Theorie und Numerik partieller Differentialgleichungen I

L_{2} Projection in 1D

Let $I=[0, L], L>0$, be an interval and let $N+1$ point $\left\{x_{i}\right\}_{i=0}^{N}$ to define the partition

$$
\begin{equation*}
0=x_{0}<x_{1}<\ldots<x_{N_{1}}<x_{N}=L \tag{1}
\end{equation*}
$$

that subdivides the interval I into N subintervals $I_{i}=\left[x_{i-1}, x_{i}\right], i=1, \ldots, N$ of length $h_{i}=x_{i}-x_{i-1}$. Define, the space V_{h}, of continuous piecewise linear functions by

$$
\begin{equation*}
V_{h}=\left\{v: v \in \mathcal{C}(I),:\left.v\right|_{I_{i}} \in \mathbb{P}_{1}\left(I_{i}\right)\right\}, \tag{2}
\end{equation*}
$$

where $\mathbb{P}_{1}\left(I_{i}\right)$ denotes the space of linear functions on I_{1}. Let $\left\{\phi_{i}\right\}_{i=0}^{N}$, a basis functions of V_{h} such that $\phi_{i}\left(x_{j}\right)=\delta_{i j}$, where $\delta_{i j}=1$ if and only if $i=j$, and otherwise is zero. Since $\left\{\phi_{i}\right\}_{i=0}^{N}$ form a basis of V_{h}, every function $v_{h} \in V_{h}$, may be written as linear combination of the basis functions, i.e.,

$$
v_{h}=\sum_{i=0}^{N} \alpha_{i} \phi_{i}(x), \alpha=\left(\alpha_{0}, \ldots, \alpha_{N}\right)^{T} \in \mathbb{R}^{N+1}
$$

The functions ϕ_{i} are given by

$$
\phi_{i}(x)=\left\{\begin{array}{lc}
\frac{x-x_{i-1}}{h_{i}}, & \text { if } x \in I_{i} \\
\frac{x_{i+1}-x}{h_{i+1}}, & \text { if } x \in I_{i+1} \\
0, & \text { otherwise }
\end{array}\right.
$$

$1 \quad L_{2}$ projection

Given a function $f \in L_{2}(I)$, we are we seek function $\pi_{h} f \in V_{h}$ such that

$$
\int_{I}\left(f-\pi_{h} f\right) \chi d x=0, \quad \forall \chi \in V_{h}
$$

The latter defines the a projection of function f onto V_{h}, since the difference $f-\pi_{h} f$ is required to be orthogonal to all functions of V_{h}. But how good is the L_{2} in the approximating f ? The following result gives the answer.

The L_{2} projection $\pi_{h} f$ of f is the best approximation on V_{h} with respect to L_{2}-norm, i.e.,

$$
\left\|f-\pi_{h} f\right\|_{L_{2}(I)} \leq\|f-\chi\|_{L_{2}(I)}, \quad \forall \chi \in V_{h} .
$$

Moreover, if $f \in H^{2}(I)$, the error can be estimated as follows,

$$
\begin{equation*}
\left\|f-\pi_{h} f\right\|_{L_{2}(I)}+h\left\|\left(f-\pi_{h} f\right)^{\prime}\right\|_{L_{2}(I)} \leq C h^{2}\left\|f^{\prime \prime}\right\|_{L_{2}(I)} \tag{3}
\end{equation*}
$$

where $\|v\|_{L_{2}(I)}=\left(\int_{I} v^{2} d x\right)^{1 / 2}$. The constant C is independent of h and $h=\max _{1 \leq i \leq N} h_{i}$.

1.1 Derivation of a Linear System of Equations

Since $\pi_{h} f \in V_{h}$, may be written as linear combination of the basis functions, i.e.,

$$
\pi_{h} f=\sum_{i=0}^{N} \xi_{i} \phi_{i}(x), \quad \xi=\left(\xi_{0}, \ldots, \xi_{N}\right)^{T} \in \mathbb{R}^{N+1}
$$

Given a function $f \in L_{2}(I)$, in order to determine its L_{2}-projection $\pi_{h} f$ on V_{h}, we need to solve a linear system of equations. In fact, using its definition with $\chi=\phi_{i}, i=1, \ldots, N$, we have

$$
\int_{I} f \phi_{i} d x=\int_{I}\left(\sum_{j=0}^{N} \xi_{j} \phi_{j}\right) \phi_{i} d x=\sum_{j=1}^{N} \int_{I} \phi_{j} \phi_{i} d x, \quad i=0, \ldots, N .
$$

If further, we define the matrix $\mathcal{M}=\left\{m_{i j}\right\}_{i, j=0}^{N}$, with elements

$$
m_{i j}:=\int_{I} \phi_{j} \phi_{i} d x
$$

we get the following linear system for the determination of the coefficients $\xi_{j}, j=0, \ldots, N$,

$$
\mathcal{M} \xi=b
$$

where $b_{i}=\int_{I} f \phi_{i} d x, i=0, \ldots, N$. Solving the latter linear system, we get the coefficient vector ξ.
To compute the vector b we need to employ a quadrature rule. For this exercise we may use the Simpson formula that integrates exactly polynomial up to order 2 .

1.2 Simpson's rule

Given interval $[a, b]$, with midpoint $c=(a+b) / 2$, the Simpson's rule for the computation of the $\int_{I} g d x, g \in$ $\mathcal{C}([a, b])$, is

$$
\int_{I} g d x=(b-a) \frac{g(a)+4 g(c)+g(b)}{6} .
$$

1.3 Programming exercises

Exercise 1 Let $I=[0,1]$ and $f(x)=x^{2}, x \in I$. Write a program that

1. computes the $L_{2}-$ projection $\pi_{h} f \in V_{h}$ of f,
2. determines the experimental order of accuracy in L_{2} and H^{1} norm, (see hint), and
3. plot your results and compare with the function.

Hint Compute the norms of (3) for two different natural numbers $N_{1}<N_{2}$, then the experimental order of convergence with N_{1}, N_{2}, is given by

$$
\begin{equation*}
p\left(N_{1}, N_{2}\right)=\frac{\ln \left(\frac{\mathcal{E}\left(N_{2}\right)}{\mathcal{E}\left(N_{1}\right)}\right)}{\ln \left(\frac{N_{1}}{N_{2}}\right)} \tag{4}
\end{equation*}
$$

where first in (4) take $\mathcal{E}(N):=\left\|f-\pi_{h} f\right\|_{L_{2}(I)}, h=1 / N$. See that $p\left(N_{1}, N_{2}\right) \approx 2$. Next, take $\mathcal{E}(N):=$ $\left\|\left(f-\pi_{h} f\right)^{\prime}\right\|_{L_{2}(I)}, h=1 / N$. See that $p\left(N_{1}, N_{2}\right) \approx 1$.

Exercise 2 Take $f(x)=\arctan ((x-1 / 2) / \zeta), x \in I$. Run the program with different values of $\zeta=0.1,0.01$.

