Numerical approximation of a system of ODEs by explicit Euler

Christos Pervolianakis Institute of Mathematics and Computer Science, University of Jena, 07743, Jena, Germany christos.pervolianakis@uni-jena.de

Problem statement

We seek function $y : [a, b] \to \mathbb{R}^d$, with $d \ge 1$, solution of the initial value problem

$$y'(t) = f(t, y(t)), t \in [a, b],$$
 (1)
 $y(a) = y_0,$ (2)

where the function $f : [a, b] \times \mathbb{R}^d \to \mathbb{R}^d$, and the real numbers a, b with a < b and $y_0 \in \mathbb{R}^d$, are given.

Explicit Euler

Given a natural number M, we define the uniform mesh of [a, b] with fixed mesh step $h = \frac{b-a}{M}$ and nodes the points $t^n = a + nh$, for n = 0, ..., M. The explicit Euler compute the approximation $Y^n \in \mathbb{R}^d$ of $y(t^n)$ given by

$$Y^{n} = Y^{n-1} + h f(t^{n-1}, Y^{n-1}), \quad n = 0, \dots, M,$$
(3)

$$Y^0 = y_0. (4)$$

Notice that every element of the sequence $\{Y^n\}_{n=0}^N$ is a vector of dimension d.

Exercise 1

Write a program that computes the approximations of the explicit Euler $\{Y^n\}_{n=0}^M$ for the following initial value problem,

$$y'(t) = A y(t), \qquad t \in [0, 1],$$
(5)

$$y(0) = (1,0)^T, (6)$$

where the matrix A defined as

$$A := \begin{bmatrix} -1 & -e^{-2t} \\ e^{2t} & 1 \end{bmatrix}.$$
 (7)

The exact solution of (5)-(6) is $y(t) = (e^{-t}\cos(t), e^t\sin(t))^T$, $t \in [0, 1]$. To check if the code is correct, one way is to compute the approximation error, i.e., given a natural number M, the approximation error is given by

$$\mathcal{E}(M) := \max_{0 \le n \le M} \max_{1 \le i \le d} |Y_i^n - y_i(t^n)|.$$
(8)

Now, to compute the approximation error (8), take two different natural numbers $M_1 < M_2$, and compute the experimental error for M_1 , M_2 , which is given by

$$p(M_1, M_2) = \frac{\ln\left(\frac{\mathcal{E}(M_2)}{\mathcal{E}(M_1)}\right)}{\ln\left(\frac{M_1}{M_2}\right)}.$$
(9)

Conclude that $p(M_1, M_2) \approx 1$.

Hint

The error for M = 20 and M = 40, are

$$\mathcal{E}(20) = 0.110972$$

 $\mathcal{E}(40) = 5.632574e - 02.$