variables added to the new model. Note that parameter values or the
compartment sizes can be described by a ‘rate rule’ in SBML.xml.
Thus, in ODE.xml.

• C.3 Construct ODEs from reactions
For all yet undefined species, that have their ‘boundaryCondition’ and
‘constant’ fields set to ‘false’, an ODE is constructed from all reac-
tions that consume or produce the species, i.e. where it appears in
the list of reactants or products of the reaction definition. The ODE
is constructed directly as a libSBML AST, combining SBML’s ‘ki-
netic law’, ‘stoichiometry’ or ‘stoichiometry math’ definitions and the
species’ compartment. Local parameters, definable for ‘kinetic laws’
are replaced in the formulas, i.e. their name is replaced by their value.

As an example consider the two reactions in a homogeneous and con-
tinuously stirred compartment of size V :

A + B → C; kinetic law = K1;
2 C → D; kinetic law = K2;

The resulting ODE for the concentration of C, denoted [C], would add
up from the two reactions’ kinetic laws each multiplied with the species’
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stoichiometry and set positive for producing or negative for consuming
reactions:

d[C]/dt = ( + 1 * K1 - 2 * K2 ) / V

Please consult basic text books like [1] for the details on construct-
ing ODEs from reactions. One notable difference between the usual
process and SBML specific ODE construction lies in SBML’s ‘ki-
netic law’ formula that differs from the usual rate law in that its units
are amount/time instead of concentration/time. This facilitates ODE
construction from multi-compartmental models and, according to the
SBML Level 2 Version 1 specifications [2], only requires the division
of the resulting ODE by the compartment volume to obtain the usual
concentration/time description. The new ODE’s AST is added as a
‘rate rule’, i.e. an ODE describing the concentration of a species, and
the corresponding species to ODE.xml. The species’ compartment is
the default compartment and its initial values are set to initial concen-
tration.

The new model ODE.xml now constitutes a usual ‘initial condition
problem’, it consists of ODEs and the initial values of their variables.

• C.4 Copy incompatible SBML structures
SBML’s ‘algebraic rules’, that are needed in systems of differential al-
gebraic equations (DAE) cannot be interpreted in terms of ODEs, and
neither can discrete ‘events’. Such structures are just copied to the new
model, for print-out and analysis with other tools.

• C.5 Replace constants, assignments and defined functions
User defined functions, assigned variables and constant parameters,
species and compartment of SBML.xml are replaced in all ODEs (‘rate
rules’) and the copied incompatible structures (from step C.4) of the
new model ODE.

At this point the contents of the input SBML model as well as the derived
ODE system can be printed out to inspect reactions, initial conditions and
equations. The new model can be printed as SBML, and this way the
program can essentially be used as a conversion tool, condensing an SBML
encoded reaction network to an ODE system, encoded in a defined small
subset of SBML.
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1.3.2 Integrating ODEs Numerically

See node I in figure 1: Jacobian matrix construction, ODE integration; de-
pending on CV ODE and libSBML.

LibSBML’s abstract syntax tree (AST) represents formulas in their cor-
rect precedence encoded in tree structure. A simple recursive function, that
is also included as an example program in the libSBML distribution, is used
to evaluate AST formulas in the functions described below.

The simplified SBML model ODE.xml is used to fill an internal data
structure used by the integrator function. The Jacobian matrix of the ODE
system is generated in symbolic form, again as an AST. Note that, at the
moment, in the exact procedure of the program, this functions takes the old
model SBML.xml and calls the above described function to obtain ODE.

An integrator function then initializes and calls CV ODE, an ANSI C
tool for solving non-stiff and stiff ODE systems [12], and provides CV ODE
with a function that evaluates the AST representation of the ODEs and
(optionally) the Jacobian matrix of the ODE system with current values
(current species concentrations), whenever this is requested by CV ODE’s
integration method. The integration methods employed by CV ODE are
variable-coefficient forms of the Adams and BDF (Backward Differentia-
tion Formula) methods, and simple functional (or fixed point) iteration or
a variant of Newton iteration for non-stiff and stiff problems respectively.
Please consult CV ODE’s user guide [12] for more detailed information about
method and implementation. The SBMLODESolver uses the BDF method
and Newton iteration with the CV ODE dense linear solver which can solve
both stiff and non-stiff systems. The integrator function has been derived
from CV ODE’s example program ‘cvdx.c’. It requires the current values of
the Jacobian matrix. These can either be calculated from their AST rep-
resentations or by CV ODE’s internal approximation of the Jacobian. The
latter occurs if (a) the ODEs include expressions, whose differentiation is
currently not implemented, (b) the solver produces errors with the gener-
ated Jacobian but not with the internal approximations (the reasons of which
have yet to be determined in detail) or if (c) the user chooses so explicitly via
command-line options or CV ODE settings. CV ODE uses absolute and rel-
ative error tolerances for each calculated time step. The absolute and relative
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error tolerances are set to 10−18 and 10−14, respectively, and can be set via
a command-line option. The accuracy required by published tests (see 1.6)
could be achieved easily by setting the absolute error in the range of 10−21

to 10−18. For some problems the user will also have to adjust the maximum
number of steps that CV ODE tries to reach the next requested time step
within the error tolerances. Table 1 lists all available command-line options.
If CV ODE integration fails an error message is printed. The given error flags
are explained in table 4. In any the final output of the CV ODE module is
a set of statistics. e.g. how many internal steps, how many calls to ODE or
Jacobian evaluation were needed. Please consult table 3 for interpretation of
this output.

Discrete Events SBML allows to specify discrete events, in which a vari-
able’s value triggers the resetting of other variables. Such discrete events
can lead to discontinuities and are not defined in the realm of ODE sys-
tems. The SBML ODE Solver currently (versions 1.0 and 1.5) implements
a provisional event evaluation which can be activated via a command-line
option or settings (see 1). At each printed time step, the event triggers are
evaluated. Upon triggering of an event, the integrator stops and is restarted
with new values. This event detection is not exact. The accuracy of event
detection depends completely on the chosen print-step interval!

1.3.3 Visualizing Structure and Dynamics

The odeSolver prints all data to stdout, and messages to stderr, as a default.
The data should then be processed by other tools. However, it also offers
some additional functionalities for quick and easy exploration of structure
and dynamics of a reaction network model. Via command-line options the
program can be used to print model contents instead of integrating. Two
optional modules that depend on additional libraries are used to support
visual exploration of the model. In the interactive mode the user has some
additional possibilities for processing of data.

Interactive Mode Via an interactive mode the user has access to most
functions that are available via command-line options. The user can inspect a
loaded SBML model, construct and view the ODEs, integrate them, store
and view integration results. Additionally the interactive mode allows to
set alternative initial conditions and print phase diagrams for two species
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to XMGrace. The interactive mode is especially helpful when exploring a
new SBML file with a structure unknown to the user and in the lack of
other tools. It might especially find appreciation for educational purposes as
outlined above.

Result Visualization using XMGrace See node X in figure 1: result
visualization with XMGrace; depending on the grace library np grace.

Instead of printing integration results to a file the user can choose to
directly visualize concentration/time graphs in XMGrace [20]. See Table 1
for other output data. The interactive mode additionally allows to select 2
species to draw 2-dimensional phase diagrams to XMgrace (see lower images
in figure 2).

Graph Drawing using graphviz See node G in figure 1: reaction net-
work and Jacobian matrix graph drawing with graphviz; depending on the
graphviz library.

The reaction network can be drawn as a bipartite graph of molecules and
reactions, based on graphviz’ algorithms for graph layout (graph drawing,
graph embedding) [3]. Edges from chemical species to and from reactions
are labeled with the corresponding stoichiometry. The generated graphic files
can easily be used for exploration of the structure of the reaction network.
A species interaction graph based on the non-zero entries of the Jacobian
matrix can be constructed via graphviz. Edge colors and labels are set by
the value of the corresponding entry in the Jacobian matrix at some chosen
time point of integration. Negative influence of a species on the ODE of
another species is represented by a red arrow, positive influence by a black
arrow. The exact values are the labels of this graph. This graph is well
suited for visually exploring the dynamic regulation of the network, e.g. to
get a first impression on possible and relevant positive or negative feedback
loops within a reaction network.The upper left image in figure 2 shows such a
graph for the MAPK pathway’s phosphorylation cascade with a theoretical
negative feedback. The upper right image is the reaction network of the
same model. This model by Kholodenko et.al.[6] has been obtained from the
official SBML model repository at http://www.sbml.org/models.
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Figure 2: Example results for a model by Kholodenko et.al. 2000 [6], (taken
from http : //www.sbml.org/models)

Compilation without optional modules Both functionalities, grace-
and graphviz- dependent, are optional. The configure script recognizes if the
necessary libraries are available and, if not, the program can be compiled
without these functions. Compilation without the Grace library will cause
the program to just ignore the command-line option and print out results as
text, while compilation without graphviz will lead to printout of graphs as
text files without calculated coordinates in the graphviz’ ‘dot’ format.

1.4 API Functionality

The SBML ODE Solver is completely written in ANSI C and its function-
ality is available as a library. Moreover it currently provides bindings for
SWIG and Perl5.
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MAPK_PP.htm
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MAPK.htm
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1.4.1 High-level Interface Functions

While any of the public functions can be used, version 1.5 provides three
easy to use main interface functions:

SBMLResults
Model odeSolver(SBMLDocument t ∗ d, CvodeSettings settings);

This function takes any SBML Document, plus the settings for CVODE
integration as an input. It returns a special data structure SBMLResults,
that contains time-courses for species, and for variable compartments and
parameters.

SBMLResults ∗
Model odeSolverBatch(SBMLDocument t ∗ d, CvodeSettingssettings,
V arySettings vary);

As above, but additionally takes the structure VarySettings, which holds
instructions for the variation of a parameter between a start and an end
value. The SBML ODE Solver will search for this parameter in the model,
set it accordingly, and simulate for each value of the parameter. It will return
an array of SBMLResults, containing time-courses for each parameter value.

SBMLResults ∗ ∗
Model odeSolverBatch2(SBMLDocument t ∗ d, CvodeSettings settings,
V arySettings vary1, V arySettings vary2);

As above, but the function takes a second structure VarySettings, and
will simulate for each pair of parameter values, and return a 2-dimensional
array of SBMLResults.

Please, see the files in the examples directory of the source distribution
for the usage of above interface functions.

1.4.2 External Function Evaluation

The SBML ODE Solver provides a simple means for including external
data into an integration run. If an SBML input model contains a function,
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without an associated function definition, the formula evaluation routine
will look for an available function returning a double value. A programmer
can provide this function, which should take the name (AST NAME) of the
used function in the formula, and it’s (potential) arguments - which can for
example be the current simulation time.
We use this functionality to include an external time-course, as it could
e.g. result from experimental measurement. The external function takes the
current simulation time as an argument, and interpolates the current value
from an external time series.
Please see the file ‘processAST.c’ for the needs for such an external function.

1.5 Integrated Result Visualization

The Perl wrapper script ‘bioLog resultVisualizer’ (rV ) exemplifies a very
simple use of the program for both direct and higher-level visualization of
simulation results. The script uses SBML ODE Solver’s and Perl’s graphviz
modules to generate SVG based graph drawings and embeds them in a set
of cross-linked html files. The SVG files (chemical species, reactions) are
animated by the results of a simulation run and link to sites with detailed
model and result information for each species and reaction.

BioLogic Result Interpretation Additionally the script searches for two
other, already existing files, which can be created to embed the SBML
model and display the results of an animation within some higher-level, hand-
written, representation of the reaction network model.
A hand written indexfile, that is parsed by the rV script, lists all proteins
or otherwise defined higher-level (modular) entities in the model system,
and each protein/module is accompanied by a list of chemical species in the
SBML model that represents different states of the protein (e.g. chemically
modified or bound within a complex). For each entity there must be at least
one chemical species, that is marked as ‘active’.
The second file is an SVG based diagrammatic representation of interac-
tions between the above defined modular entities, similar - in the example
models - to the well-known diagrams in cell-biological and medical literature
describing cellular regulation processes and experiments. This bioLog acti-
vation/inhibition diagram is encoded again as a graph file and graphviz was
used to create the SVG enocded images of the graph drawings. The modular
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entity list (proteins or defined processes in the example models) and its ac-
tivity tags are used to to calculate active/non-active ratios from simulation
results, and visualize their time series within the graph SVG file by using
transparency values of SVG objects.
The example shown in figure 3 is a such a bioLog activation/inhibition schema
of a published model of receptor mediated activation of the so-called ‘Mitogen
Activated Protein Kinase’ [16], a eukaryotic module of cellular signal trans-
duction pathways used as a ‘switch’ or ‘amplifier’ of externals and internal
signals in diverse contexts of cell regulation, like growth, cell-cycle, differ-
entiation, migration, adhesion and apoptosis. The simulation of this model
is based on an SBML model initially obtained from SigPath and adapted
by hand. The indexfile and the bioLog diagram are hand-written. An an-
imated and hyper-linked set of result files for this model can be browsed at
http://www.tbi.univie.ac.at/~raim/schoeberl_02/index.html.

The rV wrapper script is written in PERL5 and dependent on Perl mod-
ules SVG::Parser, GraphViz, GD::Graph, and the newly developed LibSBML
bindings for the SBML library libSBML.

1.6 Accuracy and Testing

The SBML ODE Solver has been extensively tested with the first published
version of the ‘SBML Semantic Test Suite’ provided by the SBML team (see
website [15]). All of the SBML test models that do not include
(a) algebraic rules, which can only be solved with methods of DAEs (Differ-
ential Algebraic Equations),
(b) events, that would require approximations of the exact event time and
(c) delays, that would require methodology of solving ‘ODEs with delays’
could be successfully integrated, except for one including a cube root expres-
sion for which at the last tested time point the SBML ODE Solver’s result
deviates from the target results produced with MathSBML, a SBML pack-
age for Mathematica [17]. The test suite includes models at the extremes
of low numerical values, and they were solved without problem. However,
models handling very low amounts, in the range of circa 0 to 1000 molecules
(per cell), which will require stochastic approaches.
Detailed results of this test run, and instruction how to reproduce the tests
are distributed with the source code.
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Figure 3: Example bioLog schema of Schoeberl et. al. 2002 [16]

1.7 Outlook

At the moment the tool can process all SBML Level 1 + 2 definitions and
numerically integrate the dynamics of models that are interpretable within
the realm of ordinary differential equation systems and thus numerically solv-
able with CV ODE. Some possible further developments, through additional
internal functionality or integration with other tools, are outlined in the fol-
lowing.
The maintenance of the tool will include a more detailed use of CV ODE
and its various methods for integration, result printing and processing, and
extensive testing of use and communication with other programs.

Events, DAEs, Steady State Analysis Discrete ‘events’ and ‘delays’
cannot be interpreted by CV ODE. The detection of discrete events - or at
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least a useful approximation thereof within the chosen error tolerances for
integration - is, however planned as an internal extension of the presented
tool for the near future. SBML models containing definitions for ‘algebraic
rules’ call for a separate module solving systems of differential algebraic
equations (DAE). The official CV ODE is now part of the SUNDIALS
package, which also features IDA, for solving such DAE systems, as well as
KINSOL, which can be used to identify fix points (steady states) of a system
of ODEs. Their implementation is similar to CV ODE, and an implementa-
tion of these tools within SBML ODE Solver should be straightforward.

PDEs Level 3 of SBML will also come up with some definitions, including
spatial models, that won’t be interpretable by the tool at this stage. Sep-
arate modules for constructing and solving PDE systems, describing e.g.
morphogenic activity during development or the interpretation of chemical
gradients by chemotacting cells ranks high on our interest- and todo-lists.
However, there is no PDE Solver available, that could be used similar to the
tools of the SUNDIALS package, and thus PDEs are probably out of the
scope of the current approach of the SBML ODE Solver.

Structural Analysis Tools for mass conservation analysis [10, 14] would
allow to reduce the amount of equations. That however could happen inde-
pendently of the SBML ODE Solver, which then would just get passed this
reduced model. The information necessary for above described biologic re-
sult visualization, the indexfile could be automatically generated, given only
the active state(s) of an entity, while all other (inactive) states of the entity
should be deducible by mass conservation. Moreover, even the causal interac-
tions of the bioLog interaction diagram could be automatized, if additionally
‘input’ and ‘output’ species can be defined, when interpreting the network as
a module - of signal transduction in our examples. Such a higher-level em-
bedding of a reaction network could employ graph search and partitioning
algorithms to identify relevant higher-level causal relations - e.g. dominant
cascades or feedback cycles - in the reaction network but also in the Jacobian
matrix of the derived ODE system.
Identification of relevant parameters and elementary flux modes by methods
of metabolic regulation analysis, would help to extract interesting subsys-
tems form large models. This can again be useful for theoretical parameter
optimization approaches (see below) but also offer interesting possibilities for
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the (graphviz dependent) model visualization module and the result visual-
izer wrapper (chapter 1.5).

Dynamic Analysis Having the ODE system and its Jacobian matrix in
symbolic and interpretable form, motivates for approaches to identify and
analyze positive and negative feedback cycles of a system. Such tools would
provide a platform for automatic classification of the dynamic structure of
large series of models. Moreover they could help reducing the system’s dy-
namics to higher-level discrete or logic models of system behavior. Such
biochemical feedback cycles constitute basic biological regulation modules
[18, 19] realizing both stable oscillatory behavior, e.g. in cell cycle or cell
migration, or stable stationary states, leading to differentiation, cell adhe-
sion in (epithelial) tissues or e.g. directed migration. Cell-biological and
medical experimentation operates much closer to this higher-level descrip-
tions of function than to basic reaction networks as encoded e.g. by SBML.
Again a ‘bioLogic’ annotation as described above could be incredibly useful
to map dynamic time-course data onto a temporal-logic description of the
interactions of biological entities.

The Inverse Problem of Chemical Kinetics The ‘inverse problem of
chemical kinetics’, i.e. parameter optimization towards desired system dy-
namics, as e.g. measured in experiment or conjectured in theory, would
constitute an obvious application for a refinement of the internal batch in-
tegration and parameter variation functionalities. The interface to external
function evaluation will be useful to integrate the SBML ODE Solver with
sophisticated parameter optimization algorithms that are currently devel-
oped with collaborating groups.

(Collaborative) Experiment Design Cell biological and medical knowl-
edge of the gene regulatory and signaling reaction networks is mostly closer
to above mentioned higher-level logical (bioLogical) models and this knowl-
edge is often represented in activation/inhibition schemes. Such diagrams
in literature are poorly defined in their node and edge meaning, but inter-
pretable representations (for an in the context educated reader) of a specific
process and the current understanding thereof. The lack of definitions is ac-
tually their power in representing the diverse mechanistics of cell-biological
phenomena. However, if its possible and useful to derive such logic models
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from underlying reaction networks, and their feedback regulation, a top-down
approach of such methods might help to extract possible network structures
and relevant parameters from an experimentally known or theoretically con-
jectured higher-order logic model, as represented by such ‘causal graphs’ in
cell biological and medical literature, and from incomplete knowledge on the
exact mechanics.

Last words The SBML ODE Solver was programmed and will be main-
tained and extended for our own purposes in one or more of the many named
directions. We hope, however, to raise some interest for the application and
find users, who will be welcome to participate in further development. The
program is written very close to libSBML and some of its functions might
be of interest to other libSBML users.
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Table 1: Usage and command-line options for the SBML ODE Solver

USAGE: odeSolver <sbmlfile.xml> [OPTION(s)]

Options Argument Description
GENERAL OPTIONS
-h –help Print usage information
-i –interactive Start the interactive mode

–gvformat string Output format for graphviz module
SBML FILE PARSING
-v –validate Validate SBML file

–model string SBML file name ‘sbmlfile.xml’
–mpath path Set Model file path
–spath path Set Schema file path (default: mpath)

(1) PRINT REACTIONS AND DERIVED ODEs
-e –equations Print model and derived ODE system
-o –printsbml Construct ODEs and print as SBML
-g –modelgraph Draw graph of reaction network

continued on next page ...
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Table 2: Usage and command-line options for the SBML ODE Solver,
continued

... continued from previous page

(2) INTEGRATION PARAMETERS
-f –onthefly Print results during integration
-j –jacobian Toggle use of the jacobian matrix
-s –steadyState Abort integration at steady state
-n –event Detect and evaluate events (do not abort).

ACCURACY DEPENDS ON STEP SIZE!!
–param string Choose parameter for batch

integration, from 0 to value in 50 steps
–printstep integer Time steps of output (default: 103)
–time float Integration end time (default: 103)
–error float Absolute error tolerance (default: 10−18)
–rerror float Relative error tolerance (default: 10−14)
–mxstep integer Maximum step number (default: 105)

(3) INTEGRATION RESULTS
-a –all Print all available results
-y –jacobianTime Print time course of Jacobian matrix
-k –reactions Print time course of the reactions
-r –rates Print time course of the ODEs
-w –write Write results to file or save XMGrace file
-x –xmgrace Print results to XMGrace
-m –matrixgraph Draw Jacobian matrix graph
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Table 3: Final output: CV ODE integration parameters and statistics

Short Meaning

CV ODE integration parameters:

mxstep maximum number of steps CV ODE used at each internal
time step |h|

rel.err relative error tolerance at each internal time step |h|
abs.err. absolute error tolerance at each internal time step |h|

CV ODE integration statistics:

nst cumulative number of internal steps taken by the solver
nfe number of calls to the ODE evaluation function ‘f’
nsetups number of calls to the linear solver’s setup routine
nje number of Jacobian evaluations, i.e. either calls to the

function that evaluates the automatically generated
Jacobian matrix expressions or the internal approximation
CVDenseDQJac.

nni number of NEWTON iterations performed.
ncfn number of nonlinear convergence failures that have occurred
netf number of local error test failures that have occurred



1 SBML AND CVODE BASED ODE SOLVER 23

Table 4: CV ODE failure messages

Flag Message Description

0 SUCCESS CV ODE completed integration.
-1 CVODE NO MEM The cvode mem argument passed to CV ODE

was null. This error should not appear
in the SBML ODE Solver.

-2 ILL INPUT One of the inputs to CV ODE was illegal,
including the situation when one of the
error vectors becomes ¡ 0 during CV ODE’s
internal time stepping. The printed error
message will give specific information. In
the SBML ODE Solver, this failure occurs
when e.g. the out-time passed was ‘0’.

-3 TOO MUCH WORK The solver took a maximum of internal steps
but could not reach the next print-step.
The default step number is 100000; it can be
set with command-line option ‘–mxstep’.

-4 TOO MUCH ACC The solver could not satisfy the accuracy
demanded (via options –error and –rerror)
for an internal time step.

-5 ERR FAILURE Error test failures occurred too many times
during one internal time step or occurred with
|h| = hmin, i.e. the necessary internal
time step became too small.

continued on next page ...
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Table 5: CV ODE failure messages, continued

Flag Message Description

... continued from previous page

-6 CONV FAILURE Convergence test failures occurred too many
times during one internal time step or occurred
with |h| = hmin. This can sometimes happen
either with or without using the automatically
generated Jacobian matrix. That is why the
the SBML ODE Solver tries to integrate again
upon this error, but now without or with use
of the Jacobian matrix (resetting option ’-j’).
In other cases this error can be avoided by
allowing a bigger error tolerances

-7 SETUP FAILURE The linear solver’s setup routine failed in
an unrecoverable manner. This error has not
occurred (during test runs).

-8 SOLVE FAILURE The linear solver’s solve routine failed in an
unrecoverable manner. This error has not
occurred (during test runs).
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