Numerical approximation of an ODEs by explicit Euler

Christos Pervolianakis
Institute of Mathematics and Computer Science,
University of Jena, 07743, Jena, Germany
christos.pervolianakis@uni-jena.de

Description of the problem

We seek function $y:[a,b]\to\mathbb{R}$ to be the solution of initial value problem

$$y'(t) = f(t, y(t)), \qquad t \in [a, b], \tag{1}$$

$$y(a) = y_0, (2)$$

where the function $f:[a,b]\times\mathbb{R}\to\mathbb{R}$, the real numbers a,b with a< b and the $y_0\in\mathbb{R}$, are given.

Explicit Euler method

Given a natural number M, we recall a uniform partition of [a,b] with mesh size $h=\frac{b-a}{M}$ and nodes the points $t^n=a+nh$, for $n=0,\ldots,M$. The explicit Euler, produces the approximation $Y^n\in\mathbb{R}$ of $y(t^n)$ from

$$Y^{n} = Y^{n-1} + h f(t^{n-1}, Y^{n-1}), \quad n = 1, \dots, M,$$
(3)

$$Y^0 = y_0. (4)$$

Exercise

Write a program that computes the approximations of explicit Euler $\{Y^n\}_{n=0}^M$ for the initial value problem,

$$y'(t) = \frac{1}{10}y(t), \qquad t \in [0, 1],$$
 (5)

$$y(0) = 1. (6)$$

The exact solution of (5)-(6) is $y(t) = e^{\frac{t}{10}}$, $t \in [0,1]$. In order to check your program, compute the order of convergence for a given M, which is given from

$$\mathcal{E}(M) := \max_{0 \le n \le M} |Y^n - y(t^n)|. \tag{7}$$

Compute the error (7) for two different natural numbers $M_1 < M_2$, and compute the experimental order of convergence with M_1, M_2 , which is given by

$$p(M_1, M_2) = \frac{\ln\left(\frac{\mathcal{E}(M_2)}{\mathcal{E}(M_1)}\right)}{\ln\left(\frac{M_1}{M_2}\right)}.$$
 (8)

See that $p(M_1, M_2) \approx 1$.