Numerical Analysis of Ordinary Differential Equations

Fall 2023

Description of the problem

We seek function $y:[a, b] \rightarrow \mathbb{R}$ to be the solution of initial value problem

$$
\begin{align*}
y^{\prime}(t) & =f(t, y(t)), \quad t \in[a, b], \tag{0.1}\\
y(a) & =y_{0}, \tag{0.2}
\end{align*}
$$

where the function $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$, the real numbers a, b with $a<b$ and the $y_{0} \in \mathbb{R}$, are given.

Implicit Euler method

Given a natural number M, we recall a uniform partition of $[a, b]$ with mesh size $h=\frac{b-a}{M}$ and nodes the points $t^{n}=a+n h$, for $n=0, \ldots, M$. The implicit Euler, produces the approximation $Y^{n} \in \mathbb{R}$ of $y\left(t^{n}\right)$ from

$$
\begin{align*}
& Y^{n}=Y^{n-1}+h f\left(t^{n}, Y^{n}\right), \quad n=1, \ldots, M, \tag{0.3}\\
& Y^{0}=y_{0} . \tag{0.4}
\end{align*}
$$

Exercise

Write a program that computes the approximations of implicit Euler $\left\{Y^{n}\right\}_{n=0}^{M}$ for the initial value problem,

$$
\begin{align*}
y^{\prime}(t) & =e^{-y(t)}, \quad t \in[0,5], \tag{0.5}\\
y(0) & =1 . \tag{0.6}
\end{align*}
$$

The exact solution of (0.5)-(0.6) is $y(t)=\ln (t+e), t \in[0,5], t \in[0,1]$. In order to check your program, compute the order of convergence for a given M, which is given from

$$
\begin{equation*}
\mathcal{E}(M):=\max _{0 \leq n \leq M}\left|Y^{n}-y\left(t^{n}\right)\right| . \tag{0.7}
\end{equation*}
$$

Compute the error (0.7) for two different natural numbers $M_{1}<M_{2}$, and compute the experimental order of convergence with M_{1}, M_{2}, which is given by

$$
\begin{equation*}
p\left(M_{1}, M_{2}\right)=\frac{\ln \left(\frac{\mathcal{E}\left(M_{2}\right)}{\mathcal{E}\left(M_{1}\right)}\right)}{\ln \left(\frac{M_{1}}{M_{2}}\right)} . \tag{0.8}
\end{equation*}
$$

See that $p\left(M_{1}, M_{2}\right) \approx 1$.

Hint

For every $n=1, \ldots, M$, the Y^{n} is the solution of a non-linear equation. Thus, one way to approximate it, is the Newton method.

Newton Method

The Newton method gives approximations of the real root of a function $g(x), x \in \mathbb{R}$, for which the derivative $g^{\prime}(x)$ is known. The approximations are

$$
\begin{align*}
& x^{(l)}=x^{(l-1)}-\frac{g\left(x^{(l-1)}\right)}{g^{\prime}\left(x^{(l-1)}\right)}, \quad l \geq 0, \tag{0.9}\\
& x^{(0)}=x_{0},
\end{align*}
$$

with $x_{0} \in \mathbb{R}$ an initial approximation of the root.
Implementation of Newton method to (0.3)-(0.4)
We want to approximate the solution of (0.3). Define $x:=Y^{n}$. Then,

$$
\begin{equation*}
x-Y^{n-1}-h e^{-x}=0 \tag{0.10}
\end{equation*}
$$

Thus, $g(x):=x-Y^{n-1}-h e^{-x}, x \in \mathbb{R}$. For initial condition, we get $x_{0}=Y^{n-1}$, where Y^{n-1} the approximation on the previous time step t^{n-1}. In every step of implicit Euler method, Y^{n} is approximated (Newton method approximate Y^{n}) with L iterations of Newton method in view of (0.9). Then we set $Y^{n}:=x^{L}$. Compactly,

For $n=1, \ldots, M$,
Step 1: Set $x_{0}:=Y^{n-1}$
Step 2: For $l=1, \ldots, L$, we compute

$$
\begin{aligned}
x^{(l)} & =x^{(l-1)}-\frac{g\left(x^{(l-1)}\right)}{g^{\prime}\left(x^{(l-1)}\right)} \\
x^{(0)} & =Y^{n-1},
\end{aligned}
$$

Step 3: Set $Y^{n}:=x^{(L)}$.

