
Iterated Mutual Observation with

Genetic Programming

Peter Dittrich(1), Thomas Kron(2), Christian Kuck(1),
Wolfgang Banzhaf(1)

(1)University of Dortmund (2)University of Hagen
Department of Computer Science Department of Sociology

D-44221 Dortmund D-58084 Hagen
Germany Germany

ls11-www.cs.uni-dortmund.de www.fernuni-hagen.de/SOZ/SOZ2/Kron

Abstract

This paper introduces a simple model of interacting agents that learn to
predict each other. For learning to predict the other’s intended action we
apply genetic programming. The strategy of an agent is rational and fixed. It
does not change like in classical iterated prisoners dilemma models. Further-
more the number of actions an agent can choose from is infinite. Preliminary
simulation results are presented. They show that by varying the population
size of genetic programming, different learning characteristics can easily be
achieved, which lead to quite different communication patterns.

1 Introduction

Mutual observation is - next to influence and negotiation - a mechanism to promote
the formation of social structures (Schimank (2000): 207ff.). One may say that
mutual observation is the primary factor of producing social order without given
norms, rulers, or actors with rational intentions. By mutual observation the problem
of “double contingency” (Parsons 1937; Parsons 1968; Parsons 1971; Luhmann 1984;
Kron and Dittrich 2001) can be solved, that is to establish structures of mutual
expectations, to which the actors orientate mandatory: social structures as results
of unintended actions.

Mutual observation occurs if actors have “intention-interferences”, that means that
the actors are interdependent with regard to resources they are both interested in.
In such a situation before they strive for cooperation they often observe each other,
that is they tend to co-orientation and try to predict the other’s action in order to
select a most rational action.

1

This paper introduces a simple model of interacting agents that learn to predict
each other. For learning to predict the other’s intended action we apply genetic
programming (GP) (Koza 1992; Banzhaf, Nordin, Keller, and Francone 1998). The
strategy is fixed and does not change like in classical iterated prisoners dilemma
models (Lindgren and Nordahl 1994; Hofbauer and Sigmund 1998). The game
itself is also not changed over time (see, e.g., (Akiyama and Kaneko 2000) for a
dynamically changing game). Our model is similar to a model introduced by Taiji
and Ikegami (1999), but they use dynamical recognizers (Pollack 1991) instead of
genetic programming.

We built the model to tackle the following questions:

1. Evaluation of technology
Does GP provide a reasonable technique to model the ability of generalization
of an actor? What kind of beneficial properties posses GP? How should the
parameter be chosen? How fast does an actor learn? How do the evolved
programs look like?

2. Behavior of mutually observing agents
What kind of dynamic behaviors can appear when agents try to learn and
predict each other behavior and use this prediction to act optimally?

We do not give answers to these questions, here, but define the model and present
first simulation results.

2 Experimental Setup

The basic setting consists of two players (agents) and an environment (Fig. 1). A
turn (action cycle) consists of the following steps:

1. Update environment U
The environment is updated. We will consider two simple variants.

(a) The environment is set to a constant value, U = 0.5.

(b) The environment is set to a random value, U = randReal(0, 1).

2. Predict other player
Both players use their generalizer to predict the action of the other player.
This is denoted by

B′ = fA(U), A′ = fB(U). (1)

2

���������� ����

��
��
��
��

�
�
�
�

U

B’

AStrategie

Generalizer
(GP)

Memory

Payoff

Environment

A’

B

Generalizer
(GP)

Memory

Strategie

Agent A Agent B

Figure 1: Basic setup with two players. An arrow represents a scalar value between
0 and 1. The memory of player A or B stores environment-action pairs (U,B) or
(U,A), respectively. A memory is implemented as a table.

3. Chose action (activate strategy)
Both players activate their strategy to compute their action. The strategy
takes the current state of the environment and prediction of the other player
as its inputs. The action is chosen such that the expected payoff would be
optimal if the prediction of the other agent’s behavior is correct. Because
here we are using a simple environment, there is always only one such optimal
action.

4. Calculate payoff
The payoff is calculated and logged for analysis. There is no feedback of
the payoff because the strategy should not be learned here. We assume an
“optimal” strategy (see below).

5. Update memory
The players store the action of the other player and the environment status
in their memory. Note that in this simple model only the action of the other
player is stored.

6. Update generalizer (activate GP system)
Both player run their GP system to generate new prediction functions fA and
fB, respectively. The GP system uses the most recent m memory entries as
fitness cases. We call m memory size.

3

The payoff function hA for agent A is defined as

hA(A,B,U) =

∫ A+r

A−r

{
g(U, x)dx if |x − B| > r,

σg(U, x)dx otherwise,
(2)

where A ∈ [0, 1] is the action performed by Agent A, B ∈ [0, 1] is the action
performed by Agent B, and U ∈ [0, 1] is the current state of the environment. There
are two constant parameters: the synergy factor σ and the payoff radius r. A
synergy factor greater 1 means that both players get higher reward if they perform
the same action. If σ is smaller than 1, the same action of both players would cause
a reduction of the payoff by a factor of σ, roughly speaking. The kernal function
g : [0, 1] → R is an auxiliary function and defined here as

g(U, x) =
0.01

(U − x)2 − 0.01
. (3)

Figure 2 shows a plot of the kernal function for environment U = 0.5.

To illustrate how the payoff is calculated an example is given: Assume both agents
perform the same action A = B and the environment is also U = 0.5 then the payoff
for Agent A becomes:

hA(A,B,U) =

∫ A+r

A−r

σg(0.5, x)dx (4)

This is exactly the area underneath the curve shown in Fig. 2 from A − r to A + r
multiplied by σ. If both agents perform totally different actions such that |A−B| >
r, their payoff is equal to the corresponding area without multiplication by σ. When
the agents perform similar actions, only the “overlapping” area is multiplied by σ.
For σ = 0.5 this results in sharing the payoff stemming from the “overlapping” area.

3 Results

In this section we show preliminary simulation results for the most simple case,
namely a static environment.

3.1 Experiments with Static Environment (U = 0.5)

For these experiments the environment does not change. Furthermore, if both agents
perform the same (or a similar) action, the payoff will be narrowed. This is achieved
by setting the synergy parameter σ to 0.05. The parameters are set as:

name value note
U 0.5 environment
r 0.05 payoff radius
σ 0.05 synergy factor
m 10 memory size

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.25 0 0.25 0.5 0.75 1 1.25

kernal function g for U = 0.5

x

g
(0

.5
,x

)

Figure 2: Kernal function g(U, x) = 0.01/((U−x)2−0.01) for environment U = 0.5.

Figure 3 shows the action sequence of three experiments where the population size of
the GP system is set to M = 20, 40, 100, respectively. Note that the population size
M is a parameter of the GP system. M specifies how many individuals (programs
representing fA or fB, respectively) are stored at once during the evolutionary search
process in order to find a good prediction function. The population size M should
not be confused with the number of agents.

The population size influences the prediction ability of the agents. A small popu-
lation size does not allow to evolve a good prediction function. For M = 20 (bad
prediction ability) the actions are fluctuating strongly. For M = 100 (good predic-
tion ability) the situation stabilizes. For an intermediate population size M = 40
(fair prediction ability) we observe an intermittent behavior. Phases of “stable co-
operation” are disrupted by strong fluctuations.

In the simulation shown in Fig. 3 for M = 40 the unstable phase starting at Turn
56 is caused by a wrong prediction of Agent A. The prediction in addition to the
action sequence is shown in Fig. 4.

Figure 5 shows the time evolution of the obtained payoff of one agent for different
population sizes of the GP system. We can see that the average payoff increases
with increasing population size. So, better learning and generalization ability leads
to higher payoff. This observation is also supported by Fig. 6. The figure compares
the payoff obtained by Agent A and B. During a stable phase of cooperation both
agents receive high payoff; but not necessarily the same quantity.

3.2 Visualization of the Generalizer

The current state of agent A is represented by its memory and the generalization
function fA. To visualize this state we can just plot function fA over the environment

5

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0 10 20 30 40 50 60 70 80 90 100

action of A
action of B

fixed environment at U = 0.5, M = 20

time (turn)

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0 10 20 30 40 50 60 70 80 90 100

action of A
action of B

fixed environment at U = 0.5, M = 40

time (turn)

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0 10 20 30 40 50 60 70 80 90 100

action of A
action of B

fixed environment at U = 0.5, M = 100

time (turn)

Figure 3: Action of player A and B over time. GP system population size M =
20, 40, 100. Parameters: Environment U = 0.5, memory size m = 10, synergy
factor σ = 0.05, payoff radius r = 0.05.

6

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 10 20 30 40 50 60 70 80 90 100

action of A
action of B

prediction of B

fixed environment at U = 0.5, M = 40

time (turn)

Figure 4: Prediction of Agent B is shown in addition to the action sequence of Agent
A and B. Same run as in Fig. 3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

M=20
M=40

M=100

p
ay

off
h

A
(A

,B
,U

) payoff of Agent A

time (turn)

Figure 5: Evolution of the payoff for population size M = 20, 40, 100 of the genetic
programming system. Same runs as in Fig. 3.

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

payoff for A
payoff for B

pa
yo

ff

payoff for Agent A and B, M = 40

time (turn)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

payoff for A
payoff for B

pa
yo

ff

payoff for Agent A and B, M = 100

time (turn)

Figure 6: Evolution of the payoff for Agent A and B. Same runs as in Fig. 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

environment U

pr
ed

ic
te

d
ac

ti
on

f A
(U

)

Figure 7: Example for the current state of the prediction function of an agent. The
function predicts the action of B for a given environment state U . Example take
from Agent A after the first turn in run “fullpred80”.

U . Figure 7 shows an example. Note that in the simulations in this section the
environment does not change. So, only the function value for U = 0.5 is used in the
simulations.

8

4 Discussion

In this paper we have introduced a simple model of mutually observing agents and
presented first simulation results. Form these preliminary results we can conclude
that quite complex interaction dynamics can appear depending on the characteristics
of the cognitive component. This means that the cognitive model of an agent has a
strong bearing on the resulting dynamics. In our simulation the learning behavior
is conditional upon the population size of the GP system. The better the learning
of the future actions, the more easier social order will emerge.

GP has been found useful as a learning component because of its flexibility and its
conceptual structure. The output of GP is machine code or a computer program that
can be compiled. Thus execution of the learned function is highly efficient. The price
for flexibility is that the learning process requires relatively1 large computational
resources. At any time step the GP system resumes the learning of the situation, that
is from a technical perspective that the population of the GP system is initialized
randomly each time in Step 6 of an action cycle. So, an agent interprets his memory
contents each time independently from how he has interpreted the memory contents
before. This can lead to a totally different interpretation (and thus prediction) from
one turn to the next and destabilizes the order. We can avoid this problem by
keeping the population of the GP system, instead of reinitializing it in each turn,
and evolving the population in Step 6 only for some generations using the updated
memory.

The complex behavior for intermediate prediction ability (M = 40, Fig. 3, middle)
might be related to the punctuated equilibrium phenomenon as introduced by Gould
and Eldredge (1977). It would be interesting for future investigations to look at
the distribution of the length of ordered (cooperative) and disordered phases and
analyze their scaling laws (Bak and Sneppen 1993). In future work we would also
like to compare our model with the results by Taiji and Ikegami (1999) especially
by adopting their context space plots.

Acknowledgement

We are grateful to Gudrun Hilles, Uwe Schimank, and Andre Skusa for helpful
comments. The project is funded by the German Research Foundation (DFG),
grant Ba 1042/7-1 and Schi 553/1-1.

References

Akiyama, E. and R. Kaneko (2000). Dynamical systems game theory and dynamics of
games. Physica D 147 (3-4), 221–258.

Bak, P. and K. Sneppen (1993). Punctuated equilibrium and criticality in a simple model
of evolution. Phys. Rev. Lett. 71, 4083–6.

1Compared to artificial neural networks or classical statistical methods.

9

Banzhaf, W., P. Nordin, R. E. Keller, and F. D. Francone (1998). Genetic Programming
- An Introduction. San Francisco and Heidelberg: Morgan Kaufmann and dpunkt Verlag.

Gould, S. J. and N. Eldredge (1977). Punctuated equilibria: the tempo and mode of
evolution reconsidered. Paleobiology 3, 115–151.

Hofbauer, J. and K. Sigmund (1998). Evolutionary Games and Population Dynamics.
Cambridge, UK: Cambridge University Press.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Natural
Selection. Cambridge, MA, USA: MIT Press.

Kron, T. and P. Dittrich (2001). A framework for building agents for social simulation.
Zeitschrift für Soziologie submitted, in German.

Lindgren, K. and M. G. Nordahl (1994). Evolutionary dynamics of spatial games. Physica
D 75 (1-3), 292–309.

Luhmann, N. (1984). Soziale Systeme. Frankfurt a.M.: Suhrkamp.

Parsons, T. (1937). The structure of social action. New York, NY.

Parsons, T. (1968). Interaction. In D. L. Sills (Ed.), International Encyclopedia of the
Social Sciences, Volume 7, London, New York, pp. 429–441.

Parsons, T. (1971). The system of modern society. Englewood Cliffs.

Pollack, J. B. (1991). The induction of dynamical recognizers. Machine Learning 7,
227–252.

Schimank, U. (2000). Handeln und Strukturen. Einführung in die akteurtheoretische
Soziologie. Weinheim: Juventa.

Taiji, M. and T. Ikegami (1999). Dynamics of internal models in game players. Physica
D 134 (2), 253–266.

10

