Numerical Analysis of Ordinary Differential Equations

Exercise set 2

Fall 2023
Exercise 1 Let $M \in \mathbb{R}^{m, m}$ a non-positive definite matrix, i.e., $(M x, x) \leq 0$ for all $x \in \mathbb{R}^{m}$. Let the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=M y(t), \quad t \geq 0 \\
y(0)=y_{0}
\end{array}\right.
$$

where $y_{0} \in \mathbb{R}^{m}$. We discretize the initial value problem with implicit Euler, using a uniform mesh of $[0,1]$ with step $h=1 / M, M \in \mathbb{N}$. Let that $\left\{Y^{n}\right\}_{n=0}^{M}$ are the grid function of implicit Euler. Prove that

$$
\left\|Y^{n}\right\| \leq\left\|Y^{n-1}\right\|, \quad n=1, \ldots, M
$$

where $\|\cdot\|$ the Euclidean norm.
Hint Write the global formulation of the numerical method applied to the above IVP and then, take the inner product with Y^{n}.

Exercise 2 Let the initial value problem

$$
\begin{cases}x^{\prime}(t)=-2 x(t)+y(t), & t \in[0,1], \\ y^{\prime}(t)=2 x(t)-2 y(t), & t \in[0,1], \\ x(0)=x_{0} \\ y(0)=y_{0}\end{cases}
$$

where $x_{0}, y_{0} \in \mathbb{R}$. We discretize the initial value problem with implicit Euler, using a uniform mesh of $[0,1]$ with step $h=1 / M, M \in \mathbb{N}$. Let that $\left\{\left(X^{n}, Y^{n}\right)\right\}_{n=0}^{M}$ are the grid function of implicit Euler. Prove that

$$
\left(X^{n}\right)^{2}+\left(Y^{n}\right)^{2} \leq\left(X^{n-1}\right)^{2}+\left(Y^{n-1}\right)^{2}, \quad n=1, \ldots, M .
$$

Compare the result with Exercise 9 of first exercises set.
Exercise 3 Let the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=-e^{y(t)}, \quad t \in[0,1] \\
y(0)=1
\end{array}\right.
$$

where $y_{0} \in \mathbb{R}$. We discretize the initial value problem with implicit Euler, using a uniform mesh of $[0,1]$ with step $h=1 / M, M \in \mathbb{N}$. Prove that the approximations are well defined.

Hint Use the fact that the $-e^{y}$ is decreasing.
Exercise 4 Let the initial value problem with $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$,

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), \quad t \in[a, b] \\
y(0)=y_{0}
\end{array}\right.
$$

where $y_{0} \in \mathbb{R}$. We discretize the initial value problem with implicit Euler, using a uniform mesh of $[0,1]$ with step $h=1 / M, M \in \mathbb{N}$. The grid function $\left\{Y^{n}\right\}_{n=0}^{M}$ is given by

$$
\left\{\begin{array}{l}
Y^{0}=y_{0} \\
Y^{n}=Y^{n-1}+h f\left(t^{n}, Y^{n}\right), \quad n=1, \ldots, M
\end{array}\right.
$$

Prove that the approximations are well defined if f a) satisfies the Lipchitz condition and b) the one-side Lipchitz condition.

Exercise 5 Let the differential equation $y^{\prime}(t)=f(t), \quad f \in \mathbb{P}_{1}$. Prove that any explicit two-stage Runge-Kutta method of order $p=2$, integrates exactly the above differential equation.

Hint Show that $-h T(t, y ; h)$ is the remainder term $E(f)$ of the two-point quadrature formula.

Exercise 6 Prove that a Runge-Kutta method is consistent if and only if $\sum_{s=1}^{r} a_{s}=1$.
Hint Use the definition of consistency.
Exercise 7 Let the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=1, \quad t \in[0,1] \\
y(0)=0
\end{array}\right.
$$

Let $M \in \mathbb{N}$ and $h=1 / M$ and Y^{M} the approximation of $y(1)$ that gives a Runge-Kutta method with step h. If $Y^{M} \rightarrow 1=y(1), \quad M \rightarrow \infty$, prove that the Runge-Kutta method is consistent.

Hint Use the definition of consistency.
Exercise 8 Let the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=1, \quad t \in[0,1] \\
y(0)=0,
\end{array}\right.
$$

Let $M \in \mathbb{N}$ and $h=1 / M$ and Y^{M} the approximation of $y(1)$ that gives a Runge-Kutta method with step h. If $Y^{M} \rightarrow 1=y(1), M \rightarrow \infty$, prove that the Runge-Kutta method is consistent.

