Numerical Analysis of Ordinary Differential Equations

Fall 2023

Description of the problem

We seek function $y:[a, b] \rightarrow \mathbb{R}$ to be the solution of initial value problem

$$
\begin{align*}
y^{\prime}(t) & =f(t, y(t)), \quad t \in[a, b] \tag{0.1}\\
y(a) & =y_{0} \tag{0.2}
\end{align*}
$$

where the function $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$, the real numbers a, b with $a<b$ and the $y_{0} \in \mathbb{R}$, are given.

Explicit Euler method

Given a natural number M, we recall a uniform partition of $[a, b]$ with mesh size $h=\frac{b-a}{M}$ and nodes the points $t^{n}=a+n h$, for $n=0, \ldots, M$. The explicit Euler, produces the approximation $Y^{n} \in \mathbb{R}$ of $y\left(t^{n}\right)$ from

$$
\begin{align*}
& Y^{n}=Y^{n-1}+h f\left(t^{n-1}, Y^{n-1}\right), \quad n=1, \ldots, M \tag{0.3}\\
& Y^{0}=y_{0} \tag{0.4}
\end{align*}
$$

Exercise

Write a program that computes the approximations of explicit Euler $\left\{Y^{n}\right\}_{n=0}^{M}$ for the initial value problem,

$$
\begin{align*}
y^{\prime}(t) & =\frac{1}{10} y(t), \quad t \in[0,1] \tag{0.5}\\
y(0) & =1 \tag{0.6}
\end{align*}
$$

The exact solution of $(0.5)-(0.6)$ is $y(t)=e^{\frac{t}{10}}, t \in[0,1]$. In order to check your program, compute the order of convergence for a given M, which is given from

$$
\begin{equation*}
\mathcal{E}(M):=\max _{0 \leq n \leq M}\left|Y^{n}-y\left(t^{n}\right)\right| \tag{0.7}
\end{equation*}
$$

Compute the error (0.7) for two different natural numbers $M_{1}<M_{2}$, and compute the experimental order of convergence with M_{1}, M_{2}, which is given by

$$
\begin{equation*}
p\left(M_{1}, M_{2}\right)=\frac{\ln \left(\frac{\mathcal{E}\left(M_{2}\right)}{\mathcal{E}\left(M_{1}\right)}\right)}{\ln \left(\frac{M_{1}}{M_{2}}\right)} . \tag{0.8}
\end{equation*}
$$

See that $p\left(M_{1}, M_{2}\right) \approx 1$.

