SBMLevolver: Documentation

December 3, 2008

Abstract

This documentation describes the SBMLevolver, a softwaokdeveloped for the artificial evolution
of biological network models.

In the course of the ESIGNET project (www.esignet.net),dbftware program SBMLevolver has
been developed, built around an evolutionary algorithm)(Evat evolves artificial CSNs (represented
in the SBML languagel]) performing pre-specified functions. It works directly &BML, the most
common interchange format for biochemical models, whiahloa simulated and analysed by a variety
of other tools. We believe that by using SBML, model intergaand comparison as well as the usability
of the program for the Systems Biology community will be ghganhanced. Provided and distributed as
open source software, the SBMLevolver is exclusively basefteely available libraries and packages.

Contents
1 Installation
2 Outline of the software system

3 Userinterface

4 Example: Evolving an addition-network

1 Installation

For information on how to install the system, see thelfiNSTALL in the root directory.

2 Outline of the software system

The program SBMLevolver has been written entirely in C/C+# @an be used from the command-line
(details on the usage are given in sect®n The program has been implemented as a set of modules or
classes. The main modules include the user interface, atpuimanagement, fitness evaluation, fitting of
model parameters, and the creation of new models via matatid recombination.

« BuildingBlocks: stores and provides the elements from which the models &k bu
e CentralControl: starts and stops the program, provides user interface

« Individual: encapsulates a model together with its additional attedand methods
e Mutator: generates new models by mutation and recombination

< ObjectiveFunction: stores the evolutionary objective and provides functionsalculate the fitness
of a model regarding this objective

e ParameterFitter: fits model parameters w.r.t. the given objective

e ParamObj: stores and provides all parameters of the current run

« Population: handles a population of models, manages selection andcagtion
« RandomNumberGenerator: facilitates the generation of random numbers

« sbmltools: contains all methods manipulating SBML structures

3 User interface

Currently, the SBMLevolver is command-line based, but wamka graphical interface is in progress. As
an experimental software, the system is very flexible and paameters of the algorithm can be defined
by the user. A full list of possible options is given below. fTm the program, an objective function, a set
of building blocks for the networks, and the options havedaspecified in text files, examples of which

are included with the software.

3.1 The options
In this file (default isopt i on. t xt), the algorithmic parameters and any other controls arenghs:
<par anmet er > <val ue> [further val ues]

These can also be accesses by calling the programm withhttar - - hel p option. Each parameter is
given on a new line. Here is a list of all available paramepsioms:

Input & Output

outputfile output file (additional to stdout)

inputdir input directory (working directory before run)
outputdir result directory (working directory while and after jun
objective objective function file (default: objectivefuion.txt)
bblocks building blocks file (default: buildingblocks Jxt

first model initial "seed” model file

saveevery number of generations after which to save models

numsave number of models to save from population egave every turn
Experiment Settings

num.pop number of populations (default 1)

iso_time isoluation time when using multiple populations
mu population size (default: 10)

lambda number of offspring (default: 100)

commaselection if given, comma selection is used instead of Elecsion

mutationprobs relative frequencies for the different kinds of miotad (default: 1111111 0;
no mutation, add/delete species, replace reaction, aétédeaction,
duplicate species)

maximutations ~ maximal number of mutations per mutation-tuefdgdit: 1)

crossprob probability of crossover instead of mutation

pf_settings population size, number of offspring, number afggations of local parameter fitter
(CMA-ES-algorithm, (mu,lambda) strategy)

Termination Conditions

stoptime time limit (in seconds)
stopturn iteration limit
stopfitness fithess to reach (default: 0.0)

3.2 The objective function

The modular architecture allows the user to specify his ool fitness function in as a separate file in the
directorysr c/ obj ecti ves. This file then has to be included into the cl&}yg ect i veFuncti on
(just follow the wayi o-t abl e. cpp is included now). However, a default objective functiondzhen an
input-output table is available which can readily be usetex file obj ect i vef uncti on. t xt hasto

be provided which specifies the desired input-output behanaf selected species in the evolved models.
In the default case, fithess is then calculated as the meamesdifference between the desired and the
realised timecourses. An example objective function filgiven in figure4.

3.3 The building blocks

The software system deals with SBML models as solution chaids for the optimisation problem. Since
these can have nearly arbitrary structure, it is necessdaytdown a-priori model specifications that the
optimisation process can use. This is done in thetfile| di ngbl ocks. t xt and handled in the class
Bui | di ngBl ocks. The building-blocks specification consists of the follogZielements:

e The minimum and maximum number of species that can be uské imodel
e The minimum and maximum number of reactions
e Lower and upper bounds for the initial concentration ofresgecies

 Alist of allowed reaction mechanisms, given in the follogiformat (on one line):

Rel + Re2 + ... | Mdl + Mod2 + ... ->Prl + Pr2 + ...
ki netic_l aw nunber_of _paraneters (nane | b ub)=* [T]

where (name Ib ub)* denotes a series of parameter names/éallby their lower and upper bounds,
and the optional flag at the end denotes transport reactions, which can invokeiep from differ-
ent compartments (others cannot).

The reserved namdReact ant <nun>, Modi fi er <nun®, andPr oduct <nun® can be replaced by
arbitrary species in the evolver. This way, a mix of spesieseific and general reaction mechanisms can
be specified. E.g., the reaction

Reactant 0 + 02 -> ProductO

describes the oxidization of an arbitrary species, i.e.réaetion of an arbitrary species with Oxygen to
another arbitrary species. An example df | di ngbl ocks. t xt file is given in figure3.

3.3.1 Importing building blocks automatically

The classBui | di ngBl ocks provides the methobdear nReact i onsFr omvbdel , which loads reac-
tion mechanisms from a given SBML model into the buildingdis (abstracting from the specific par-
ticipants in the original reaction). This can be used to trowes a library of reaction mechanisms from
published SBML models.

3.4 The initial population

For the initial population, the program will load any SBML dws in files of type
<nmodel name>. nodel . xm from the current directory, and fill it up with random SBML neid
containing the number of species and reactions specifieldeioptions, as well as any species required
for the objective function. Also, it is possible to specifiyeoinitial starting model that is mutated once to
create initial solutions (using thfei r st _nodel option inopti ons. t xt). If no initial population is
given, random models are created, for which the minimal aaximal size is specified in the options.

3.5 Running the optimisation

To start the evolver on a single machine, run
sbm evol ver [<argument s>]

from the command line. By default, arguments are read frogofilt i ons. t xt . If a different options
file is wanted, this has to be given directly after the callteAthis, any options can be given, overriding
the options specified in the optionsfile.

During the run, information about the fitness-development
of the population is displayed on the screen. There are
two ways to finish the program: either the pre-specified fit-
ness, number of iterations or runtime is reached, or the user -
sends the signal SIGUSR1 to the procésd(- SI GUSR1
<pi d>). After finishing, the program stores the popula-
tion of the last generation in separate SBML files of the
formatresul t _<i d>_<fitness>. nodel . xm . With
these files, a run can be restarted from the exact point where
it terminated.

3.6 Looking at the results

Results of the evolution run are given in two ways: First,
running statistics about the population are displayedy stsc
the best and average fithesses, and mean numbers of species
and reactions. Using theut put _fi | e option, this can be
stored into a file and used for later evaluation. Second, the
final population is stored as SBML models, which can be
investigated using standard Systems Biology softwarestool
(see list omww. sbni . or g). Since the SBMLodeSolver Figure 1: Snapshots from the evolution of
has to be installed anyway, this program (and its associagédaddition-network, including the final re-

tools such as the ParameterScanner) can be used to simugte at the very bottom. Node X1 is not
visualise and analyse the models. needed for the computation and could be

regarded as “junk”.

www.sbml.org

100

-—— best
90 | average |
— — - worst

701
60
50

40

20+

101

20 25

Figure 2: Development of the best, average and worst fitn@ssgla typical run.

Figure 1l shows a series of snapshots from the evolution
of a network capable of adding two numbers, while the cor-
responding fitness development is shown in figlrdf the
evolution gets stuck in a (supposedly local) optimum, ome ca
stop and restart it with a different set of parameters, usiedinal population of the first run as an initial
population for the second.

3.7 The fitness evaluator subprogram
If one just wants to test single models, the SBMLevolver oase called as
sbm evol ver --get-fitness <nane-of -nnodel -fil e>

which calculates the fitness of the SBML model with respeatgiven objective function. It mainly utilises
theFi t nessEval uat or and theCbj ecti veFunct i on classes of the main program. The selection
of an appropriate objective function works in exactly theeavay as for the main program, using the text
file obj ecti vef uncti on. t xt. The program will simulate the model, compare its behaviouthe
one specified in the objective function, and return the dated fitness value.

4 Example: Evolving an addition-network

In this example, the evolution of a simple network, capalbae addition of two positive real numbers, is
described. The two numbers will be encoded as the initiatentrations of two input speciésputl and
input2, while the output of the calculation will be found in the centration of speciesutput at time 10.0.

As a first step, we have to prepare the building-blocks for éfaelver. This is done in the file
bui | di ngbl ocks. t xt (figure3). As you can see, we only use mass-action kinetics here. ¥é al
specify boundaries for the parameters, which helps to avoiderical problems in the integration when
the time-scales become too separated.

The second item we have to think about is the objective fondghown in figurel). We choose to use
four fitness cases, taking 0 and 10 as values for it 1 andinput2 (more should be used, but this is not
done here due to space constraints). We will measure theentation ofoutput at four timesteps of 2.0
seconds each, ignoring the first one (offset). Since thetiisponly to be specified at= 0, we put a ™

Maxi mum nunber of species

5

Maxi mum nunber of reactions
5

Lower and upper bound for species initial concentrations
0
10

Avail abl e reaction types (format: nunmRe, nunPr, num\b, fornmula,
nunPara, [parald, |b, ub]x*)

Some possible reactions with rate 0 are included to ease novi ng
in search space

-> Product0 : 00

| ModifierO -> ProductO : 0 O

-> ProductO + Productl : 0 O

| Modifier0 -> ProductO + Productl : 0O

Reactant0O -> 0 : 0 0

ReactantO0 | MddifierO ->0: 00

ReactantO | O -> ProductO : k*ReactantO 1 k 0 5

Reactant0 | Modifier0O -> ProductO : kxReactantO+Modifier0O 1 k 0 5
ReactantO -> ProductO + Productl : k+ReactantO 1 k 0 5

Reactant0 | Modifier0O -> ProductO + Productl : k*ReactantOxMddifier0 1 k 0 5
Reactant0 + Reactantl -> 0 : 0 O
>
>

OO OO H H HH

Reactant0 + Reactantl -> ProductO : k+*ReactantO+*Reactantl 1 k 0 5
Reactant0 + Reactantl -> ProductO + Productl : k+*ReactantO*Reactantl 1 k 0 5
Reactant0 <-> ProductO : k*(ReactantO-Product0) 1 k 0 100 T

Figure 3: An example for fildui | di ngbl ocks. t xt

in front of its concentration. We do not want to use Akaikeiformation Criterion to modify the fithess
(noAl C), and we want to have a mass-conserving and small netwonalfjies for non-massconservance
and size).

After the general setup of the run has been determined intbeextfiles, we have to decide about
the actual parameters of the evolutionary algorithm, givefile opt i ons. t xt (see figures). In this
case, we choose to use a population size of 20, producingf8frioig in a overlapping fashion, such
that selection acts on 100 individuals. The population énttrefilled by mutations and crossover on the
survivors. All survivors are selected by elitist selectioBvery tenth offspring should be produced by
crossover between survivors. This is a very strong selegtiessure, so it will only be successful in simple
cases such as this example. In each fitness evaluation, tthel perameters are be improved in a (1,5)-ES
for 15 generations. Since we use default filenames for a8, fike can call the SBMLevolver without
command-line arguments.

The output on the screen shows best and average fitness asvavéliversity measures and the mean
number of species and reactions:

Turn Best Avg Dff1l Diff2 Speci es Reactions
1 6.431398 26.97341 7.960000 5.640000 3.200000 4.800000
2 0.084014 8.160019 9.840000 6.480000 3.800000 6.600000
3 0.002412 4.835043 13.98000 7.720000 4. 600000 8.900000
4 0.002412 3.037237 16. 78000 8.660000 5.300000 11.400000
5 0.001200 0.912607 16.54000 9. 440000 5.800000 12.200000
6 0.000758 0.007115 9.980000 9.180000 5.900000 12.100000
7 0.000246 0.001053 12.52000 9.240000 6.000000 13. 700000
8 0.000098 0.000412 15. 76000 9. 340000 5.900000 15. 700000
9 0.000088 0.000248 17.84000 9. 620000 5. 700000 16. 400000

10 0.000057 0.000136 20.82000 10.46000 6.300000 17.600000
11 0. 000035 0.000107 25.52000 11.18000 6.700000 20. 000000
12 0.000023 0.000070 21.20000 11.20000 7.400000 18.100000

io-table

Addi tion network. Inputl(t=0) + Input2(t=0) = Qutput(t=inf)

Determ ne whether Akaike's Information Criterion should be used
noAl C

G ven the penalty for non-nmassconservance

10000

G ve penalty for size

10

No. of cases, inputs, outputs, tinmesteps, offset, and tinmestep

NN OE N A

0

|l nput species

i nput 1

i nput 2

Now gi ve the nanes of the output species
out put

Initial input concentrations

Starting with = sets the concentration only at the first tinestep
Only one nunber nmeans the concentration is constant the whole tine
Case 0

0

0

Case 1

0

10

Case 2

10

0

Case 3

10

10

* ok ok ok FoF ok H ok ok H H H I

Now t he output data cones
Case 0O

0

Case 1

Case 2

Figure 4: An example for filebj ect i vef uncti on. t xt

nu

| anbda
cross_prob
output_file
stop_fitness
stop_turn

pf _mu

pf _| anbda

pf _num gen

20

80

0.1
run. | og
0. 00001
100

1

5

15

Figure 6: A network resulting from the evolution of an adaliti Although it looks more complicated than

Figure 5: An example for fil®@pt i ons. t xt

T

R2

RO

R3

R1

a hand-designed network, it perfectly performs its task.

13 0.000010 0.000053 24.00000 11.74000 8.100000 19.500000
14 0. 000010 0.000047 29.48000 13.62000 8.700000 23.700000
15 0. 000003 0. 000035 33.38000 14.88000 9.000000 27.600000

Run fini shed: reached desired fitness

The best model after this run can be seen in figur®y playing with the penalties and AIC, we would
hope to find a more elegant solution that focuses on the baessiéies of the problem.

References

[1] A. Finney and M. HuckaSystems biology markup language: Level 2 and beyond. Biochem Soc

Trans, 31(Pt 6):1472-1473, Dec 2003.

R0.htm
output.htm
X2.htm
R1.htm
R3.htm
input2.htm
R2.htm
input1.htm
X0.htm

	Installation
	Outline of the software system
	User interface
	Example: Evolving an addition-network

