
SBMLevolver: Documentation

December 3, 2008

Abstract

This documentation describes the SBMLevolver, a software tool developed for the artificial evolution
of biological network models.

In the course of the ESIGNET project (www.esignet.net), thesoftware program SBMLevolver has
been developed, built around an evolutionary algorithm (EA) that evolves artificial CSNs (represented
in the SBML language [1]) performing pre-specified functions. It works directly onSBML, the most
common interchange format for biochemical models, which can be simulated and analysed by a variety
of other tools. We believe that by using SBML, model interchange and comparison as well as the usability
of the program for the Systems Biology community will be greatly enhanced. Provided and distributed as
open source software, the SBMLevolver is exclusively basedon freely available libraries and packages.

Contents

1 Installation 2

2 Outline of the software system 2

3 User interface 2

4 Example: Evolving an addition-network 5

1

1 Installation

For information on how to install the system, see the fileINSTALL in the root directory.

2 Outline of the software system

The program SBMLevolver has been written entirely in C/C++ and can be used from the command-line
(details on the usage are given in section3). The program has been implemented as a set of modules or
classes. The main modules include the user interface, population management, fitness evaluation, fitting of
model parameters, and the creation of new models via mutation and recombination.

• BuildingBlocks: stores and provides the elements from which the models are build

• CentralControl: starts and stops the program, provides user interface

• Individual: encapsulates a model together with its additional attributes and methods

• Mutator: generates new models by mutation and recombination

• ObjectiveFunction: stores the evolutionary objective and provides functions to calculate the fitness
of a model regarding this objective

• ParameterFitter: fits model parameters w.r.t. the given objective

• ParamObj: stores and provides all parameters of the current run

• Population: handles a population of models, manages selection and reproduction

• RandomNumberGenerator: facilitates the generation of random numbers

• sbmltools: contains all methods manipulating SBML structures

3 User interface

Currently, the SBMLevolver is command-line based, but workon a graphical interface is in progress. As
an experimental software, the system is very flexible and most parameters of the algorithm can be defined
by the user. A full list of possible options is given below. Torun the program, an objective function, a set
of building blocks for the networks, and the options have to be specified in text files, examples of which
are included with the software.

3.1 The options

In this file (default isoption.txt), the algorithmic parameters and any other controls are given as:

<parameter> <value> [further values]

These can also be accesses by calling the programm with the-h or --help option. Each parameter is
given on a new line. Here is a list of all available parameter options:

Input & Output
outputfile output file (additional to stdout)
input dir input directory (working directory before run)
outputdir result directory (working directory while and after run)
objective objective function file (default: objectivefunction.txt)
bblocks building blocks file (default: buildingblocks.txt)
first model initial ”seed” model file
saveevery number of generations after which to save models

2

num save number of models to save from population everysave every turn
Experiment Settings
num pop number of populations (default 1)
iso time isoluation time when using multiple populations
mu population size (default: 10)
lambda number of offspring (default: 100)
commaselection if given, comma selection is used instead of plus selection
mutationprobs relative frequencies for the different kinds of mutations (default: 1 1 1 1 1 1 1 0;

no mutation, add/delete species, replace reaction, add/delete reaction,
duplicate species)

max mutations maximal number of mutations per mutation-turn (default: 1)
crossprob probability of crossover instead of mutation
pf settings population size, number of offspring, number of generations of local parameter fitter

(CMA-ES-algorithm, (mu,lambda) strategy)
Termination Conditions
stop time time limit (in seconds)
stop turn iteration limit
stopfitness fitness to reach (default: 0.0)

3.2 The objective function

The modular architecture allows the user to specify his or her own fitness function in as a separate file in the
directorysrc/objectives. This file then has to be included into the classObjectiveFunction
(just follow the wayio-table.cpp is included now). However, a default objective function based on an
input-output table is available which can readily be used. Atext fileobjectivefunction.txt has to
be provided which specifies the desired input-output behaviour of selected species in the evolved models.
In the default case, fitness is then calculated as the mean square difference between the desired and the
realised timecourses. An example objective function file isgiven in figure4.

3.3 The building blocks

The software system deals with SBML models as solution candidates for the optimisation problem. Since
these can have nearly arbitrary structure, it is necessary to lay down a-priori model specifications that the
optimisation process can use. This is done in the filebuildingblocks.txt and handled in the class
BuildingBlocks. The building-blocks specification consists of the following elements:

• The minimum and maximum number of species that can be used inthe model

• The minimum and maximum number of reactions

• Lower and upper bounds for the initial concentration of each species

• A list of allowed reaction mechanisms, given in the following format (on one line):

Re1 + Re2 + ... | Mod1 + Mod2 + ... -> Pr1 + Pr2 + ... :
kinetic_law number_of_parameters (name lb ub)* [T]

where (name lb ub)* denotes a series of parameter names followed by their lower and upper bounds,
and the optional flagT at the end denotes transport reactions, which can involve species from differ-
ent compartments (others cannot).

The reserved namesReactant<num>, Modifier<num>, andProduct<num> can be replaced by
arbitrary species in the evolver. This way, a mix of species-specific and general reaction mechanisms can
be specified. E.g., the reaction

3

Reactant0 + 02 -> Product0

describes the oxidization of an arbitrary species, i.e. thereaction of an arbitrary species with Oxygen to
another arbitrary species. An example of abuildingblocks.txt file is given in figure3.

3.3.1 Importing building blocks automatically

The classBuildingBlocks provides the methodlearnReactionsFromModel, which loads reac-
tion mechanisms from a given SBML model into the building-blocks (abstracting from the specific par-
ticipants in the original reaction). This can be used to construct a library of reaction mechanisms from
published SBML models.

3.4 The initial population

For the initial population, the program will load any SBML models in files of type
<modelname>.model.xml from the current directory, and fill it up with random SBML models
containing the number of species and reactions specified in the options, as well as any species required
for the objective function. Also, it is possible to specify one initial starting model that is mutated once to
create initial solutions (using thefirst model option inoptions.txt). If no initial population is
given, random models are created, for which the minimal and maximal size is specified in the options.

3.5 Running the optimisation

To start the evolver on a single machine, run

sbmlevolver [<arguments>]

from the command line. By default, arguments are read from fileoptions.txt. If a different options
file is wanted, this has to be given directly after the call. After this, any options can be given, overriding
the options specified in the optionsfile.

Figure 1: Snapshots from the evolution of
an addition-network, including the final re-
sult at the very bottom. Node X1 is not
needed for the computation and could be
regarded as “junk”.

During the run, information about the fitness-development
of the population is displayed on the screen. There are
two ways to finish the program: either the pre-specified fit-
ness, number of iterations or runtime is reached, or the user
sends the signal SIGUSR1 to the process (kill -SIGUSR1
<pid>). After finishing, the program stores the popula-
tion of the last generation in separate SBML files of the
formatresult_<id>_<fitness>.model.xml. With
these files, a run can be restarted from the exact point where
it terminated.

3.6 Looking at the results

Results of the evolution run are given in two ways: First,
running statistics about the population are displayed, such as
the best and average fitnesses, and mean numbers of species
and reactions. Using theoutput_file option, this can be
stored into a file and used for later evaluation. Second, the
final population is stored as SBML models, which can be
investigated using standard Systems Biology software tools
(see list onwww.sbml.org). Since the SBMLodeSolver
has to be installed anyway, this program (and its associated
tools such as the ParameterScanner) can be used to simulate,
visualise and analyse the models.

4

www.sbml.org

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100
best
average
worst

Figure 2: Development of the best, average and worst fitness during a typical run.

Figure1 shows a series of snapshots from the evolution
of a network capable of adding two numbers, while the cor-
responding fitness development is shown in figure2. If the
evolution gets stuck in a (supposedly local) optimum, one can
stop and restart it with a different set of parameters, usingthe final population of the first run as an initial
population for the second.

3.7 The fitness evaluator subprogram

If one just wants to test single models, the SBMLevolver has to be called as

sbmlevolver --get-fitness <name-of-model-file>

which calculates the fitness of the SBML model with respect toa given objective function. It mainly utilises
theFitnessEvaluator and theObjectiveFunction classes of the main program. The selection
of an appropriate objective function works in exactly the same way as for the main program, using the text
file objectivefunction.txt. The program will simulate the model, compare its behaviourto the
one specified in the objective function, and return the calculated fitness value.

4 Example: Evolving an addition-network

In this example, the evolution of a simple network, capable of the addition of two positive real numbers, is
described. The two numbers will be encoded as the initial concentrations of two input speciesinput1 and
input2, while the output of the calculation will be found in the concentration of speciesoutput at time 10.0.

As a first step, we have to prepare the building-blocks for theevolver. This is done in the file
buildingblocks.txt (figure 3). As you can see, we only use mass-action kinetics here. We also
specify boundaries for the parameters, which helps to avoidnumerical problems in the integration when
the time-scales become too separated.

The second item we have to think about is the objective function (shown in figure4). We choose to use
four fitness cases, taking 0 and 10 as values for bothinput1 andinput2 (more should be used, but this is not
done here due to space constraints). We will measure the concentration ofoutput at four timesteps of 2.0
seconds each, ignoring the first one (offset). Since the input is only to be specified att = 0, we put a ’*’

5

Maximum number of species
5
Maximum number of reactions
5

Lower and upper bound for species initial concentrations
0
10

Available reaction types (format: numRe, numPr, numMo, formula,
numPara, [paraId, lb, ub]*)
Some possible reactions with rate 0 are included to ease moving
in search space
0 -> Product0 : 0 0
0 | Modifier0 -> Product0 : 0 0
0 -> Product0 + Product1 : 0 0
0 | Modifier0 -> Product0 + Product1 : 0 0
Reactant0 -> 0 : 0 0
Reactant0 | Modifier0 -> 0 : 0 0
Reactant0 | 0 -> Product0 : k*Reactant0 1 k 0 5
Reactant0 | Modifier0 -> Product0 : k*Reactant0*Modifier0 1 k 0 5
Reactant0 -> Product0 + Product1 : k*Reactant0 1 k 0 5
Reactant0 | Modifier0 -> Product0 + Product1 : k*Reactant0*Modifier0 1 k 0 5
Reactant0 + Reactant1 -> 0 : 0 0
Reactant0 + Reactant1 -> Product0 : k*Reactant0*Reactant1 1 k 0 5
Reactant0 + Reactant1 -> Product0 + Product1 : k*Reactant0*Reactant1 1 k 0 5
Reactant0 <-> Product0 : k*(Reactant0-Product0) 1 k 0 100 T

Figure 3: An example for filebuildingblocks.txt

in front of its concentration. We do not want to use Akaike’s Information Criterion to modify the fitness
(noAIC), and we want to have a mass-conserving and small network (penalties for non-massconservance
and size).

After the general setup of the run has been determined in the two textfiles, we have to decide about
the actual parameters of the evolutionary algorithm, givenin file options.txt (see figure5). In this
case, we choose to use a population size of 20, producing 80 offspring in a overlapping fashion, such
that selection acts on 100 individuals. The population is then refilled by mutations and crossover on the
survivors. All survivors are selected by elitist selection. Every tenth offspring should be produced by
crossover between survivors. This is a very strong selection pressure, so it will only be successful in simple
cases such as this example. In each fitness evaluation, the model parameters are be improved in a (1,5)-ES
for 15 generations. Since we use default filenames for all files, we can call the SBMLevolver without
command-line arguments.

The output on the screen shows best and average fitness as welltwo diversity measures and the mean
number of species and reactions:

Turn Best Avg Diff1 Diff2 Species Reactions
1 6.431398 26.97341 7.960000 5.640000 3.200000 4.800000
2 0.084014 8.160019 9.840000 6.480000 3.800000 6.600000
3 0.002412 4.835043 13.98000 7.720000 4.600000 8.900000
4 0.002412 3.037237 16.78000 8.660000 5.300000 11.400000
5 0.001200 0.912607 16.54000 9.440000 5.800000 12.200000
6 0.000758 0.007115 9.980000 9.180000 5.900000 12.100000
7 0.000246 0.001053 12.52000 9.240000 6.000000 13.700000
8 0.000098 0.000412 15.76000 9.340000 5.900000 15.700000
9 0.000088 0.000248 17.84000 9.620000 5.700000 16.400000

10 0.000057 0.000136 20.82000 10.46000 6.300000 17.600000
11 0.000035 0.000107 25.52000 11.18000 6.700000 20.000000
12 0.000023 0.000070 21.20000 11.20000 7.400000 18.100000

6

io-table
Addition network. Input1(t=0) + Input2(t=0) = Output(t=inf)
Determine whether Akaike’s Information Criterion should be used
noAIC
Given the penalty for non-massconservance
10000
Give penalty for size
10
No. of cases, inputs, outputs, timesteps, offset, and timestep
4
2
1
5
2
2.0

Input species
input1
input2
Now give the names of the output species
output

Initial input concentrations
Starting with * sets the concentration only at the first timestep
Only one number means the concentration is constant the whole time
Case 0

* 0

* 0
Case 1

* 0

* 10
Case 2

* 10

* 0
Case 3

* 10

* 10

Now the output data comes
Case 0
0
Case 1
10
Case 2
10
Case 3
20

Figure 4: An example for fileobjectivefunction.txt

7

mu 20
lambda 80
cross_prob 0.1
output_file run.log
stop_fitness 0.00001
stop_turn 100
pf_mu 1
pf_lambda 5
pf_num_gen 15

Figure 5: An example for fileoptions.txt

R0

output

X2

R1R3

input2

R2

input1X0

Figure 6: A network resulting from the evolution of an addition. Although it looks more complicated than
a hand-designed network, it perfectly performs its task.

13 0.000010 0.000053 24.00000 11.74000 8.100000 19.500000
14 0.000010 0.000047 29.48000 13.62000 8.700000 23.700000
15 0.000003 0.000035 33.38000 14.88000 9.000000 27.600000

Run finished: reached desired fitness

The best model after this run can be seen in figure6. By playing with the penalties and AIC, we would
hope to find a more elegant solution that focuses on the bare necessities of the problem.

References

[1] A. Finney and M. Hucka.Systems biology markup language: Level 2 and beyond. Biochem Soc
Trans, 31(Pt 6):1472–1473, Dec 2003.

8

R0.htm
output.htm
X2.htm
R1.htm
R3.htm
input2.htm
R2.htm
input1.htm
X0.htm

	Installation
	Outline of the software system
	User interface
	Example: Evolving an addition-network

