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Abstract
A large training setof �tness casescancritically slow down geneticprogramming, if no
appropriate subset selection method is applied. Such a method allows to evaluate an
individual on a smaller subset of �tness cases.In this paper we suggest a new subset
selection method that takes the problem structure into account, while being problem
independent at the sametime. In order to achieve this, information about the problem
structure is acquired during evolutionary search by creating a topology (relationship)
on the set of �tness cases. The topology is induced by individuals of the evolving
population, through increasingthe strength of the relation between two �tness cases,if
an individual of the population is able to solve both of them. Our new topology–based
subset selection method choosesa subset, such that �tness casesin this subset are as
little as possible related with respectto the induced topology. We compare topology–
based selection of �tness caseswith dynamic subset selection and stochastic subset
sampling on four dif ferent problems. On average,runs with topology–based selection
show faster progressthan the others.

Keywords
Genetic Programming, search space,topology, diversity

1 Introduction

Evolving programs is often a time–consuming task. Usually, the most costly part is to
evaluate the �tness of individuals. To evaluate an individuals �tness GP–systemsuse
a set of �tness cases.A �tness caseis an input/output pair, �tness measureshow well
an evolved individual predicts the output(s) from the input(s). In order to reduce the
effort, many methods try to reducethe number of �tness casesevaluated during �tness
calculation. Thesemethods dif fer in how they chooseproper subsetsof the set of all
�tness casesfor evaluation.

The simplest technique is to use a static subset. Historical subsetselection(Gather-
cole and Ross,1994), for instance, records all �tness casesthat are not solved by the
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best population member in any given generation over a small number of runs. These
�tness casesbecomepart of a static subsetand are used in further GP runs.

Randomsubsetselection(Gathercole and Ross,1994)choosesa new subset for each
generation. Each �tness caseis selected independently with equal probability , which
leads to varying subset sizes. Stochasticsampling(Nor din and Banzhaf, 1997;Banzhaf
et al., 1998)choosesa new subset for eachgeneration and for each individual, respec-
tively , with all �tness caseshaving the sameprobability of being selected.In this article
we use a thir d variant that we call stochasticsubsetsampling(SSS).With stochasticsub-
set sampling we choosea new subset eachgeneration with a �xed subset size. These
stochasticmethods canbeused to balanceaccidentally causedadvantagesor disadvan-
tages of certain programs given particular �tness cases,in order to prevent a biasing
in�uence of subsetselection on evolution.

Dynamic subsetselection(DSS) (Gathercole and Ross, 1994; Gathercole and Ross,
1997;Gathercole, 1998) is a procedure based on two assumptions: (i) There is a ben-
e�t in focusing GP's abilities on dif �cult �tness cases,i.e., the ones that are frequently
misclassi�ed; and (ii) there is a bene�t in checking �tness casesthat have not been
looked at for several generations. Dynamicsubsetselection, hence,assignsa dif �culty D
and an age A to every �tness casei and updates these measures in every generation
g. Initial dif �culty is zero and increasesin integer steps eachtime an individual is not
able to solve the corresponding �tness case.The dif �culty is reseteachtime the �tness
caseis selected for the subset. Age representsthe duration since the �tness casewas
selectedfor the subset the last time. Initial age is one and is incremented as long asthe
�tness caseis not part of the subset. A resetoccurs upon selection. In order to balance
between an individual's ageand its dif �culty , A and D are taken to the power of some
parameters a and d, respectively, and summed up to give a weight W for each �tness
casei :

Wi (g) = A i (g)a + D i (g)d :

For our comparison we set the age exponent a to 3:5 and the dif �culty exponent d to
1:0(Gathercole, 1998).A subsetwith target size S can now be assembledfrom a total T
of �tness cases(training set) by selecting �tness casei with probability

Pi (g) =
Wi (g) ¢S

P T
j =1 Wj (g)

:

Active dataselection(Zhang and Cho, 1998)associatestraining caseswith individ-
uals. During evolution theseindividual subsetsare recombined and enlarged by small
numbers of �tness casestaken from the basedata set. This procedure should ensure
diversity of the training data. In the �nal generation, every individual usesall �tness
cases.Zhang and Cho call this processincrementaldatainheritance.

None of the methods mentioned considers the problem's structure in terms of a
relation on the �tness cases.In this article we suggest to gather information about the
structure of a problem by creating a topology on the set of �tness cases.This relation
will be createdon the �y , during evolution. The relation between two �tness caseswill
be strengthened, if an individual of the population is able to solve both �tness cases.
The resulting topology re�ects the problem structure. The exploitation of informations
contained in this topology helps to impr ove the performance of genetic programming
by allowing to selectdynamically smaller and more suitable subsets.

This paper is organized as follows: Section2 presentsour method, how we de�ne
topology, how we select �tness casesbased on this topology, and some more details.
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Section 3 then reports our results, partitioned into the dif ferent search problems and
a comparison with dynamicsubsetselectionand stochasticsubsetselection. Section 4 dis-
cussesour results in the light of population diversity and contrasts our approach to
guided local search and �tness sharing. Section5 summarizes and gives perspectives.

2 Topology–based Selection

2.1 Motivation

During evolution individuals acquire “knowledge” 1 about how to solve �tness cases.
Usually, an individual of the initial population is not able to solve all �tness cases,but
can handle only a small subset. If the GP optimization processgoeswell, individuals
becomebetter and better from generation to generation, meaning that the best individ-
ual is able to solve more and more �tness cases.But often the population stops impr ov-
ing while the best individual just solves a subsetof all �tness cases,and an increasing
number of individuals tends to solve the same �tness casesthe same way. Evolution
settlesdown into a so called local optimum. Sowhy are theseindividuals able to solve
somebut mostly not all �tness cases?

It is well known that structure in�uences the ef�ciency of heuristics working on it
(Hogg, 1996;Walsh, 1999).Inspir ed by this, we shall take a relation between the �tness
casesinto account, a relation detected during evolution, coded into an individual's
genotype, and spread through the population by recombination or other conservative
operations.

If one or a group of individuals is able to solve a subset of all �tness casesbetter
than the rest of the �tness cases,then we suppose that these individuals contain some
kind of knowledge about the relationship between the �tness casessolved. Fitness
casescan be neighbors in a spacewe call similarity space(according to Goldberg and
Richardson (1987)), a spaceformed by the knowledge of all individuals.

An individual's knowledge can spread through the population, if it leads to a
higher �tness of the individual (Holland, 1975;Koza, 1992b). On the other hand, the
lower the �tness gain is, the slower this knowledge spreads.

2.2 Topology De�nition

During evolution the population induces a structure on the set of �tness casesV . We
represent the topology of this structure by an undir ected weighted graph G = (V; E),
where E is the set of all possible edgesbetween the �tness casesV . A weight is asso-
ciated with eachedge. The weight representsthe information gathered by individuals
during evolution on how closely the �tness casesare related. High values mean a close
relation. At the beginning, all weights are initialized to zero.

An individual can strengthen the relation between two �tness cases.If it is able to
solve both of them, the weight on the edge between them is increased.Therefore, a bi-
nary rating of an individual's ability to solve a �tness caseis required. For a continuous
regressionproblem like the sine approximation in Sec.3.2,a threshold value is used to
decide whether the individual is able to solve the �tness caseor not. For a classi�cation
problem, correct classi�cation meansthat this �tness caseis solved.

We suggestthat theserelations are not of the sameimportance, becausethere must
be a reason,why some of the individuals of the initial population solve many �tness
caseswhile others solve only two or three.Hence the weight of a detected relation will

1Knowledge could be anything leading to the individual's result, such as blocks of code, automatically
de�ned functions(ADF) etc.
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depend on the number of �tness casessolved by an individual.
At the end of every generation, we adapt the edge weights between �tness cases

for each individual of the population. Formally, after eachgeneration we perform the
following two steps:

Step1: For eachindividual, let V 0 ½ V be the set of �tness casessolved by the individual,
E 0 the set of all edges between nodes from V 0, and we the weight of edge e. If
jV 0j > 1 eachedge weight we; e 2 E 0 is adapted by

we := we +
2

jV 0j(jV 0j ¡ 1)
; e 2 E 0 : (1)

Step2: To reducethe impact of relations detected in the past eachedgee 2 E is multiplied
by the lossrate¸ < 1:

we := ¸w e; e 2 E : (2)

Test runs showed that ¸ can be chosenbetween 0.5 and 0.9. For the experiments
reported here, ¸ = 0:7 has turned out to be a good value.

An edge value between two �tness casesabove average indicates a similarity be-
tween thesetwo �tness cases.Thus, there is a higher probability that a randomly cho-
sen individual is able to solve both �tness casesinstead of just one of them.

2.3 Subset Selection — Algorithm

Our target is to evolve an individual able to solve as many �tness casesas possible.
Emerging clusters of heavily related �tness casesshow that dif ferent knowledge is ac-
cumulated within the population. Weakconnectionsbetween clusters areevidence that
knowledge is missing on how to solve �tness casesfrom dif ferent clusters. Our new
method should dir ect the attention of evolution towards this kind of knowledge by
weighting clusters equally. To do so, one �tness caseis selectedfrom each cluster for
the subset. In order to outcompete others, an individual has to acquire knowledge that
spansclusters.

To encouragethis type of progressall �tness casesconnectedwith an edge weight
higher than an adaptive threshold value are excluded from selection into the samesub-
set. In the next section (Sec.2.4)we will describe how to adapt this threshold value.

Fitnesscasesfor the subsetare selectedaccording to the following algorithm at the
beginning of eachgeneration:

1. Empty the set of selected�tness casesand the set of excluded �tness cases.

2. Selectrandomly a �tness caseinto the subsetfrom the setof all �tness casesnot yet
selectedor excluded.

3. Excludeall �tness casesconnected with the selectedone, provided the edge value
exceedsthe threshold.

4. GotoStep2, until no �tness caseis left or the desired subsetsize is reached.

Figure 1 illustrates the two stepsof the algorithm for subsetselection.
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Figure 1: The �gur e illustrates the selection of three �tness casesinto the subset. Each
node in the graph represents one �tness case. Thickness of the lines represents the
weight of edges. Selection and exclusion take turns alternating. After random selec-
tion of a �tness caseinto the subset, topology–based selection excludes every �tness
casethat is connected with the selected �tness casevia an edge weight higher than a
threshold or has already been selectedbefore. The random choice is restricted to the
remaining �tness cases.

2.4 Adapting the Threshold Value

The selection of one �tness caseto be included into the subset leads to the exclusion
of all �tness casesthat are connected to it stronger than an adaptive threshold. Thus,
the threshold value plays an important role. A badly chosen value could lead to the
following problems: If the threshold is too high, one does not exclude enough �tness
casesfrom selection into the subset. In the extreme case,the algorithm would not ex-
clude any �tness caseand would always selectrandomly . In this casetopologyselection
does not dif fer from stochasticsubsetsampling. If the threshold is too low, too many �t-
nesscasesare excluded, and the desired subsetsize will not be reached. The resulting
subsetsize would lead to an overrated in�uence of single �tness cases.

Choosing the threshold is a dynamic task, becauseedge weights vary during evo-
lution. For this reasonwe determine the threshold value basedon the distribution of all
weights. Therefore we sort the list of all weights and adjust an index position j we take
the threshold ¿ from. Given a desired size m of the subset, the set of all �tness cases
V (training set),and the number of �tness casesn = jV j, the threshold ¿ is adapted by
the following binary–search–type of algorithm (seealso Fig. 2):

1. Sort all edge weights in ascending order.

Evolutionary Computation Volume 12,Number 2 5
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The weight of non–existing edgesis zero.
Let ¿i be the i–th weight in the sorted list.

2. Initialize the step size ¾(we use the number of �tness caseshere, ¾:= n). Set the
current index j to the value of the last selection (0 at the outset).

3. Repeatsmax times or until the desired subsetsize is achieved:

(a) Setthe threshold to the edge weight at the current index position: ¿ = ¿j .

(b) Selecta subsetaccording to the algorithm explained previously (Sec.2.3). Let
m0 be the size of that subset.

(c) If the selectedsubset is too small (m0 < m), do:

i. If the selectedsubset had been previously too large, half the current step
size: ¾:= ¾=2.
(This means,if we changethe dir ection of adaptation, we decreasethe step
size in oder to approach the optimum more carefully .)

ii. Increasej by the current step size: j := j + ¾.

(d) If the selectedsubset is too large (m0 > m), do:

i. If the selectedsubset had been previously too small, half the current step
size: ¾:= ¾=2.

ii. Decreasej by the current step size: j := j ¡ ¾.

For each subset selection the algorithm can take up to smax = 30 attempts to select a
good subset, but on average requires less then �ve to adapt ¿. For an analysis of the
adaptation behavior seeLasarczyk (2002).Alternatively we could start a binary search
in the middle of the list of sorted edge values, but this would take more adaptation
steps.

As can be seen, topology–based subset selection requires additional computing
time for adapting the topology, adjusting the threshold value and selecting the sub-
set. The most expensive task is the adaptation of the topology and sorting of the edge
values, which scalesapproximately quadratically with training set size2. Therefore we
recommend this method for problems where the evaluation of a �tness caseis costly,
such asevolving control programs for robots (Miglino and Walker, 2002).

2.5 Example of the Induced Structure and its Time Evolution

Figure 3 shows how the structure of �tness caserelations changes during evolution
of a sample problem. Only edges with a weight exceeding the threshold value are
drawn. In the �rst generation just a small number of �tness caseshave beenpart of the
�rst subset, therefore the population detected only relations between those few �tness
cases.After t = 150generations all �tness caseshave beenpart of a subsetat leastonce.
It is dif �cult to visually detect clusters during this stage of evolution. Later (t = 300)
clusters becomemore visible. Although the optimal solution is found in this example,
it seemsthat many individuals are trapped in suboptima and induce large clusters.
Maybe the “knowledge” required to solve the �tness casesof these large clusters can
be easily protected against destruction.

Figure 4 shows graphs for the same problem. Here, only those edges are drawn
that connect a selected�tness caseand those excluded through it. Each �tness casein

2If V is the training set, the time complexity of sorting the jV j2 edge values is bounded by
O(jV j2 log jV j2 ).
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Figure 2: Adaptation of the threshold is performed with an index on a sorted list of all
edgevalues. Topology–basedselectionhasmore than one attempt to selecta subset,be-
causethe sizeof the selectedsetcould vary heavily. Starting with index j adopted from
the previous subset selection, the index is decreasedif selection is not strong enough
and the index is increasedif subsetgets too small.

the subset representsa dif ferent cluster. While the selected �tness caseis connected
to every other in this cluster by an edge with an edge weight above the threshold, the
nodes of a cluster are not necessarily fully connected. Note that the �rst �tness case
selected will cause the largest expected exclusion. And the last selected �tness case
will only exclude a small number of �tness cases,becausethere are not many left to be
excluded. This also explains the dif ferent cluster sizesvisible in Fig. 4.

3 Results

To show the advantagesof the new subsetselectionmethod we compare it with dynamic
subsetselectionand stochasticsubsetsamplingon four dif ferent problems, namely, two
approximation and two classi�cation problems. Despite of the problem domain, our
experimental settings dif fer in population size, number of available �tness cases,and
subsetsize. Tables2 and 3 summarize the settings for the GP–systemdescribed next.

3.1 GP–System and Settings

We use a simple linear genetic programming system (Banzhaf et al., 1998). Each in-
struction consists of four integers coding for an operation, two source registers, and
one target register, respectively. The target register could be one out of �ve registers
initialized with zero. The source register could be one of theseregisters, registers con-
taining the problem speci�c input, or registerscontaining constant values (0, 1, 2, 5, 10,
20, 50, 100, ¼and e). The operator set consists of arithmetic operators, trigonometric
operators, logic operators, and a conditional assignment. The tables detail which oper-

Evolutionary Computation Volume 12,Number 2 7
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t = 1 t = 150 t = 300

Figure 3: Evolution of the �tness caseconnections for a simple test problem. Each
�tness case is represented by a dot, connections are drawn when the edge value is
above the threshold. The topology is valid for the whole population of one generation.

t = 1 t = 150 t = 300

Figure 4: Samegraphs asabove (Fig. 3), with drawing edgesbetween a �tness caseand
those that are excluded form selection if this �tness caseis selected.

ations are provided for which problem. We allow a maximum of 256 instructions per
individual, thus length of an individual is variable but bounded. The return value of an
individual is the result of the last operation, independent from that operation's target
register.

With dynamicsubsetselectionand topology–basedselectionthe �tness of the best in-
dividual varies heavily on the current subset used to evaluate the individuals and the
testing set. The reasonfor this behavior is that thesesubsetselection methods concen-
trate sometimes on subsets,that do not representa uniformly distributed subsetof all
�tness cases.For this reasonwe determine the best individual by using a thir d set, the
so called validationset, then we calculate the best validating individual's �tness on the
test set. The “mean” of the this value (as listed in the following tables; Tab. 4, 5, 6, and
7) is computed as the average over 100 independent runs. Validation set and test set
are independent from the training set V . They are never used for selection and do not
in�uence the evolutionary process.They are solely for the purpose of monitoring.

As search operators we usemutation aswell ascrossover. A single mutation oper-
atesby replacing an instruction by a randomly created new instruction. The crossover
operator is a simple one–point crossover. If an offspring exceedsthe allowed length of
256 instructions, we cut off instructions at its front. We do so to underline the conser-
vative aspectof crossover. Individuals return the result of their last operation and so

8 Evolutionary Computation Volume 12,Number 2
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Setting 1 Setting 2

Crossover 60% 0.1%
Reproduction 40% 99.9%

Mutation probability 90% 99.9%
Number of mutations 8 8

Table 1: Settings for evolution parameters

their tail is the more important half.
In order to demonstrate that the impr ovement by our new subsetselectionmethod

doesnot stem from a speci�c setting of the search operators, we use two quite dif ferent
settings (seetable 1 for dir ect comparison):

Setting 1: With this setting 60% of the offspring are produced by crossover. For crossover
we perform tournaments of size four and recombine the two best individuals 3 of
eachtournament in order to get two offspring, which replacethe two losers of the
tournament. 40%offspring are created by tournaments of size 2, where the looser
is replaced by a copy of the winner . Each offspring is mutated with a probability
of 90%; in that caseeight instructions (lines of the linear program) are replacedby
random instructions.

Setting 2: Crossover rate is reduced signi�cantly . Just 0.1% of all offspring are created by
crossover. 99.9%of the offspring are created by reproduction. All offspring are
mutated with probability 99.9%.

3.2 Sine Function Approximation

Appr oximation of the sine function with non–trigonometric functions is a non–trivial
but illustrative problem. The set of �tness casesV = f (x1; y1); (x2; y2); : : : ; (xn ; yn )g is
created in the following way: In the interval [¡ ¼; ¼] n = 400equidistant values x i are
used to calculate values yi = sin (x i ), i 2 f 1; 2; : : : ; ng.

Given a subset V 0 of the training set V , the �tness function is the mean squared
error of the individual I applied to all �tness casesof the subset:

f (I ) =

0

@
X

(x;y )2 V 0

(I (x) ¡ y)2

1

A

,

jV 0j :

(x; y) denotes a �tness casein the subset V 0 of size jV 0j, x the input and y the desired
output.

As mentioned above, we have to de�ne a function that speci�es when a �tness
caseis solved by an individual. We de�ne a �tness caseassolvedby an individual if the
error (I (x) ¡ y) is less than 0:1. Hence we increasean edge value between two �tness
cases,if an individual's error is lessthan 0.1on both of them.

Table 4 summarizes the performance for all three subset selection methods. For
both settings, evolution bene�ts from topology–based subset selection. This is most
obvious for Setting 2 (mainly mutation). We can also seethat all methods bene�t from
Setting 2.

3For clarity note that the individuals are evaluated on the subsetselectedfrom the training set V .
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Problem ID sin F6 (mod.)

Problem type Appr oximation Appr oximation

Problem function sin(x) 0:5+
sin 2

p
j x + y j ¡ 0:5

[1:0+0 :001¢(x 2 + y2 )] 2

Number of inputs 1 real value 2 real values

Fitnessfunction mean square error correlation

Training set size 400 3000
Subsetsize 25 400
Ratio 0.0625 0.1333

Validation set size 400 1000
Testing set size 400 1000

Generations 1000 1000
Sizeof population 2500 1500

Instruction set + , ¡ , ¢, =, _, ^ , if , = ,
<

+ , ¡ , ¢, =, _, ^ , if ,
= , < , sin(x), cos(x),
tan(x),

p
x, x2

Table 2: Problem–speci�c parameter settings for the two approximation problems.

3.3 Modi�ed F6–Function

As a second approximation problem we modify the F 6–Function taken by Schaffer et
al. (1989)4

F 6mod.(x1; x2) = 0:5 +
sin2

p
jx1 + x2j ¡ 0:5

[1:0 + 0:001¢(x2
1 + x2

2)]2 : (3)

5000points ~x = (x1; x2) are created with uniform random distribution within a
distance of 100 from the origin. Corresponding values y = F 6mod.(~x) are determined.
1000points are set apart as validation set and 1000as the testing set. The remaining
3000�tness casesform the training set V , we have to choosethe subsetsfrom.

As in Keijzer (2001) , we use the square of the correlation coef�cient r (stability
index) to rate an individual's �tness. One can think of the stability index as a value
that shows how much of the variation of one value could be described via a linear
transformation by the variation of a secondvalue. In this caseone value is the desired
output y, the other value is the individuals output I (~x). Let (~x i ; yi ) be the i–th �tness
case.~x i is the input and yi the desired output of an individual I . Given a setof n �tness
cases,the correlation coef�cient is de�ned as:

r (I ) =
P n

i =1 (I (~x i ) ¢yi ) ¡
P n

i =1 I (~x i ) ¢
P n

i =1 yi =n
r ³ P n

i =1 I (~x i )2 ¡ (
P n

i =1 I (~x i ))
2 =n

´
¢
³ P n

i =1 y2
i ¡ (

P n
i =1 yi )

2 =n
´ : (4)

4Schaffer et al. (1989)used the F 6–Function asan objective function (�tness function) in order to evaluate
the performance of genetic algorithms. Our modi�cation as well as using the stability index to rate the
individual �tness have beennecessaryto succeedin this approximation problem.

10 Evolutionary Computation Volume 12,Number 2
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Problem ID spiral thyroid

Problem type Classi�cation Classi�cation

Problem function 2 intertwined spirals real world data
Number of inputs 2 real values 21(6 real values, 15bi-

nary values)

Fitnessfunction classi�cation error

Training set size 194 3772
Subsetsize 20 200
Ratio 0.103 0.053

Validation set size 192 1000
Testing set size 192 2428

Generations 2000 1000
Sizeof population 2000 2000

Instruction set + , ¡ , ¢, =, _, ^ ,if , = , < , sin(x), cos(x), tan(x)

Table 3: Problem–speci�c parameter settings for the two classi�cation problems con-
sidered.

The �tness of individual I is de�ned by:

f (I ) = 1 ¡ r (I )2 :

We de�ne a �tness caseas solvedby an individual, if the Euclidean distance be-
tween the desired and the individuals output is less than 0:05. As before, the algo-
rithm increasesthe edge weight between two �tness cases,if one individual produces
a smaller error for both of them.

Figure 5 shows a plot of the modi�ed F6–function on the left side. On the right
side the input–output function of the best individual found by evolution is plotted.
We can seesigni�cant deviations at the corners of the functions domain, becausethey
have a distance greater than 100and so there are no �tness casesthat would punish a
deviation in that region.

Table 5 shows the average�tness and the con�dence interval for the paired dif fer-
encesbetween the best �tness values. The results are basedon 100runs for eachof the
threedif ferent selection methods. Runs using topology–based selection show the best
results on averagefor both settings.

3.4 Intertwined spirals problem

To solve the intertwined spirals problem, a solution has to classify points belonging
to one of two spirals in the x–y–plane. The spirals are intertwined and described by
97 points each. This problem has been already examined by means of neural net-
works (Lang and Witbr ock, 1989)and genetic programming (Koza, 1992a).

Instead of using the 194example sized dataset,however we created an additional
set including 192examples. For this validation setwe choosepoints next to the original
points in the training set. We use this set to monitor the individuals during the evolu-
tion and we use the whole original dataset to test the individuals. Figure 6 displays the
�tness casesfrom the original dataset. To make the task more dif �cult, we use a subset

Evolutionary Computation Volume 12,Number 2 11
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Time mean 95%con�dence interval
(Gen.) TBS DSS SSS TBS-DSS TBS-SSS DSS-SSS

Setting 1

250 0.71 0.79 0.79 [-0.128,-0.033] [-0.136,-0.034] [-0.052,+0.043]
500 0.59 0.67 0.71 [-0.133,-0.034] [-0.166,-0.068] [-0.082,+0.016]
750 0.54 0.62 0.65 [-0.130,-0.031] [-0.157,-0.057] [-0.079,+0.025]

1000 0.49 0.58 0.60 [-0.136,-0.035] [-0.151,-0.052] [-0.067,+0.035]

Setting 2

250 0.62 0.69 0.71 [-0.152,+0.017] [-0.165,-0.024] [-0.106,+0.053]
500 0.49 0.58 0.61 [-0.184,+0.002] [-0.203,-0.044] [-0.118,+0.054]
750 0.40 0.50 0.54 [-0.186,-0.006] [-0.218,-0.050] [-0.122,+0.047]

1000 0.34 0.43 0.47 [-0.178,-0.010] [-0.212,-0.049] [-0.117,+0.044]

Table 4: Mean squared error for sine function approximation. For dif ferent time steps
we take the best individual of the validation set and evaluate its �tness on the test set.
For every subset selection method we show its mean �tness averaged of 100 runs on
the left and the 95%con�dence interval for the paired dif ferencesbetween the selection
methods on the right.

size of n0 = 20 �tness cases.Becauseeach�tness casecan be classi�ed either correctly
or not, this leads to 20dif ferent �tness levels.

Table 6 summarizes the average results. For the �rst setting, runs using the
topology–based selection show the best results on average. All subset selection tech-
niques pro�t from the second setting. If one compares the results of both settings one
can seea premature convergence into a local optimum with the second setting. It is
assumed that the loss of diversity in conjunction with convergenceleads to less infor -
mation about the relation between �tness cases.As a result similar individuals would
perceivesimilar relations between �tness casesand there is not much to begained from
topology.

3.5 Thyroid–Problem

The thyr oid–pr oblem is a real world problem. The individual's task is to classify hu-
mans thyr oid function. The dataset was obtained from the UCI–repository (Blake and
Merz, 1998). It contains 3772training and 3428testing samples, each measured from
one patient. A �tness caseconsistsof a measurement vector containing 15 binary and
6 real valued entries of one human being and the appropriate thyr oid function (class).

There are threedif ferent classesfor the function of the thyr oid gland, named hyper
function, hypofunction and normal function. As Gathercole (1998)already showed, two
out of thesethreeclasses,the hyper function and the hypo function, are linearly sepa-
rable. Given the measurement vector as input, an individual of the GP system should
decide whether the thyr oid gland is normal functioning, or should be characterized as
hyper or hypo function.

Becausemore than 92%of all patients contained in the datasethave a normal func-
tion, the classi�cation error must besigni�cantly lower than 8%. The classi�cation error
is the percentageof misclassi�ed individuals.

The selection algorithms picks its subsetsout of the 3772training examples. From
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Figure 5: Left: A plot of the modi�ed F6–function. Right: The approximation of the
best individual.

the set of testing examples we remove the �rst 1000examples to form a validation set.
The remaining examples form the testing set.

As Gathercole did, we assign the following meaning to the output of the indi-
viduals. A positive output (¸ 0) denotes normal function, otherwise hyper or hypo
function.

Table 7 shows that topology–based selection acquires the best average results for
the �rst setting. For the secondsetting there is no statistic signi�cant dif ferencebetween
the threeselection methods.

4 Discussion

In the previous section we have empirically compared topology–based subsetselection
to other techniques for subset selection. We found evidence that evolution can be sig-
ni�cantly faster for both settings. Now we shall take a closer look at what causesthe
population to evolve faster.

One of the main targets of good GP runs is to prevent the population from pre-
mature convergence. Thus, a closer look at the population's diversity (Sec.4.1) is war-
ranted. In Sec.4.2 and Sec.4.3 we compare topology–based selection with two other
methods (�tness sharingand guidedlocal search), which examine many peaks without
focusing the entire population on one peak alone.

4.1 Population Diversity

In order to demonstrate what happens to the population when using topology–based
selection,diversity is measured asthe averagenormalized edit distance of the effective
code between individuals of the population. For the purpose of this discussion, we
chosethe optimization problem that has led to the largest dif ferencebetween selection
methods, namely the regression problem of the modi�ed F6–function with parameter
setting 2(seeTab. 5).

Topology–based selection is expected to increasediversity . High diversity alone,
however, cannot explain good performance5. For an explanation we take the conceptof
“appr opriate diversity” (seeGoldberg and Richardson (1987)). Usually, a population

5E.g., increasing the mutation rate leads to higher diversity , but not necessarily to higher performance.
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Time mean 95%con�dence interval
(Gen.) TBS DSS SSS TBS-DSS TBS-SSS DSS-SSS

Setting 1

250 0.82 0.89 0.93 [-0.122,-0.030] [-0.151,-0.071] [-0.076,+0.005]
500 0.74 0.84 0.89 [-0.151,-0.043] [-0.199,-0.103] [-0.103,-0.005]
750 0.69 0.81 0.87 [-0.171,-0.059] [-0.234,-0.125] [-0.118,-0.011]

1000 0.66 0.77 0.85 [-0.164,-0.044] [-0.249,-0.133] [-0.143,-0.031]

Setting 2

250 0.83 0.91 0.94 [-0.125,-0.036] [-0.151,-0.069] [-0.068,+0.008]
500 0.75 0.86 0.91 [-0.167,-0.052] [-0.213,-0.105] [-0.099,-0.001]
750 0.67 0.83 0.89 [-0.222,-0.092] [-0.276,-0.161] [-0.114,-0.010]

1000 0.60 0.80 0.87 [-0.277,-0.125] [-0.338,-0.208] [-0.130,-0.014]

Table 5: Mean �tness (on the test set of the best individual on the validation set) for
approximation of the modi�ed F6–Function (small values denote good performance) at
dif ferent time stepsis shown on the left side. The �tness value is inversely proportional
to the squareof the correlation coef�cient r . On the right side you canseethe con�dence
interval for the paired dif ferencesbetween the subsetselectionmethods. The resultsare
basedon 100runs for eachmethod.

shows its greatestdiversity after initialization. While this is a good point to start from, it
is a bad point to stay, becausethe �tness of many individuals is low. Good individuals
are the important basefor evolution's success.Just looking at the pure average �tness
of the population does not allow to predict the ability for further impr ovements. If all
individuals are the same,average �tness may be good but impr ovements becomeless
likely . Thus, good performance needs both, a good average �tness combined with a
high diversity , which we call appropriatediversity

In order to measure diversity , we take 300 individuals randomly from the pop-
ulation, remove all instructions from the genome that are not used and calculate the
distance between the remaining (effective) code of two individuals by the Levenshtein
(1966)method(edit distance). Then the distance is normalized by dividing through the
averagenumber of instructions of effective code.

To compare the relation of diversity to average�tness for the dif ferent subsetselec-
tion methods, we partition the spaceof 'average edit distance'–'average �tness'–pairs
into squares (bins) of size 0:05 £ 0:05. Then we count for each bin (and for all 100
runs) how frequently the population is in the respective state, namely possessingthe
respective average edit distance and average �tness. Figure 7 shows the histograms
and the contour lines of equipotential surfaces for dif ferent frequencies. One can see
that topology–based selection leads to populations with a good average �tness (here,
equal to a low �tness value) and a high edit distance.

4.2 Fitness Sharing

Fitness sharing, proposed by Goldberg and Richardson (1987), is a frequently used
technique in the �eld of genetic algorithms. Fitness sharing should avoid “pr emature
convergence[. . . ] beforeobtaining suf�ciently near–optimal points”. The authors point
out that maintaining diversity for its own sakeis not the issue,instead the aim of �tness
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temp[3] = (1 < 100 );
temp[0] = cos(5);
temp[4] = temp[3] + temp[0];
temp[1] = input[0] * M_PI;
temp[1] = temp[1] * temp[4];
if (temp[1] != 0)

temp[3] = input[1] / temp[1];
else temp[3] = 0;

temp[1] = 5 + temp[3];
temp[3] = tan(temp[1]);
if (temp[3] > 0) temp[1] = temp[0];
temp[1] = tan(temp[1]);
temp[2] = temp[1] * input[0];
temp[4] = M_E - 20;
temp[4] = temp[2] + temp[4];
temp[1] = input[1] * M_PI;
temp[4] = temp[4] - temp[1];
temp[1] = cos(temp[4]);

if (temp[1] >= 0) result=1; //BLACK
else result=0; //WHITE

Figure 6: Left: The white and black areasshow the classi�cation of the best individual
(error approx. 7%). The triangular and round symbols represent the two classesof the
intertwined spiral problem intr oduced by Lang and Witbr ock (1989).Right: C code of
the best individual used for the classi�cation on the left side.

sharing is to achieve “appr opriate diversity”. Here, “appr opriate” means that the size
of a subpopulation exploring a �tness peak is adequate to the peak's �tness.

In �tness sharing, the �tness in a region of the search spacebecomesa resource
shared by individuals in that region that form an own species. This leads to an addi-
tional source for competition. To decide whether or not individuals are of the same
speciesa similarity measure, the sharing function, is intr oduced. Individuals whose
distance is lessthan a threshold arede�ned to belong to the samespecies, and thus share
their �tness values. This is achieved by dividing the original �tness by the so called
nichecount, a value proportional to the number of individuals an individual shares its
�tness with.

While �tness sharing dir ectly depreciatesareasof the similarity spaceto valorize
other areas,this happens indir ectly with our topology–based subsetselection. Here we
depreciateareasin the set of �tness cases,which are used to evaluate the �tness. To do
so, we �rst have to correlate �tness cases. This happens during evolution, where we
build up and adapt the similarity space— a spacedescribing the similarity of �tness
casesfrom the current and past populations point of view.

In order to explain the effect of increasingdiversity , assumethat the subsetused to
evaluate the individuals contains only two similar �tness cases.In that case,a mutation
that leads to an adaption to one �tness casewill also likely lead to an adaption to the
other �tness case,thus gaining a large amount of �tness. In a secondscenario,assume
that the subset contains two different �tness cases.Now it is harder to achieve a large
�tness gain by a “simple” mutation, becauseit is more unlikely that an adaptation to
one �tness casewill lead also to an adaption to the other. On the other hand, in the
second scenario, two dif ferent adaptation strategies can lead to a �tness gain. So, the
space of viable offsprings that are �tter than their parents is larger than in the �rst
scenario, which may explain the higher observed diversity when our topology–based
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Time mean 95%con�dence interval
(Gen.) TBS DSS SSS TBS-DSS TBS-SSS DSS-SSS

Setting 1

500 0.38 0.40 0.42 [-0.040,-0.005] [-0.056,-0.024] [-0.033,-0.002]
1000 0.36 0.40 0.40 [-0.054,-0.017] [-0.057,-0.019] [-0.019,+0.014]
1500 0.35 0.40 0.40 [-0.059,-0.023] [-0.065,-0.024] [-0.020,+0.013]
2000 0.34 0.38 0.39 [-0.066,-0.030] [-0.069,-0.037] [-0.022,+0.012]

Setting 2

500 0.31 0.32 0.33 [-0.024,+0.008] [-0.032,-0.002] [-0.025,+0.007]
1000 0.30 0.30 0.31 [-0.019,+0.015] [-0.029,+0.005] [-0.028,+0.008]
1500 0.29 0.29 0.30 [-0.021,+0.020] [-0.026,+0.009] [-0.028,+0.010]
2000 0.28 0.29 0.29 [-0.029,+0.015] [-0.028,+0.010] [-0.021,+0.017]

Table 6: Mean classi�cation error on the test set for the intertwined spiral problem.
For dif ferent time steps we take the best individual of the validation set and evaluate
their �tness on the testing set. For every subsetselection method you can seeits mean
�tness averaged of 100runs on the left and the 95%con�dence interval for the paired
dif ferencesbetween the selection methods on the right.

subsetselection is applied.

4.3 Guided Local Search

Guided local search (GLS) proposed by Voudouris and Tsang (1996)has been applied
to a wide range of combinatorial optimization problems (seeVoudouris (1998)for a list
of references). GLS is a heuristics to guide search in vast search spacesby changing
the objective function dynamically during evolution. This happens by adapting a setof
additional penalty terms between two iterative search steps. A penalty term refers to a
solution featureand a part of its domain. When search stagnatesin a local optimum, the
penalty terms of one or more featuresexhibited by solutions within this local optimum
are incremented. Search continues with the modi�ed objective function. As a result,
search will avoid regions covered by thesepenalty terms and focus on more promising
regions of the search space.

In contrast to �tness sharing and topology–based subset selection, GLS does not
just depreciate detected local optima, but entire subspacesof solution features. While
GLS adds penalty terms for one or more featuresof the local optimum and so depreci-
ates all solutions that include those features, �tness sharing dir ectly depreciatessolu-
tions that are closeto other solutions within a distance in similarity spacesmaller than
¾share. As mentioned above our technique does not try to in�uence the solution space
dir ectly. Instead, topology–based selection tries to provide a global problem view to
evolving individuals. Fitnesscasessolved by one or more individuals are therefore not
prevented from getting into the subset. Each “known” region of the �tness casespace
is allowed to be representedby at least one �tness case.Excluded from the subset are
only those casesthat are often solved by the sameindividuals and already represented
by one �tness case.

A further dif ference to GLS is that GLS does not start its counter measures until
search gets caught in a local optimum. In contrast, our method continuously tries to
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Time mean (£ 10) 95%con�dence interval (£ 10)
(Gen.) TBS DSS SSS TBS-DSS TBS-SSS DSS-SSS

Setting 1

250 0.51 0.53 0.51 [-0.037,+0.004] [-0.026,+0.024] [-0.007,+0.039]
500 0.48 0.50 0.50 [-0.051,+0.003] [-0.052,+0.006] [-0.025,+0.026]
750 0.45 0.49 0.49 [-0.070,-0.010] [-0.069,-0.009] [-0.025,+0.027]

1000 0.43 0.47 0.48 [-0.070,-0.007] [-0.072,-0.015] [-0.035,+0.024]

Setting 2

250 0.50 0.49 0.50 [-0.019,+0.042] [-0.023,+0.025] [-0.041,+0.019]
500 0.46 0.46 0.47 [-0.041,+0.026] [-0.047,+0.018] [-0.039,+0.025]
750 0.43 0.44 0.45 [-0.054,+0.019] [-0.064,+0.008] [-0.042,+0.021]

1000 0.41 0.43 0.44 [-0.059,+0.018] [-0.059,+0.016] [-0.036,+0.034]

Table 7: Mean classi�cation error on the test set for the thyr oid problem (small values
denote good performance). Because92% of all �tness casesbelong to one class,even
the �tness of bad individuals is lower than 0.08. For dif ferent time steps we take the
best individual of the validation set and evaluate their �tness on the testing set. For
every subsetselection method you can seeits mean �tness averaged of 100runs on the
left and the 95% con�dence interval for the paired dif ferencesbetween the selection
methods on the right. Note that the �tness values are scaled by a factor of 10 for easy
comparison.

prevent solutions from settling down in local optima during the search process.

5 Conclusion and Outlook

We have shown that topology–based selection of a subset acceleratesevolutionary
search. We investigated this behavior in genetic programming for four problems from
two dif ferent problem domains, such as function approximation and classi�cation. In
order to ensure that the observed successdoes not depend on the chosen evolution
settings, we performed experiments with two quite dif ferent parameter settings. We
found that the topology on the �tness cases,which is induced by the population of
individuals contains useful information, which can be exploited to control diversity
and by that impr ove the performance of genetic programming. We de�ned appropri-
ate diversity as a combination of high diversity and good average �tness. We showed
exemplarily that runs using a topology–based selection exhibit such appropriate diver -
sity.

Wagner and Altenberg (1996) describe evolvability (see Altenberg 1994) as a
genome's ability to produce adaptive variants. In their opinion “adaptations are possi-
ble if impr ovement can be achieved in a cumulative or stepwise fashion”. As a struc-
tural key feature they consider that “impr ovements in one part of the system must not
compromise past achievements”. Topology–based selection supports this requirement
by not overvaluing achievements.Overvaluing would lead to an increasingselectionof
single achievements,penalizing others. By preventing this we hope to advancea higher
degreeof variability . Investigations on the in�uence of subsetselection on evolvability
are an interesting aspectfor further research.
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Figure 7: Histograms and contour lines of equipotential surfacesfor dif ferent frequen-
cies for a population being in a state with a speci�c average normalized edit distance
and average�tness sampled over all generations of 100runs for eachselection method
(bin size: 0:05£ 0:05). The solid contour lines are the level curves for the lowest (same)
frequency for eachselectionmethod. Runs using topology–based selectionareshowing
populations with good average�tness and high edit distance. While good individuals
are the baseof success,a large edit distance widens this, which can be taken as an ex-
planation for the good performance of topology–based selection. (The 2–D–histogram
shows the frequency only for average�tness better than 0.7.Here,a small �tness value
denotesa good individual.)

The emerging topology might be an interesting source of information about the
�tness cases. For example, experts of the problem domain could be interested in the
reason why some individuals behave similarly with the same �tness cases. Or the
topology might help to automatically detect measurement errors (outliers) within the
�tness cases(e.g.,if �tness casesare taken from measurementsof a real world process).
We suppose that in later phasesof evolution such �tness casesare weakly connectedto
others.

The method and the de�nition of similarity of �tness casesis problem indepen-
dent. Furthermor e the method is independent from the learning method. Thus inves-
tigating the applicability of topology–based selection to other learning methods from
arti�cial and computational intelligence is an interesting task for futur e research.
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