Numerical Analysis of Ordinary Differential Equations

Exercise set 1
 Fall 2023

Exercise 1 Let $p:[a, b] \rightarrow \mathbb{R}$ a continuous function. Prove that every solution of homogeneous linear differential equation $y^{\prime}(t)=p(t) y(t), t \in[a, b]$ is of form

$$
y(t)=C e^{\int_{a}^{t} p(s) d s},
$$

where C a constant.
Hint Multiply with $\int_{a}^{t} p(s) d s$ and integrate by parts.
Exercise 2 Let the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}=\sqrt{|y|}, \quad 0 \leq t \leq 2 \\
y(0)=1
\end{array}\right.
$$

Prove that for this initial value problem, the Theorem 1.2 of lecture notes, holds for sufficient c and L. Find the solution y.

Hint To compute y use the method of separation of variables.
Exercise 3 Let the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}=\sqrt{\left|1-y^{2}\right|}, \quad t \geq 0 \\
y(0)=1
\end{array}\right.
$$

1. Why we should expect that this problem will not have a unique solution?
2. Prove that $y(t)=1$ and $y(t)=\cosh t$ are solutions of the problem in every interval $[0, b], b>0$.
3. Which is the longest interval of form $[b, 0]$ in which $y(t)=\cos t$ is solution?

Exercise 4 Prove Theorem 1.3.
Exercise 5 (Gronwall inequality in integral form)
Let $\phi(t) \geq 0$ a continuous function on $[0, T]$ and $\alpha, \beta \in \mathbb{R}$ with $\beta \geq 0$. If holds that

$$
\phi(t) \leq \alpha+\beta \int_{0}^{t} \phi(s) d s, \quad \forall t \in[0, T]
$$

prove that

$$
\phi(t) \leq \alpha e^{\beta t}, \quad \forall t \in[0, T] .
$$

Hint Let the function

$$
\psi(t)=\alpha+\beta \int_{0}^{t} \phi(s) d s, \quad t \in[0, T] .
$$

Then, show that $e^{-\beta t} \psi(t)$ is decreasing function.
Exercise 6 (Gronwall inequality in differential form)
Let $\phi(t) \geq 0$ a continuous differentiable function on $[0, T]$ and $\beta \in \mathbb{R}$ with $\beta \geq 0$. If holds that

$$
\phi^{\prime}(t) \leq \beta \phi(t), \quad \forall t \in[0, T],
$$

prove that

$$
\phi(t) \leq \phi(0) e^{\beta t}, \quad \forall t \in[0, T] .
$$

Hint One way is to use previous exercise.

Exercise 7 Let $M \in \mathbb{R}^{m, m}$ a matrix. Let the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=M y(t), \quad t \geq 0 \\
y(0)=y_{0}
\end{array}\right.
$$

where $y_{0} \in \mathbb{R}^{m}$.

1. In accordance to the definition of e^{x} for a real number, define the matrix e^{M} as

$$
e^{M}:=\sum_{l=0}^{\infty} \frac{1}{\bar{l}!} M^{l} .
$$

Let $\|\cdot\|$ a matrix norm, prove that

$$
\forall \epsilon>0, \exists n \in \mathbb{N}, \forall k \in \mathbb{N}\left\|\sum_{l=n}^{n+k} \frac{1}{l!} M^{l}\right\| \leq \epsilon,
$$

and therefore the matrix e^{M} is well-defined.
2. Prove that the exact solution is given by

$$
y(t)=e^{t M} y_{0}, \quad t \geq 0
$$

Exercise 8 Let $M \in \mathbb{R}^{m, m}$ a non-positive definite matrix, i.e., $(M x, x) \leq 0$ for all $x \in \mathbb{R}^{m}$. Let the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=M y(t), \quad t \geq 0 \\
y(0)=y_{0}
\end{array}\right.
$$

where $y_{0} \in \mathbb{R}$. Prove that the euclidean norm $\|y(\cdot)\|$ is a decreasing function.
Exercise 9 Let the initial value problem

$$
\left\{\begin{array}{l}
x^{\prime}(t)=-2 x(t)+y(t), \quad t \geq 0 \\
y^{\prime}(t)=2 x(t)-2 y(t), \quad t \geq 0 \\
x(0)=x_{0} \\
y(0)=y_{0}
\end{array}\right.
$$

where $x_{0}, y_{0} \in \mathbb{R}$. Prove that $x(\cdot)^{2}+y(\cdot)^{2}$ is a decreasing function.
Hint Use previous exercise.
Exercise 10 Let $M \in \mathbb{R}^{m, m}$ an anti-symmetric matrix, i.e., $M=-M^{T}$. Let the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=M y(t), \quad t \geq 0 \\
y(0)=y_{0}
\end{array}\right.
$$

where $y_{0} \in \mathbb{R}$. Prove that the euclidean norm $\|y(t)\|=\left\|y_{0}\right\|$.
Hint Prove and use the property that $(M x, y)=-(x, M y), M \in \mathbb{R}^{m, m}$ anti-symmetric matrix.
Exercise 11 Let $y_{0}, x_{0} \in \mathbb{R}$ and the initial value problems,

$$
\left\{\begin{array} { l }
{ y ^ { \prime } (t) = f (t , y (t)) , \quad t \geq 0 , } \\
{ y (0) = y _ { 0 } , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
x^{\prime}(t)=f(t, x(t)), \quad t \geq 0 \\
x(0)=x_{0},
\end{array}\right.\right.
$$

where $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function that satisfies the one-side Lipschitz condition with respect to y, uniformly on t, i.e.,

$$
\forall t \in[a, b], \quad \forall y_{1}, y_{2} \in \mathbb{R}, \quad\left(f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right)\left(y_{1}-y_{2}\right) \leq \mu\left(y_{1}-y_{2}\right)^{2},
$$

where μ is constant. Prove that for all $t \in[a, b]$, it holds that

$$
|y(t)-x(t)| \leq e^{\mu(t-a)}\left|y_{0}-x_{0}\right|
$$

Exercise 12 Let the initial value problem,

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), \quad t \in[a, b] \\
y(a)=y_{0}
\end{array}\right.
$$

where $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function that satisfies the one-side Lipschitz condition with respect to y, uniformly on t, i.e.,

$$
\forall t \in[a, b], \quad \forall y_{1}, y_{2} \in \mathbb{R}, \quad\left(f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right)\left(y_{1}-y_{2}\right) \leq \mu\left(y_{1}-y_{2}\right)^{2}
$$

where μ is constant.

1. Let $u(t):=e^{-\nu(t-a)} y(t)$. Show that u satisfies the initial value problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=F(t, u(t)), \quad t \in[a, b] \\
u(a)=y_{0},
\end{array}\right.
$$

with

$$
F(t, v):=e^{-\mu(t-a)} f\left(t, e^{\mu(t-a)} v\right)-\mu v
$$

2. Prove that F satisfies the one-side satisfies the one-side Lipschitz condition with respect to v, uniformly on t.
