NUMERICAL ANALYSIS OF ORDINARY DIFFERENTIAL EQUATIONS

Fall 2023

Description of the problem

We seek function $y : [a, b] \to \mathbb{R}$ to be the solution of initial value problem

$$y'(t) = f(t, y(t)), \qquad t \in [a, b],$$
(0.1)

$$y(a) = y_0, \tag{0.2}$$

where the function $f : [a, b] \times \mathbb{R} \to \mathbb{R}$, the real numbers a, b with a < b and the $y_0 \in \mathbb{R}$, are given.

Explicit Euler method

Given a natural number M, we recall a uniform partition of [a, b] with mesh size $h = \frac{b-a}{M}$ and nodes the points $t^n = a + nh$, for n = 0, ..., M. The explicit Euler, produces the approximation $Y^n \in \mathbb{R}$ of $y(t^n)$ from

$$Y^{n} = Y^{n-1} + h f(t^{n-1}, Y^{n-1}), \quad n = 1, \dots, M,$$
(0.3)

$$Y^0 = y_0. (0.4)$$

Exercise

Write a program that computes the approximations of explicit Euler $\{Y^n\}_{n=0}^M$ for the initial value problem,

$$y'(t) = \frac{1}{10}y(t), \qquad t \in [0,1],$$
(0.5)

$$y(0) = 1.$$
 (0.6)

The exact solution of (0.5)-(0.6) is $y(t) = e^{\frac{t}{10}}$, $t \in [0, 1]$. In order to check your program, compute the order of convergence for a given M, which is given from

$$\mathcal{E}(M) := \max_{0 \le n \le M} |Y^n - y(t^n)|.$$

$$(0.7)$$

Compute the error (0.7) for two different natural numbers $M_1 < M_2$, and compute the experimental order of convergence with M_1, M_2 , which is given by

$$p(M_1, M_2) = \frac{\ln\left(\frac{\mathcal{E}(M_2)}{\mathcal{E}(M_1)}\right)}{\ln\left(\frac{M_1}{M_2}\right)}.$$
(0.8)

See that $p(M_1, M_2) \approx 1$.