Numerical approximation of an ODEs by implicit Euler

Christos Pervolianakis Institute of Mathematics and Computer Science, University of Jena, 07743, Jena, Germany christos.pervolianakis@uni-jena.de

Description of the problem

We seek function $y : [a, b] \to \mathbb{R}$ to be the solution of initial value problem

$$y'(t) = f(t, y(t)), t \in [a, b],$$
 (1)
 $y(a) = y_0,$ (2)

where the function $f : [a, b] \times \mathbb{R} \to \mathbb{R}$, the real numbers a, b with a < b and the $y_0 \in \mathbb{R}$, are given.

Implicit Euler method

Given a natural number M, we recall a uniform partition of [a, b] with mesh size $h = \frac{b-a}{M}$ and nodes the points $t^n = a + nh$, for n = 0, ..., M. The implicit Euler, produces the approximation $Y^n \in \mathbb{R}$ of $y(t^n)$ from

$$Y^{n} = Y^{n-1} + h f(t^{n}, Y^{n}), \quad n = 1, \dots, M,$$
(3)

$$Y^0 = y_0. (4)$$

Exercise

Write a program that computes the approximations of implicit Euler $\{Y^n\}_{n=0}^M$ for the initial value problem,

$$y'(t) = e^{-y(t)}, \quad t \in [0, 5],$$
(5)

$$y(0) = 1.$$
 (6)

The exact solution of (5)-(6) is $y(t) = \ln(t+e)$, $t \in [0,5]$, $t \in [0,1]$. In order to check your program, compute the order of convergence for a given M, which is given from

$$\mathcal{E}(M) := \max_{0 \le n \le M} |Y^n - y(t^n)|.$$
(7)

Compute the error (7) for two different natural numbers $M_1 < M_2$, and compute the experimental order of convergence with M_1, M_2 , which is given by

$$p(M_1, M_2) = \frac{\ln\left(\frac{\mathcal{E}(M_2)}{\mathcal{E}(M_1)}\right)}{\ln\left(\frac{M_1}{M_2}\right)}.$$
(8)

See that $p(M_1, M_2) \approx 1$.

Hint

For every n = 1, ..., M, the Y^n is the solution of a non-linear equation. Thus, one way to approximate it, is the Newton method.

Newton Method

The Newton method gives approximations of the real root of a function $g(x), x \in \mathbb{R}$, for which the derivative g'(x) is known. The approximations are

$$\begin{aligned} x^{(l)} &= x^{(l-1)} - \frac{g(x^{(l-1)})}{g'(x^{(l-1)})}, \quad l \ge 0, \\ x^{(0)} &= x_0, \end{aligned}$$
(9)

with $x_0 \in \mathbb{R}$ an initial approximation of the root.

Implementation of Newton method to (3)-(4)

We want to approximate the solution of (3). Define $x := Y^n$. Then,

$$x - Y^{n-1} - h e^{-x} = 0. (10)$$

Thus, $g(x) := x - Y^{n-1} - h e^{-x}$, $x \in \mathbb{R}$. For initial condition, we get $x_0 = Y^{n-1}$, where Y^{n-1} the approximation on the previous time step t^{n-1} . In every step of implicit Euler method, Y^n is approximated (Newton method approximate Y^n) with L iterations of Newton method in view of (9). Then we set $Y^n := x^L$. Compactly,

For n = 1, ..., M, Step 1: Set $x_0 := Y^{n-1}$ Step 2: For l = 1, ..., L, we compute

$$x^{(l)} = x^{(l-1)} - \frac{g(x^{(l-1)})}{g'(x^{(l-1)})}$$
$$x^{(0)} = Y^{n-1}.$$

Step 3: Set $Y^n := x^{(L)}$.