NUMERICAL ANALYSIS OF ORDINARY DIFFERENTIAL EQUATIONS

Exercise set 2 Fall 2023

Exercise 1 Let $M \in \mathbb{R}^{m,m}$ a non-positive definite matrix, i.e., $(Mx, x) \leq 0$ for all $x \in \mathbb{R}^m$. Let the initial value problem

$$\begin{cases} y'(t) = My(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

where $y_0 \in \mathbb{R}^m$. We discretize the initial value problem with implicit Euler, using a uniform mesh of [0,1] with step h = 1/M, $M \in \mathbb{N}$. Let that $\{Y^n\}_{n=0}^M$ are the grid function of implicit Euler. Prove that

 $||Y^n|| \le ||Y^{n-1}||, \quad n = 1, \dots, M,$

where $\|\cdot\|$ the Euclidean norm.

Hint Write the global formulation of the numerical method applied to the above IVP and then, take the inner product with Y^n .

Exercise 2 Let the initial value problem

$$\begin{cases} x'(t) = -2x(t) + y(t), & t \in [0, 1], \\ y'(t) = 2x(t) - 2y(t), & t \in [0, 1], \\ x(0) = x_0, \\ y(0) = y_0, \end{cases}$$

where $x_0, y_0 \in \mathbb{R}$. We discretize the initial value problem with implicit Euler, using a uniform mesh of [0,1] with step h = 1/M, $M \in \mathbb{N}$. Let that $\{(X^n, Y^n)\}_{n=0}^M$ are the grid function of implicit Euler. Prove that

$$(X^n)^2 + (Y^n)^2 \le (X^{n-1})^2 + (Y^{n-1})^2, \ n = 1, \dots, M.$$

Compare the result with Exercise 9 of first exercises set.

Exercise 3 Let the initial value problem

$$\begin{cases} y'(t) = -e^{y(t)}, & t \in [0, 1], \\ y(0) = 1, \end{cases}$$

where $y_0 \in \mathbb{R}$. We discretize the initial value problem with implicit Euler, using a uniform mesh of [0,1] with step h = 1/M, $M \in \mathbb{N}$. Prove that the approximations are well defined.

Hint Use the fact that the $-e^y$ is decreasing.

Exercise 4 Let the initial value problem with $f : [a, b] \times \mathbb{R} \to \mathbb{R}$,

$$\begin{cases} y'(t) = f(t, y(t)), & t \in [a, b], \\ y(0) = y_0, \end{cases}$$

where $y_0 \in \mathbb{R}$. We discretize the initial value problem with implicit Euler, using a uniform mesh of [0,1] with step h = 1/M, $M \in \mathbb{N}$. The grid function $\{Y^n\}_{n=0}^M$ is given by

$$\begin{cases} Y^0 = y_0, \\ Y^n = Y^{n-1} + h f(t^n, Y^n), & n = 1, \dots, M. \end{cases}$$

Prove that the approximations are well defined if f(a) satisfies the Lipchitz condition and b) the one-side Lipchitz condition.

Exercise 5 Let the differential equation y'(t) = f(t), $f \in \mathbb{P}_1$. Prove that any explicit two-stage Runge-Kutta method of order p = 2, integrates exactly the above differential equation.

Hint Show that -hT(t, y; h) is the remainder term E(f) of the two-point quadrature formula.

Exercise 6 Prove that a Runge-Kutta method is consistent if and only if $\sum_{s=1}^{r} a_s = 1$.

Hint Use the definition of consistency.

Exercise 7 Let the initial value problem

$$\begin{cases} y'(t) = 1, & t \in [0, 1], \\ y(0) = 0, \end{cases}$$

Let $M \in \mathbb{N}$ and h = 1/M and Y^M the approximation of y(1) that gives a Runge-Kutta method with step h. If $Y^M \to 1 = y(1), M \to \infty$, prove that the Runge-Kutta method is consistent.

Hint Use the definition of consistency.

Exercise 8 Let the initial value problem

$$\begin{cases} y'(t) = 1, & t \in [0, 1], \\ y(0) = 0, \end{cases}$$

Let $M \in \mathbb{N}$ and h = 1/M and Y^M the approximation of y(1) that gives a Runge-Kutta method with step h. If $Y^M \to 1 = y(1), M \to \infty$, prove that the Runge-Kutta method is consistent.