Numerical approximation of a system of ODEs by explicit Euler

Christos Pervolianakis
Institute of Mathematics and Computer Science,
University of Jena, 07743, Jena, Germany
christos.pervolianakis@uni-jena.de

Problem statement

We seek function $y:[a, b] \rightarrow \mathbb{R}^{d}$, with $d \geq 1$, solution of the initial value problem

$$
\begin{align*}
y^{\prime}(t) & =f(t, y(t)), \quad t \in[a, b], \tag{1}\\
y(a) & =y_{0}, \tag{2}
\end{align*}
$$

where the function $f:[a, b] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, and the real numbers a, b with $a<b$ and o $y_{0} \in \mathbb{R}^{d}$, are given.

Explicit Euler

Given a natural number M, we define the uniform mesh of $[a, b]$ with fixed mesh step $h=\frac{b-a}{M}$ and nodes the points $t^{n}=a+n h$, for $n=0, \ldots, M$. The explicit Euler compute the approximation $Y^{n} \in \mathbb{R}^{d}$ of $y\left(t^{n}\right)$ given by

$$
\begin{align*}
& Y^{n}=Y^{n-1}+h f\left(t^{n-1}, Y^{n-1}\right), \quad n=0, \ldots, M \tag{3}\\
& Y^{0}=y_{0} \tag{4}
\end{align*}
$$

Notice that every element of the sequence $\left\{Y^{n}\right\}_{n=0}^{N}$ is a vector of dimension d.

Exercise 1

Write a program that computes the approximations of the explicit Euler $\left\{Y^{n}\right\}_{n=0}^{M}$ for the following initial value problem,

$$
\begin{align*}
y^{\prime}(t) & =A y(t), \quad t \in[0,1], \tag{5}\\
y(0) & =(1,0)^{T}, \tag{6}
\end{align*}
$$

where the matrix A defined as

$$
A:=\left[\begin{array}{cc}
-1 & -e^{-2 t} \tag{7}\\
e^{2 t} & 1
\end{array}\right]
$$

The exact solution of (5)-(6) is $y(t)=\left(e^{-t} \cos (t), e^{t} \sin (t)\right)^{T}, t \in[0,1]$. To check if the code is correct, one way is to compute the approximation error, i.e., given a natural number M, the approximation error is given by

$$
\begin{equation*}
\mathcal{E}(M):=\max _{0 \leq n \leq M} \max _{1 \leq i \leq d}\left|Y_{i}^{n}-y_{i}\left(t^{n}\right)\right| \tag{8}
\end{equation*}
$$

Now, to compute the approximation error (8), take two different natural numbers $M_{1}<M_{2}$, and compute the experimental error for M_{1}, M_{2}, which is given by

$$
\begin{equation*}
p\left(M_{1}, M_{2}\right)=\frac{\ln \left(\frac{\mathcal{E}\left(M_{2}\right)}{\mathcal{E}\left(M_{1}\right)}\right)}{\ln \left(\frac{M_{1}}{M_{2}}\right)} . \tag{9}
\end{equation*}
$$

Conclude that $p\left(M_{1}, M_{2}\right) \approx 1$.

Hint

The error for $M=20$ and $M=40$, are

$$
\begin{aligned}
& \mathcal{E}(20)=0.110972 \\
& \mathcal{E}(40)=5.632574 e-02 .
\end{aligned}
$$

