Numerical Analysis of Ordinary Differential Equations

Exercise set 3
 Fall 2023

Exercise 1 Let the initial value problem with $M \in \mathbb{R}^{m, m}$ a constant matrix,

$$
\left\{\begin{array}{l}
y^{\prime}(t)=M y(t), \quad t \geq 0, \\
y(0)=y_{0},
\end{array}\right.
$$

where $y_{0} \in \mathbb{R}^{m}$. Assume that all the eigenvalues $\lambda_{j} \in \mathbb{C}$ of M have the property that $R e \lambda_{j} \leq 0$, i.e., they have non-positive real part.

Discretize the initial value problem with the semi-implicit family of methods

$$
\begin{array}{c|cc}
\mu & \mu & 0 \\
1-\mu & 1-2 \mu & \mu \\
\hline & \frac{1}{2} & \frac{1}{2}
\end{array}
$$

where $\mu \in \mathbb{R}$. In every time step we should solve two linear systems. What do we notice about these systems?
Exercise 2 Prove that the family of the semi-implicit methods of form

$$
\begin{array}{c|cc}
\mu & \mu & 0 \\
1-\mu & 1-2 \mu & \mu \\
\hline & \frac{1}{2} & \frac{1}{2}
\end{array}
$$

where $\mu \in \mathbb{R}$. Find $\mu \in \mathbb{R}$ such that the method is A-stable.
Exercise 3 Prove that the method with Butcher tableau

is A-stable but not B-stable and algebraic stable.
Exercise 4 Prove that the family of the semi-implicit methods of form

μ	μ	0
$1-\mu$	$1-2 \mu$	μ
	$\frac{1}{2}$	$\frac{1}{2}$

where $\mu \in \mathbb{R}$ is B-stable for $\mu \geq \frac{1}{4}$.
Exercise 5 Prove that the Gauss-Legendre method of two stages

where $\mu=\frac{\sqrt{3}}{6}$ is $B-$ stable.
Hint Prove that is algebraic stable with $m_{i j}=0,1 \leq i, j \leq 2$.
Exercise 6 Prove that the trapezoidal rule

0	0	0
1	$\frac{1}{2}$	$\frac{1}{2}$
	$\frac{1}{2}$	$\frac{1}{2}$

is not B-stable.
Hint Find an initial value problem of form $y^{\prime}=f(t, y)$ where $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function that

$$
\forall t \in[a, b], \quad \forall y_{1}, y_{2} \in \mathbb{R}, \quad\left(f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right)\left(y_{1}-y_{2}\right) \leq 0 .
$$

For example take $f(t, y):=g(t) y$, where g a continuous function with non-positive values. Then, find the function g such that $Y^{n}=-2 Y^{n-1}$.

Exercise 7 Prove that the method with Butcher tableau

is A-stable if and only if $\tau=1$. Which method is for $\tau=1$?
Hint Prove that for these method, we have the following rational approximation of the exponential $\phi: \mathbb{C} \rightarrow \mathbb{C}$,

$$
\phi(z)=\frac{2+2(2-\tau) z+(1-\tau) z^{2}}{2-\tau z}
$$

Exercise 8 Let the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), \quad t \in[a, b] \\
y(0)=y_{0}
\end{array}\right.
$$

where $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function that

$$
\forall t \in[a, b], \quad \forall y_{1}, y_{2} \in \mathbb{R}, \quad\left(f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right)\left(y_{1}-y_{2}\right) \leq 0
$$

We discretize the initial value problem with an algebraic stable method Runge-Kutta of order p, with Butcher tableau

$$
\begin{array}{c|c}
\mu & \Lambda \\
\hline & \alpha^{T}
\end{array}
$$

with uniform partition of $[a, b]$ with step $h=\frac{b-a}{M}$. Assume that the exact solution is sufficiently smooth, prove the following error estimation

$$
\max _{0 \leq n \leq M}\left|y\left(t^{n}\right)-Y^{n}\right| \leq C h^{p}
$$

where C is independent of h.
Hint In this exercise our aim is to prove an error estimate without using the Lipschitz constant. We need to prove that

$$
\left(Y^{n}-y\left(t^{n}\right)-T\left(t^{n-1}, y\left(t^{n-1}\right) ; h\right)\right)^{2} \leq\left(Y^{n-1}-y\left(t^{n-1}\right)\right)^{2}
$$

which means that

$$
\left|Y^{n}-y\left(t^{n}\right)\right| \leq\left|Y^{n-1}-y\left(t^{n-1}\right)\right|+\left|T\left(t^{n-1}, y\left(t^{n-1}\right) ; h\right)\right|
$$

Then, use that the method has order p.

