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Two-level approach - More generations Larger population
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Case Study: Spindle Assembly Checkpoint Hand-Crafted Reaction Network
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artificial evolution to find reactions improving
checkpoint performance, hinting at further
biological mechanisms to be explored in .-
experiments. Shown on the right are the four ..
modes of behaviour of the model: in phase IV
the concentration of APCCdc20 is supposed to
rise. The improved model(red) outperforms the
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