Numerical approximation of an ODEs by explicit multistep methods

Christos Pervolianakis
Institute of Mathematics and Computer Science,
University of Jena, 07743, Jena, Germany
christos.pervolianakis@uni-jena.de

Problem statement

We seek function $y:[a, b] \rightarrow \mathbb{R}^{d}$, with $d \geq 1$, solution of the initial value problem

$$
\begin{align*}
y^{\prime}(t) & =f(t, y(t)), \quad t \in[a, b] \tag{1}\\
y(a) & =y_{0} \tag{2}
\end{align*}
$$

where the function $f:[a, b] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, and the real numbers a, b with $a<b$ and o $y_{0} \in \mathbb{R}^{d}$, are given.

Explicit Euler

Given a natural number M, we define the uniform mesh of $[a, b]$ with fixed mesh step $h=\frac{b-a}{M}$ and nodes the points $t^{n}=a+n h$, for $n=0, \ldots, M$.

For the explicit multistep methods we have the following parameters,

- the number of the initial approximations $k \in \mathbb{N}$,
- the coefficients $\left\{\alpha_{j}\right\}_{j=0}^{k-1} \in \mathbb{R}$,
- the coefficients $\left\{\beta_{j}\right\}_{j=0}^{k-1} \in \mathbb{R}$,
where in general $\alpha_{k}=1$ with $\left|\alpha_{0}\right|+\left|\beta_{0}\right|>0$ such that the method be k-step. An explicit k-step method for the numerical approximation of the initial value problem (1)-(2) is described for the coefficient (constant) $\left\{\alpha_{j}\right\}_{j=0}^{k-1},\left\{\beta_{j}\right\}_{j=0}^{k-1}$ and produces vectors $\left\{Y^{n+k}\right\}_{n=0}^{M-k}$ which are given for $n=0, \ldots, M-k$ by

$$
\begin{align*}
& Y^{0}, Y^{1}, \ldots, Y^{k-1} \\
& \quad Y^{n+k}=-\sum_{j=0}^{k-1} \alpha_{j} Y^{n+j}+h \sum_{j=0}^{k-1} \beta_{j} f\left(t^{n+j}, Y^{n+j}\right), \quad n=0, \ldots, N-k \tag{3}
\end{align*}
$$

If p is the order of k-step method, then the following are hold due to Dahlquist (1959),

- $p \leq k+1$ if k odd,
- $p \leq k+2$ if k even.

We know that the k-step method of maximum order are implicit. For a stable explicit k-step method, we always have that $p \leq k$. We will recall the explicit k-step methods for which hold that $p=k$. In fact, the methods with this property, are called Adams-Bashforh and we will write them as $A B(k)$. For the $A B(k)$ we have the coefficients α_{j}, β_{j} for $j=0, \ldots, k-1$,

$$
\begin{equation*}
\alpha_{k-1}=-1, \quad \alpha_{j}=0, \quad j=0, \ldots, k-2, \tag{4}
\end{equation*}
$$

where the coefficients $\alpha_{j}, j=0, \ldots, k-1$ are independent of k. On the other hand, the coefficients $\beta_{j}, j=$ $0, \ldots, k-1$ depend on k and for $k=2,3,4$ they defined as

$$
\begin{array}{ll}
k=2: & \beta_{0}=-\frac{1}{2}, \quad \beta_{1}=\frac{3}{2} \\
k=3: & \beta_{0}=\frac{5}{12}, \quad \beta_{1}=-\frac{4}{3}, \beta_{2}=\frac{23}{12} \tag{5}\\
k=4: & \beta_{0}=-\frac{9}{24}, \quad \beta_{1}=\frac{37}{24}, \quad \beta_{2}=-\frac{59}{24}, \beta_{3}=\frac{55}{24}
\end{array}
$$

Numerical approximation

Step 1: Set $Y^{0}:=y_{0}$.
Step 2: Calculate the remaining initial conditions $\left\{Y^{n}\right\}_{n=1}^{k-1}$ using a different numerical method (can be one-step or even multistep) of order $q \geq p-1$ where p is the order that k-step method have. If we use numerical methods of order $q<p-1$, then we will "pollute" the order of convergence and the order will be q (instead of p, as the previous choice).
Step 3: Last, for $n=0, \ldots, M-k$, we compute the vectors $Y^{n+k} \in \mathbb{R}^{d}$ from

$$
Y^{n+k}=-\sum_{j=0}^{k-1} \alpha_{j} Y^{n+j}+h \sum_{j=0}^{k-1} \beta_{j} f\left(t^{n+j}, Y^{n+j}\right)
$$

Notice that every element of the sequence $\left\{Y^{n}\right\}_{n=0}^{N}$ is a vector of dimension d.

Exercise 1

Write an code that computes the vectors $\left\{Y^{n}\right\}_{n=0}^{N}$ of k-step method $A B(k)$ for $k=2,3,4$, for the initial value problem,

$$
\begin{align*}
y^{\prime}(t) & =\frac{1}{10} y(t), \quad t \in[0,1] \tag{6}\\
y(0) & =1 \tag{7}
\end{align*}
$$

The exact solution of $(6)-(7)$ is give by $y(t)=e^{\frac{t}{10}}, t \in[0,1]$. To check if you have solve the exercise correctly, compute the approximation error for $A B(k), k=2,3,4$. The approximation error, given a natural number M, is calculated by

$$
\begin{equation*}
\mathcal{E}(M):=\max _{0 \leq n \leq M}\left|Y^{n}-y\left(t^{n}\right)\right| . \tag{8}
\end{equation*}
$$

Compute the error (8) for two different natural numbers $M_{1}<M_{2}$, in order to compute the approximating order convergence for M_{1}, M_{2}, which is defined as

$$
\begin{equation*}
p\left(M_{1}, M_{2}\right)=\frac{\ln \left(\frac{\mathcal{E}\left(M_{2}\right)}{\mathcal{E}\left(M_{1}\right)}\right)}{\ln \left(\frac{M_{1}}{M_{2}}\right)} . \tag{9}
\end{equation*}
$$

Conclude that $p\left(M_{1}, M_{2}\right) \approx k$.
Case 1
Implement the $A B(2)$, where for Y^{1} use the explicit method of Euler.
Case 2
Implement the $A B(3)$, where Y^{1} and Y^{2} use the classical Runge-Kutta method of 4 stages and 4 order.
Step 3
Implement the $A B(4)$, where for Y^{1} and Y^{2} classical Runge-Kutta method of 4 stages and 4 order and for the Y^{3} use $A B(3)$ of the previous case.

Hint

The errors for $M=20$ and $M=40$, are
Case 1

$$
\begin{aligned}
& \mathcal{E}(20)=1.48930418 e-05 \\
& \mathcal{E}(40)=3.73238008 e-06
\end{aligned}
$$

Case 2

$$
\begin{aligned}
& \mathcal{E}(20)=4.63750416 e-09 \\
& \mathcal{E}(40)=6.13538997 e-10
\end{aligned}
$$

Case 3

$$
\begin{aligned}
& \mathcal{E}(20)=2.78008061 e-10 \\
& \mathcal{E}(40)=1.75344184 e-11 .
\end{aligned}
$$

Exercise 2

Write a code that computes the approximations $\left\{Y^{n}\right\}_{n=0}^{N}$ of k-step $A B(k)$ for $k=2,3$, 4, where we have defined above, for the initial value problem

$$
\begin{align*}
y^{\prime}(t) & =f(t, y(t)), \quad t \in[0,1] \tag{10}\\
y(0) & =(1,0)^{T} \tag{11}
\end{align*}
$$

with $y(t)=\left(y_{1}(t), y_{2}(t)\right)^{T}$ and $f_{1}(t, y(t))=-y_{1}(t)-e^{-2 t} y_{2}(t)$ and $f_{2}(t, y(t))=y_{2}(t)+e^{2 t} y_{1}(t)$. The exact solution of (10)-(11) is given by $y(t)=\left(e^{-t} \cos (t), e^{t} \sin (t)\right)^{T}, t \in[0,1]$. To check if you have solve the exercise correctly, compute the approximation error for $A B(k), k=2,3,4$. The approximation error, given a natural number M, is calculated by

$$
\begin{equation*}
\mathcal{E}(N):=\max _{0 \leq n \leq N} \max _{1 \leq i \leq d}\left|Y_{i}^{n}-y_{i}\left(t^{n}\right)\right| . \tag{12}
\end{equation*}
$$

Compute the error (8) for two different natural numbers $M_{1}<M_{2}$, in order to compute the approximating order convergence for M_{1}, M_{2}, which is defined as

$$
\begin{equation*}
p\left(M_{1}, M_{2}\right)=\frac{\ln \left(\frac{\mathcal{E}\left(M_{2}\right)}{\mathcal{E}\left(M_{1}\right)}\right)}{\ln \left(\frac{M_{1}}{M_{2}}\right)} . \tag{13}
\end{equation*}
$$

Conclude that $p\left(M_{1}, M_{2}\right) \approx k$.

Hint

The errors for $M=20$ and $M=40$, are
Case 1

$$
\begin{aligned}
& \mathcal{E}(20)=0.00683023 \\
& \mathcal{E}(40)=0.00169556
\end{aligned}
$$

Case 2

$$
\begin{aligned}
\mathcal{E}(20) & =4.26925802 e-04 \\
\mathcal{E}(40) & =5.35211044 e-05
\end{aligned}
$$

Case 3

$$
\begin{aligned}
\mathcal{E}(20) & =3.25498660 e-05 \\
\mathcal{E}(40) & =2.08844545 e-06
\end{aligned}
$$

