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Abstract. Since sociology is seeking mechanisms for explaining social
phenomena, we discuss in this paper, whether and how chemical organi-
zation theory together with the metaphor of a chemical reaction network
can be employed as formal mechanisms to describe social and economic
systems. A reaction network is a quite general concept, which allows to
model a variety of dynamical systems. Further more, a set of powerful
tools can infer potential dynamical properties from the networks struc-
ture. Using an economical toy example generated from United Kingdom
input-output analytical tables (1995), we demonstrate how chemical or-
ganization theory can be applied and can give insight into the structure
of the resulting model. Chemical organization theory allows identifying
an overlapping hierarchy of important sub-systems in these networks. 1

1 Introduction

Sociology is seeking mechanisms that explain social phenomena [1]. Mechanisms
can be described in various ways, ranging from rich linguistic descriptions to
precise mathematical formulas [2]. In general it is desirable to obtain a formal
description of a social mechanism. However, there is the danger to loose impor-
tant details of the social phenomenon during the process of abstraction [3] or
to arrive at a more complex model than actually required to explain the des-
ignated phenomenon. Therefore it is necessary to posses a rich toolbox, which
offers different mechanisms for different levels of abstraction.

Here we discuss one specific but quite powerful metaphor, the chemical reac-
tion network, which can be used to describe a large variety of phenomena from
fields of study like economy and sociology. Furthermore, we describe chemical
organization theory [4, 5], which allows identifying an overlapping hierarchy of
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important sub-systems in these networks. These sub-systems are candidates for
self-sustaining (maybe even autopoietic) systems.

The techniques described here are not only useful to model social systems.
In the same way as we build social models, we can use these techniques to build
and analyze multi-agent systems (MAS), which is the fundamental philosophy
of Socionics [6]

2 Chemical Organization Theory

The basic idea of chemical organization theory is to identify hierarchical struc-
tures in terms of chemical organizations, which are closed and self-maintaining
sets of elements, e.g., molecules, decisions, communications, or products. These
organizations can be visualized using a Hasse-diagram (as shown in Fig. 1, right),
which provides a powerful graphical representation of the network’s inherent
structure.

The networks investigated in this study are equivalent to catalytic flow sys-
tems, which are reactions systems where all molecules act only as catalysts and
where all molecules decay at a positive rate. Therefore, we require only a sim-
plified version of the chemical organization theory. In particular, we can exclude
mass conservation and the complicated concept of mass-maintenance. The re-
quired theory can be explained in a quite compact way. In order to explain the
theory, we will stick to its terminology. So, we call the elements of a system
molecules and the relation among elements reactions. Molecules and reactions
together form a reaction network as exemplified by Fig. 1, left. Let us first define
clearly, how the systems look like that we will analyze. We call these systems
catalytic algebraic chemistries. The term “algebraic” is used, since a notion of
dynamics is missing, and the term “catalytic” is used, since all reactions are
assumed to be fully catalytic.

A catalytic algebraic chemistry is a set of molecules together with a set of
reaction rules. A reaction rule is just a pair of sets of molecules. A reaction
consists of a left hand side and a right hand side. A reaction is interpreted in the
following way: The left hand side denotes a set of molecules that are sufficient
to produce the molecules on the right hand side. Further more, if the molecules
of the left hand side are present in a reactor, then all molecules on the right
hand side are produced by this reaction (at least at a low rate). Since we assume
a catalytic flow system, the molecules on the left hand side are not used up
when the molecules on the right hand side are produced. Molecules vanish only
through a general dilution flow, which is equivalent to a spontaneous decay. In
the economical systems we analyze here, a molecule like a denotes a product.

2.1 Chemical Organization Theory for Catalytic Flow Systems

In this section, we describe the basic concepts of a simplified version of the
chemical organization theory, which is sufficient for the economical and political
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Fig. 1. Example reaction network (left) and its lattice of organizations (right). An
arrow denotes a catalytic reaction where all educts are catalysts.

systems investigated here. The simplified version is limited to so called cat-
alytic flow systems, which are reaction systems where all molecules act always
as catalysts and all molecules decay spontaneously. Despite of these limiting as-
sumptions, the simplified version of the theory posses already a wide application
range, as exemplified by our investigations of the political system and economic
networks. Furthermore, various systems in Biology and related disciplines can
be treated with the simplified theory, cf., hypercycle, replicator equation, auto-
catalytic networks.

The reaction system is given as a catalytic algebraic chemistry (M,R), where
M is a set of molecules and R is a set of reactions of the form (A ⇒ B) ∈ R,
were A and B are sets of molecules, A, B ∈ M.

The set of reaction rules R contains all reaction rules of the model. A reaction
rule possesses the form A ⇒ B, where A is the set of molecules on the left hand
side and B is the set of molecules on the right hand side. So, the reaction rule
a+b ⇒ c can be written as A ⇒ B with A = {a, b} and B = {c}. Note that here
it is sufficient that A and B are sets and not multisets, because we deal solely
with catalytic flow systems.

Example (catalytic algebraic chemistry): The pair (M,R) is a catalytic al-
gebraic chemistry with the set of molecules M = {a, b, c} and the set of reaction
rules R = {a+b ⇒ c, a ⇒ a, a+c ⇒ c, b+c ⇒ b+c, b ⇒ b} (Fig. 1). The double
arrow ⇒ denotes a catalytic reaction, ie. A ⇒ B is equivalent to the chemical
reaction A → A + B.

In order to illustrate the meaning of this reaction system, we give an example
of a dynamical process that is governed by such a network: Imagine that the
process takes place inside a reaction vessel or reactor. Assume that the reactor
contains instances of the molecules, such that the concentrations of the molecules
are: [a] = 20, [b] = 5, [c] = 4. This concentration vector can be interpreted in the
following way: there are 20 units of a, 6 units of b, and 4 units of c present in
the reactor. The reactor represents an instance of our reaction system (catalytic
algebraic chemistry). Now we can simulate the dynamics by applying the reaction
rules to the reactor. E.g., we can apply rule a+b ⇒ c, which increases the amount
of c by one. Note that it does not decrease a nor b, since a and b both act as
catalysts (we require that all reactions are fully catalytic). Because we assume



here catalytic flow systems, every molecule is effected by a dilution flow, which is
equivalent to the fact that every molecule decays spontaneously. This decay can
be simply simulated by choosing randomly a molecule and decreasing its number
by one. This can be done by randomly choosing a molecule proportional to its
concentration, e.g., the probability to choose a is 19/29. Destroying a we arrive
at [a] = 19, [b] = 5, [c] = 5. How this update is performed, has to be defined in
more detail in order to get a precise description of the dynamics. E.g., we may
define a reactor size, i.e. a maximum number of molecules in order to prevent
unlimited growth.

The set of all possible subsets is called powerset. Instead of writing A ⊆ M

we can write A ∈ P(M), where P(M) denotes the set of all possible sets that
contain elements from M.

Example: P(M) = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {c, b}, {a, b, c}}. The set
{}, which does not contain any element, is called the empty set. P() is an operator
that take a set as input and returns a set of all possible subsets of that set,
including the set itself and the empty set.

Let us notice at that point that a set of molecules represents already a large
amount of different states our system that we intend to model can be in. So,
taking a set of molecule to describe the current state of a system is a strong
abstraction. This level of abstraction does not care, how many copies of molecule
a are present, nor does it care about the spatial distribution of those copies,
and so on. Despite the high level of abstraction, the number of possible sets is
still large. The number of possible sets grows exponentially with the number of
possible molecules: |P(M)| = 2|M|, where |M| denotes the number of elements
in the set M. For example for |M| = 20 different molecules there are about 1
million different sets, and for |M| = 21 different molecules there are about 2
million different sets. Some sets are more important than others. Why? Because
we can observe some sets more likely than others. The reason for this is that the
system becomes stable more likely when these molecules are present. In order
to identify and describe these important sets, we introduce specific conditions,
properties, or constraints. These constraints will reduce the set of all possible
sets, leaving a set of sets that can be regarded as a representation of the systems
organizational structure.

2.2 Closed Sets

The first constraint that we introduce is the (algebraic) closure. Given a set of
molecules C that is closed, the closure assures that reactions among molecules
in C produce only molecules in C. So, a closed set contains all molecules that
can be produced by reactions among those molecules.

Definition 1 (closed set). A set of molecules C ⊆ M is closed, if for all
reactions (A ⇒ B) ∈ R, with A is a subset of C, B is also a subset of C.

Example (closed sets): In our example the closed sets are: {}, {a}, {b}, {c},
{a, c}, {c, b}, {a, b, c}. The set {a, b} is not closed, since a and b produce c by
the reaction a + b ⇒ c.



Given a set of molecules A, we can always generate its closure. The closure
of A is defined as the smallest closed set that contains A. In order to generate
the closure of a set A, we simply add one by one all the molecules produced by
reactions among elements from A until we cannot add new molecules anymore.
A set A is always contained in its closure. With the following definition we have
defined an operator GCL : P(M) → P(M), which takes a set of molecules as
input and returns a closed set of molecules.

Definition 2 (generate closed set). Given a set of molecules A, we define
GCL(A) as the smallest closed set that contains A. We say that A generates the
closed set C = GCL(A). We call C the closure of A.

Example (generate closed set): GCL({a, b}) = {a, b, c}, because c is produced
by reaction a + b ⇒ c. Further examples are: GCL({a}) = a, GCL({}) = {}.
Note that the empty set {} is not necessarily always closed. If there is a reaction
rule where the left hand side is empty, e.g., (⇒ c) representing an inflow of c,
then the empty set is not closed.

The closure implies a union operator and an intersection operator on closed
sets. The requirement for a well defined union on closed sets is that the result of
the union is closed, too. Imagine that we take two closed sets {a} and {b} and
compute their normal set union {a} ∪ {b} = {a, b}. Now, {a, b} is not closed,
because a + b ⇒ c. So, the normal set union does not fulfil our requirement.
Using the generate function, we can easily define a union and an intersection
on closed sets. Together with the set of all closed sets, we obtain the lattice of
closed sets:

Definition 3 (union and intersection of closed sets). Given two closed
sets A and B, we can define the union and intersection of closed sets by

A ⊔CL B := GCL(A ∪ B), A ⊓CL B := GCL(A ∩ B). (1)

The closed set union of two closed sets A and B can be easily calculated by
first putting all elements of A and b together and then generating the closed
set. Example: Given two closed sets A = {a} and B = {b}, we would like
to calculate their closed set union A ⊔CL B. First we compute the normal set
union, A ∪ B = {a, b} and then apply the generate closed set operator GCL to
this union, which generates the closed set {a, b, c}. So, A⊔CLB = GCL({a}∪{b})
= GCL({a, b}) = {a, b, c}.

The set of all closed sets OCL form a lattice: 〈OCL,⊔CL,⊓CL〉, which is a
common algebraic structure (a poset in which any two elements have a greatest
lower bound and a least upper bound). The property of closure is important,
because the closed set represents the largest possible set that can be reached
from a given set of molecules. Furthermore a set that is closed cannot generate
new molecules and is in that sense more stable than a set that is not closed.

It is not important here to go into detail what an (algebraic) lattice is. It is
sufficient to know the following: A lattice is a mathematical concept. It is defined
by a set (here the set of all closed sets), and two operators that map a pair of



elements to an element (here the closed set union and intersection, which map
two closed sets to a set). When the lattice is not too big, we can draw it nicely
as a Hasse diagram (Fig. 1, right). The biggest element is at the top (here the
largest closed set, which is always the set containing all possible molecules) and
the smallest element is at the bottom (here the smallest closed set). We can also
read from the Hasse diagram, how the union and intersection work. A union
of two sets leads to the smallest set that is above both sets. An intersection
leads to the largest set below the two sets. As can be seen in the Hasse diagram,
union and intersection are somehow symmetric. The Hasse diagram implies also
a partial order, i.e. a set is smaller than another set, if it is below it.

In summary, given a reaction system by a set of molecules and a set of reaction
rules, we can now find all closed sets and display the lattice of closed sets as a
Hasse diagram, which provides already information concerning the structure of
the reaction system. The set of closed sets is nearly always smaller than the
set of all sets. In our example we lost just one set ({ a, b}) by introducing
the constraint of closure. Nevertheless, in other systems we usually reduce the
number of sets by a much higher rate.

2.3 Self-maintaining Sets

In the same way as we have introduced the closure, we will now introduce the
constraint of self-maintenance, and later the organization, which is a closed and
self-maintaining set. Note that the definition of self-maintenance holds only for
catalytic flow systems. For more general reaction systems, which are not con-
sidered in this paper, the definition is more complex. Given a set of molecules
C that is self-maintaining, the constraint of self-maintenance assures that every
molecule of C is produced by at least one reaction among molecules in C. So, a
self-maintaining set can produce all molecules inside. It is not necessarily closed.

Definition 4 (self-maintaining set). A set of molecules C ⊆ M is self-
maintaining, if for all molecules a ∈ C, there exists a reaction (A ⇒ B) ∈ R,
with A ⊆ C and a ∈ B.

Example (self-maintaining sets): In our example the self-maintaining sets are:
{}, {a}, {b}, {a, b}, {b, c}, {a, b, c}. Note that the set {a, b} is self-maintaining
but not closed, since a and b produce a, b, and c.

Given a set of molecules A, we can always generate a self-maintaining set
that is contained in A. The self-maintaining set generated by A is defined as
the biggest self-maintaining set contained in A. In order to generate the self-
maintaining set from A, we simply remove one by one all the molecules not
produced by reactions among elements from A until we cannot remove molecules
anymore. The self-maintaining set generated by A is always contained in A. The
self-maintaining set generated by A is be equal to A, iff A is self-maintaining.

Definition 5. (self-maintaining set) Given a set of molecules A, we define
GSM (A) as the biggest self-maintaining set contained in A. We say that A gen-
erates the self-maintaining set C = GSM (A).



With this definition we have defined another operator of the form GSM :
P(M) → P(M), which takes a set of molecules as input and returns the associ-
ated self-maintaining set. Example (generate self-maintaining set): GSM ({c}) =
{}, because there is no reaction that can produce c by using only c. Further
examples are: GSM ({a}) = a, GSM ({a, c}) = {a}. Note that the empty set {}
is always self-maintaining. The operator GSM implies a union operator and an
intersection operator on self-maintaining sets in the same way as the closure did.

Definition 6 (union and intersection of self-maintaining sets). Given
two self-maintaining sets A and B. The self-maintaining set generated by their
union and intersection are defined as:

A ⊔SM B := GSM (A ∪ B), A ⊔SM B := GSM(A ∩ B). (2)

So, the self-maintaining set intersection of two self-maintaining sets A and
B can be easily calculated by first taking only those elements that appear in A

and B together and then generating the self-maintaining set by removing the
molecules that are not produced anymore. Example: A = {a, c} and B = {b, c}
are self-maintaining sets of molecules. The intersection is A ∩ B = {c}, which
generates the self-maintaining set {}. So, A ⊓SM B = GSM ({a, c} ∩ {b, c}) =
GSM ({c}) = {}.

Again, the set of all self-maintaining sets OSM together with the self-maintaining
set union ⊔SM , and the self-maintaining set intersection ⊓SM form an algebraic
lattice. We can now display the set of all self-maintaining sets by a Hasse dia-
gram.

2.4 Chemical Organizations as Closed and Self-maintaining Sets

Now we put both constraints together in order to define the central concept of
chemical organization theory: an organization. Note that the term “organization”
has been chosen for historical reasons. It is a technical term denoting a math-
ematical object and should not be confused with the term found in economics
or the social sciences; in particular there is no relation to Luhmann’s concept of
an organization. A chemical organization is more related to the concept of an
autopoietic system.

Definition 7 (organization). An organization is a closed and self-maintaining
set of molecules.

Given an organization O ⊆ M, we know that every molecule of O is produced
by at least one reaction among molecules in O and all possible products that
can appear by reactions among molecules of O are also contained in O. Example
(organization): In our example the organization are: {}, {a}, {b}, {b, c}, {a, b, c}.

Given a set of molecules A, we can always generate an organization. Here,
we define this organization as the largest organization that can be reached from
the set A. In order to generate this organization, we first generate the closure
of A, and then generate the self-maintaining set of this closure. So, in order



to generate an organization from a set A, we simply add one by one all the
molecules produced by reactions among elements from A until we cannot add new
molecules anymore. Then we remove one by one all the molecules not produced
by reactions among elements from A until we cannot remove molecules anymore.
The generated organization is unique, which follows directly from the uniqueness
of the closure and generate self-maintaining set operator.

Definition 8 (generate organization). Given a set of molecules A, we define
G(A) as the biggest organization that can be reached from A. Formally, G(A) :=
GSM (GCL(A)). We say that A generates the organization O = G(A).

Example (generate organization): G({a, b}) = {a, b, c}, because there is no
reaction that can produce b by using only b. Further examples are: G({c}) = {},
G({a}) = a, G({a, c}) = {a}. As before, the operator Gimplies a union operator
and an intersection operator on organizations in the same way as the closure
did.

Definition 9 (union and intersection of organizations). Given two orga-
nizations A and B. The organization union and intersection is defined as the
organization generated by their set union and intersection, respectively:

A ⊔ B := G(A ∪ B), A ⊓ B := G(A ∩ B). (3)

Example: A = {a} and B = {b} are organizations. A⊔B = {a, b, c}. A⊓B =
{}.

The set of all organizations O (of a catalytic algebraic chemistry) together
with the organization union ⊔ , and the organization intersection ⊓ form an
algebraic lattice 〈O,⊔,⊓〉.

We can now display the set of all organization by a Hasse diagram, which we
may call the organizational structure of the reaction system (Fig. 1, right). An
organization represents an important combination of molecular species, namely
those that are likely to be observed in a reaction vessel on the long run. A set
of molecules that is not closed or not self-maintaining would not exist for long,
because new molecules can appear or some molecules would vanish, respectively.

2.5 Dynamics

So far we have analyzed the reaction system statically. This means that time has
not played any role in our analysis. However, the result of the static analysis has
strong implications for the potential dynamics of the reaction system. One such
implication is expressed by a theorem that relates fixed points (stationary states)
to organizations, and by doing so, underlines the relevancy of organizations. The
theorem says that, given the dynamics of the reaction system by a continuous
ordinary differential equation (ODE) of a form that is commonly used to de-
scribe the dynamics of reaction systems and that obeys the rules given by the
reaction system, then every fixed point of this ODE is an instance of an organi-
zation. This implies that we can only have a stationary state with exactly those



Fig. 2. Upper left section of a 138x138 table of an product vs. product IO-model, 1995,
UK. Unit: basic pricesin Mio. GBP. For example an entry can be interpreted in the
following way: Meat processing buys for 2928 Mio GBP Agriculture products, but no
Forestry products, 2 Mio GBP Fishing products, etc. Here, “0” denotes that the entry
is below 1 Mio GBP. Source: [7]

molecules that form an organization. It is not possible to find a stationary state
with a combination of molecules that are not an organization. And this implies
further that only organizations are candidates for autopoietic systems. However,
an organization is not necessarily an autopoietic system, since a stationary state
is not necessarily stable. In an instable stationary state the system can reside
for ever, as in a stable stationary state, but a tiny perturbation would cause the
system to move away from this state towards a different (stable) attractor.

3 Application to Economical Systems

In this section we sketch how a reaction network model can be derived for an
economical system and how chemical organization theory can be applied to such
models. Note that this section is preliminary and should only illustrate how the
theory might be applied. The data we used is not sufficient to draw any conclu-
sion concerning a real economical system. However, the toy model we generate
demonstrates that our theory can uncover interesting “hidden” structures that
are not obvious when looking at the network.

3.1 Deriving a Toy Model from an Input/Output Table

We exemplify our approach by investigating an input-output model of UK’s
industry in 1995 [7]. The model consists of 138 products and a 138×138 IO table
that describes which product is used to produce which product. Each product is
an aggregate of a large amount of elementary concrete products of a specific class.
Furthermore, some products represent also institutions that consume products.
When we say “product” in the following, we refer to one of these 138 product
aggregates. Figure 2 shows the upper left 10 × 10 section of the 138 × 138 IO
table. The flow from one product to another product is measured in Mio GBP
basic costs. The full table is available from Ref. [7].



Before we derive a reaction from the IO Table we have to specify our as-
sumptions: We assume that a positive entry (> 0) at position (x, y) in the IO
table means that product x is used to make product y, because there is a flow
of money from y to x. Furthermore we assume, the higher the entry the more
important is x to make y. An important question at that point remains: is x

required to make y, is x sufficient to make y, or even both? Since the table does
not provide information to decide these questions, we have to make some further
preliminary assumptions at that point. These assumptions can be relaxed later,
when additional information is available. The name of a product surely provides
a hint concerning the required products to produce it. But taking just the prod-
uct’s name to infer which kind of input is sufficient to make that product appears
too speculative to us, since we omit this information here.

There are two fundamental ways, how to derive reaction rules from the table.
Let us assume that x1, x2, . . . , xn denote all products that receive money from
y. This means that x1, x2, . . . , xn are somehow used for making product y.
The two methods differ in whether we assume that all products x1, x2, . . . ,
xn are required to make y, or whether a single product is sufficient. Note that
given only the IO table as data, it does not make much sense to consider an
intermediate case, e.g., where some xi are required to make y, because we do
not have information which one to take.

AND-Method: The AND-Method assumes that all products x1, x2, . . . , xn

are required and sufficient to make y. Or in other words, if one of the products
x1, x2, . . . , xn is missing, product y can not be made, if there is no other rule.
Therefore we define for product y a reaction rule of the form

x1 + x2 + · · · + xn ⇒ y. (4)

Dynamically, this rule is interpreted in the following way: if product x1, x2, . . . ,
xn are produced, then y will be also produced sooner or later. Here is an example
of a reaction rule derived using the AND-method and a threshold of 5 Mio GBP:

Agriculture + Meat Processing + Fish and fruit processing + Oils and fats
⇒ Meat Processing

Note that every entry of the IO-table below the threshold is set to zero and
thus the respective product relationship is not considered. After applying the
threshold, four products are left that receive money from Meat processing.

OR-Method: The OR-method assumes that each single product from x1,
x2, . . . , xn is sufficient to make y. This assumption implies reaction rules of the
form: x1 ⇒ y, x1 ⇒ y, . . . , xn ⇒ y. For the previous example we obtain instead
of one single rule the following four rules, which can be interpreted that one of
the four products is sufficient to create instances of Meat processing:

Agriculture ⇒ Meat processing, Meat Processing ⇒ Meat processing, Fish
and fruit processing ⇒ Meat processing, Oils and fats ⇒ Meat processing.

As said before, the pure IO table does not allow to decide which combination
of products is necessary and sufficient to produce a product. Looking at the
names of the products in the previous example, we can already see that neither
the OR-method nor the AND-method are fully satisfying. So, for a more detailed



	 Agriculture 

	 Forestry 

	 Fishing 

	 Coal extraction 

	 Oil and gas extraction 

	 Metal ores extraction 

	 Other mining and quarrying 

	 Meat processing 

	 Fish and fruit processing 

	 Oils and fats 

	 Dairy products 

	 Grain milling and starch 
	 Animal feed 

	 Bread, biscuits, etc 

	 Sugar 

	 Confectionery 

	 Other food products 

	 Alcoholic beverages 

	 Soft drinks and mineral waters 

	 Tobacco products 

	 Textile fibres 

	 Textile weaving 

	 Textile finishing 

	 Made-up textiles 

	 Carpets and rugs 

	 Other textiles 

	 Knitted goods 

	 Wearing apparel and fur products 

	 Leather goods 

	 Footwear 

	 Wood and wood products 

	 Pulp, paper and paperboard 

	 Paper and paperboard products 

	 Printing and publishing 

	 Coke ovens, refined petroleum & nuclear fuel 

	 Industrial gases and dyes 

	 Inorganic chemicals 

	 Organic chemicals 

	 Fertilisers 

	 Plastics & Synthetic resins etc 

	 Pesticides 

	 Paints, varnishes, printing ink etc 
	 Pharmaceuticals 

	 Soap and toilet preparations 

	 Other Chemical products 

	 Man-made fibres 

	 Rubber products 

	 Plastic products 

	 Glass and glass products 

	 Ceramic goods 

	 Structural clay products 

	 Cement, lime and plaster 

	 Articles of concrete, stone etc 

	 Iron and steel 

	 Non-ferrous metals 

	 Metal castings 

	 Structural metal products 

	 Metal boilers and radiators 

	 Metal forging, pressing, etc 

	 Cutlery, tools etc 

	 Other metal products 

	 Mechanical power equipment 

	 General purpose machinery 

	 Agricultural machinery 	 Machine tools 

	 Special purpose machinery 	 Weapons and ammunition 

	 Domestic appliances nec 

	 Office machinery & computers 

	 Electric motors and generators etc 

	 Insulated wire and cable 

	 Electrical equipment nec 

	 Electronic components 

	 Transmitters for TV, radio and phone 

	 Receivers for TV and radio 

	 Medical and precision instruments 

	 Motor vehicles 	 Shipbuilding and repair 

	 Other transport equipment 

	 Aircraft and spacecraft 

	 Furniture 

	 Jewellery and related products 

	 Sports goods and toys 

	 Miscellaneous manufacturing nec & recycling 

	 Electricity production and distribution 

	 Gas distribution 

	 Water supply 	 Construction 

	 Motor vehicle distribution and repair, automotive fuel retail 

	 Wholesale distribution 

	 Retail distribution 

	 Hotels, catering, pubs etc 

	 Railway transport 

	 Other land transport 	 Water transport 

	 Air Transport 

	 Ancillary Transport services 

	 Postal and courier services 

	 Telecommunications 

	 Banking and finance 

	 Insurance and pension funds (pt) 

	 Auxiliary financial services 

	 Owning and dealing in real estate 

	 Letting of dwellings 

	 Estate agent activities 

	 Renting of machinery etc 

	 Computer services 

	 Research and development (pt) 

	 Legal activities 

	 Accountancy services 

	 Market research, management consultancy 

	 Architectural activities and technical consultancy 

	 Advertising 

	 Other business services (pt) 

	 Public administration and defence (pt) 

	 Education (pt) 

	 Health and veterinary services 

	 Sewage and Sanitary services 

	 Membership organisations nec (pt) 

	 Recreational services (pt) 

	 Other service activities (pt) 

	 GG - Public administration & defence (115 pt) 

	 GG - Education (116 pt) 

	 GG - Health and veterinary services (117 pt) 

	 GG - Sewage and Sanitary services (119 pt) 

	 GG - Recreational services (121 pt) 

	 NPISHs - Insurance and pension funds (101 pt) 

	 NPISHs - Research and development (108 pt)  

	 NPISHs - Other business services (114 pt)  

	 NPISHs - Education (116 pt)  

	 NPISHs - Health and veterinary services (117 pt)  

	 NPISHs - Social work activities (118 pt)  

	 NPISHs - Membership organisations nec (120 pt)  

	 NPISHs - Recreational services (121 pt)  

	 NPISHs - Other service activities (122 pt)  

Fig. 3. Illustration of a network derived from an 138x138 product vs. product IO model
of UK’s industry, 1995. An edge represents a flow of currency, which must be above 6%
of the total amount of currency (sum of a column in Fig. 2). In this figure we assume
that if there is an edge from x to y, then x is required to produce y. (optimized 2-D
embedding using LEDA graphwin class).

investigation that aims at elucidating the structure of a particular industrial IO
system more detailed data will be required.

In this work we take the AND-method for deriving reaction rules, since we
believe it is more realistic than using the OR-method. Especially for more com-
plex products, such as cars, a combination of products is surely required to
make them. The OR-method would lead to a network where nearly everything
can be made from everything in a couple of steps – provided that the threshold
is small, thus leading to a network without a structure that can be detected by
the chemical organization theory.

Using the AND-method means that all inputs of a product are assumed to
be required and sufficient to make it. So there is one rule for each product. The
left hand side of this rule contains all inputs that are above a certain threshold.
For the analysis we used a relative threshold of 6%, which means that an input
is considered, if and only if it is higher than 6% of the sum of all inputs of this
product. For the purpose of demonstration this threshold is reasonable, but when
our method should be applied for concrete analysis, we recommend to carefully
study the impact of the threshold. For example, assume the following extreme
case: a product requires 100 other products, each contributing 1% to the total
input; the result will be no rule at all, or a rule that has no products on the left
hand side, which means that the product requires nothing to be produced.
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Fig. 4. Fraction of the lattice of organization of the network shown in Fig. 3 (UK
industry, 1995). The diagram shows all organizations contained in the top most orga-
nization, which consists of 90 products. The width of an organization corresponds to
the number of products inside.

Figure 3 gives an impression of the derived reaction network. The figure
illustrates that it is quite difficult, if not impossible, to identify structures on
the basis of this visualization, which is already optimized to some extent. In
order to elucidate the structure hidden in this network, we will apply chemical
organization theory, which will be introduced in the next section.

3.2 Preliminary Results

Applying the theory, several thousand organizations are found. Figure 4 shows a
small fraction from the lattice of organization. The smallest organization (Fig. 5)
with more than 3 products contains already 80 products, including forestry (2)
but not agriculture (1) (Fig. 6). Figure 5 shows the reaction network of this
organization. It is already less complicated compared to the full system. Since it
is closed and self-maintaining, it makes sense to investigate the relations within
such a sub-system first.

Having identified an interesting organization, we can continue with our anal-
ysis by asking, which kinds of products are required for the organization, or
which kind of product can we remove so that the remaining set still generates
the original organization. Using the terminology of our theory, we can look for
the internal generators. For example, an industry that has only inputs is not
required. Removing all nodes that have only incoming edges we would arrive at
a smaller internal generator. In Fig. 5 we can see that removing the product
jewellery and related products would result in a set of size 79 that still generates
the original organization. As opposed to this, the product forestry is necessary. If
we remove forestry from the organization, the remaining set of size 79 generates
an organization containing only three products.

Looking more closely at the reaction network (Fig. 6) we can see, why forestry
is important for that organization: Forestry is required for Wood and wood prod-
ucts, which is required for Pulp, paper and paperboard, which is required for Paper
and paperboard products, which is finally required for Printing and publishing.
The product Printing and publishing is required for many other products, among
which are important products like Advertising and also Forestry itself. Therefore,



	 Forestry 

	 Coal extraction 

	 Oil and gas extraction 

	 Metal ores extraction 

	 Other mining and quarrying 

	 Wood and wood products 

	 Pulp, paper and paperboard 

	 Paper and paperboard products 

	 Printing and publishing 

	 Coke ovens, refined petroleum & nuclear fuel 

	 Industrial gases and dyes 	 Inorganic chemicals 

	 Organic chemicals 

	 Plastics & Synthetic resins etc 

	 Man-made fibres 

	 Plastic products 

	 Structural clay products 

	 Cement, lime and plaster 

	 Articles of concrete, stone etc 

	 Iron and steel 

	 Non-ferrous metals 

	 Metal castings 

	 Structural metal products 	 Metal forging, pressing, etc 

	 Other metal products 

	 General purpose machinery 

	 Agricultural machinery 	 Machine tools 

	 Domestic appliances nec 

	 Electric motors and generators etc 

	 Electrical equipment nec 

	 Transmitters for TV, radio and phone 

	 Motor vehicles 

	 Aircraft and spacecraft 

	 Jewellery and related products 

	 Sports goods and toys 

	 Miscellaneous manufacturing nec & recycling 

	 Electricity production and distribution 

	 Gas distribution 

	 Construction 

	 Motor vehicle distribution and repair, automotive fuel retail 

	 Retail distribution 

	 Railway transport 	 Air Transport 
	 Ancillary Transport services 

	 Postal and courier services 

	 Telecommunications 

	 Insurance and pension funds (pt) 

	 Auxiliary financial services 

	 Owning and dealing in real estate 

	 Letting of dwellings 

	 Renting of machinery etc 

	 Research and development (pt) 

	 Legal activities 

	 Accountancy services 

	 Market research, management consultancy 

	 Architectural activities and technical consultancy 

	 Advertising 

	 Other business services (pt) 

	 Public administration and defence (pt) 

	 Education (pt) 

	 Recreational services (pt) 

	 Other service activities (pt) 

	 GG - Public administration & defence (115 pt) 

	 GG - Education (116 pt) 

	 GG - Recreational services (121 pt) 

	 NPISHs - Insurance and pension funds (101 pt) 

	 NPISHs - Research and development (108 pt)  

	 NPISHs - Other business services (114 pt)  
	 NPISHs - Education (116 pt)  

	 NPISHs - Social work activities (118 pt)  

	 NPISHs - Other service activities (122 pt)  

Fig. 5. Reaction network of an organization that consists of 80 products (IO-model,
UK, 1995). For the sake of clarity, two central products (Banking and finance and
Wholesale distribution) are removed, because they are connected with many other
products.

if we remove Forestry, we remove the support for many products, so that the
resulting set of products is not self-maintaining any more and would generate
an organization containing only three products.

4 Discussion

The results presented here are preliminary. Although we have used real world
data, the derived reaction network is unrealistic, because our assumptions for
deriving the network were oversimplifying. The aim of this paper is to illustrate
the method and to demonstrate that the method can extract information from
complex networks, which would be hard or impossible to get otherwise.

In the context of our theory, there are couple if interesting open questions:
What kind of products are required for an organization? How do the genera-
tors of an organization look like? How do the smallest internal generators of
an organization look like? This may characterize the potential stability of the
system.

Furthermore we may map real data to the set of organizations. Assume that
we have data on the time evolution of the size of the different products (in-
dustries) over time. We can now measure whether and with what intensity an
organization is present in a certain state. This provides a new way to project a



	 Forestry 

	 Wood and wood products 

	 Pulp, paper and paperboard 

	 Paper and paperboard products 

	 Printing and publishing 

	 Sports goods and toys 	 Miscellaneous manufacturing nec & recycling 

	 Advertising 

Fig. 6. Illustration of the role of Forestry (fraction of the network shown in Fig. 5). The
figure depicts a set of products that is self-maintaining(ie. all products are produced
within the network) but not closed, since other products are produced, which are not
depicted.

high dimensional system to a system (e.g., a set of small organizations), which
may give further insights into the structure of the network.
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