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Abstract. In chemical computing, a theoretical analysis to cope with
the emergent behavior is required. In this paper, we exemplified with
xor logic gate and flip-flop circuit how chemical organization theory can
help in designing and understanding chemical computing systems. The
reaction network implementing the boolean computation is decomposed
into a hierarchical self-maintaining sub-network (organization), and the
dynamical behavior is explained as a movement between the organiza-
tions. The theoretical analysis provides an insight into potential emergent
behaviors. The results are encouraging so that the theory of chemical or-
ganization contributes to a theoretical base for emergent computing.

1 Introduction

By employing a large number of simple components interacting with each other
in an orchestrated way, biological systems invented a variety of information pro-
cessing mechanisms, which are robust, self-organizing, adaptive, decentralized,
asynchronous, fault-tolerant, and evolvable. This principle of biological informa-
tion processing has been exploited to cope with the fast-growing complexity of
technical information processing systems [1–3]. Since all known life forms pro-
cess information using chemical processes [4], the chemical reaction metaphor
has been proposed as a source of inspiration [5, 6]. Using chemical reactions for
formal computations has initially been suggested by Banâtre and Métayer [5].
In their GAMMA system [7], a chemical reaction is defined as a rewriting oper-
ation on a multiset, mimicking a well-stirred reaction vessel. In order to capture
the spatial context of chemical systems, chemical rewriting systems have been
extended to chemical abstract machines (CHAM) [8], P-Systems [9, 10] stressing
the importance of membranes, and MGS allowing arbitrary topologies [11].

The difficulty of engaging the chemical reaction process for computing is
that the solution appears as an emergent global behavior based on the manifold
local interactions [12]. As, for example, recently demonstrated by Tsuda et al.
with Physarum [14], the discrepancy between local and global behavior may be
problematic in a practical case. A satisfying theory of emergence is lacking [15].



This paper should contribute towards the establishment of a theoretical
analysis of the emergent behavior in chemical computing. We suggest chemi-
cal organization theory [20, 16] as a tool helping to construct (program) and
analyze (describe and understand) chemical computing systems. Chemical or-
ganization theory allows to decompose a reaction network into a hierarchy of
self-maintaining sub-networks, called organizations, only using stoichiometric
information. Although other approaches to divide biochemical reaction network
into sub-networks in terms of the functional moduls have been investigated [17], a
rigorously proven relation between sub-networks and potential emergent dynam-
ics is mostly lacking. Since emergent properties appear in a dynamical situation,
the theoretical method for analyzing emergence must take it into consideration.

Inspired by Fontana and Buss [19], we define a (chemical) organization as
a set of molecular species that is (algebraically) closed and (stoichiometrically)
self-maintaining [16]. It is important to note, that, when we talk about organi-
zations, we abstract details like concentration levels or the spatial distribution
of a chemical species. On this relatively high level of abstraction, a system state
is characterized only by the molecular species present and we can describe the
dynamics of a system more qualitatively, namely, as a movement between sets
of species instead of a movement in a more complex state space [20].

Borrowing the notion of chemical organizations defined as closed and self-
maintaining sets of molecular species, we demonstrate in this paper, how the
algebraic analysis of chemical reaction networks helps to understand the emer-
gent dynamical behavior of (artificial) chemical computing. In Section 2, we
describe the concepts from chemical organization theory needed here. As an
example of chemical computing, the xor logic gate is implemented using an
(artificial) chemical reaction network with the help of the chemical organization
theory in Section 3. A flip-flop logic circuit consisting of two nand gates serves
as another example in Section 4. Finally, in Section 5, we discuss the potential
of the theory as a theoretical base for emergence analysis.

2 Chemical Organization Theory

The target of chemical organization theory are reaction networks. We represent
a reaction network formally by a tuple 〈M,R〉, called an algebraic chemistry:

Definition 1 (algebraic chemistry). Given a set M of molecular species and

a set of reaction rules given by the relation R : PM (M) ×PM (M). We call the

pair 〈M,R〉 an algebraic chemistry, where PM (M) denotes the set of all

multisets with elements from M.

For simplicity, we adopt a notion from chemistry to write reaction rules.
Instead of writing ({s1, s2, . . . , sn}, {s

′
1
, s′

2
, . . . , s′n′}) ∈ R we write: s1+s2+· · ·+

sn → s′
1
+s′

2
+· · ·+s′n′ . And instead of writing a+a → b we can also equivalently

write 2a → b. Note that “+” is not an operator here, but is used to separate
the elements on both sides. Given the left hand side species A = {s1, s2, . . . , sn}
and the right hand side species B = {s′

1
, s′

2
, . . . , s′n′}, we write (A → B) ∈ R



instead of (A,B) ∈ R. A → B represents a chemical reaction equation where A
is the multiset of species on the left hand side (also called reactants) and B the
multiset of species on the right hand side (also called products).

So, in an algebraic chemistry, the reaction system is specified by a set of
molecular species M, and a set of reaction rules R. A reaction rule is similar
to a rewriting operation [22] on a multiset where multiple occurrences of the
same element are allowed. Reaction rules are given as a subset R ⊆ {A → B :
A,B ∈ PM (M)} where PM (M) is the set of all multisets with any size using
the elements in M. By applying a rule A → B, molecules ai ∈ A are replaced
with molecules bi ∈ B.

To reveal the organizational structure of a reaction network, we identify
all its organizations, i.e. those sets of molecular species that are closed and
self-maintaining. A set of molecular species is closed when all reaction rules
applicable to the set cannot produce a molecular species that is not in the set.
This is similar to the algebraic closure of an operation in set theory. We formally
define closure as:

Definition 2 (closure). Given an algebraic chemistry 〈M,R〉, a set of molec-

ular species C ⊆ M is closed, if B ∈ PM (C) for every reaction (A → B) ∈ R
with A ∈ PM (C).

A set of molecules is called self-maintaining, if, loosely speaking, all molecules
that are used up within the set can also be reproduced by reactions among
molecules of that set. For general reaction networks the formal definition of
self-maintenance reads:

Definition 3 (self-maintenance). In an algebraic chemistry 〈M,R〉, the i-
th molecular species is mi ∈ M and the j-th reaction rules is (Aj → Bj) ∈
R. Given a stoichiometric matrix M = (mi,j) where mi,j denotes the num-

ber of molecules of species i produced in reaction j, a set of molecular species

S ⊆ M is self-maintaining, if there exists a flux vector v = (vA1→B1
,. . . ,

vAj→Bj
,. . . ,vA|R|→B|R|

)T satisfying the following three conditions:

1. vAj→Bj
> 0 if Aj ∈ PM (S)

2. vAj→Bj
= 0 if Aj /∈ PM (S)

3. fi ≥ 0 if mi ∈ S where (f1, . . . , fi, . . . , f|M|)
T = Mv.

Loosely speaking, these three conditions can be read as follows: We have to
find a flux vector, such that all fluxes within the species set S are greater zero
(Condition 1), all other fluxes are zero (Condition 2), and all production rates
of molecules within S are nonnegative (Condition 3). When a set of molecular
species is self-maintaining, it is possible to construct a dynamical system (i.e.
a chemical differential equation) based on the given algebraic structure of the
reaction network, so that all molecular species in the set are maintained in terms
of their concentration, resp. the number of molecules present. Taking closure and
self-maintenance together, we arrive at an organization:

Definition 4 (organization). A set of molecular species O ⊆ M that is closed

and self-maintaining is called an organization.



We visualize the set of all organizations by a Hasse diagram, in which organi-
zations are arranged vertically according to their size in terms of the number of
their members (e.g., Figure 1). Two organizations are connected by a line if the
lower organization is contained in the organization above and there is no other
organization in between.

3 Case Study I: A Chemical XOR

To demonstrate how chemical organization theory can be used for chemical com-
puting, an (artificial) chemical reaction network is designed to implement an xor

logic gate.

The two input and one output variables of the xor gate are labeled as a,
b, and c, respectively. Two molecular species are assigned to each variable to
represent its boolean value. For example, the lowercase species a represents the
state a = 0. while the uppercase species A stands for a = 1. Thus, the xor

reaction network consists of 6 molecular species {a, A, b, B, c, C} = M. Note
that with this kind of coding, the logic state of a variable, say a, can be undefined,
namely if the reaction vessel contains molecules of type a and A at the same
time, or if the reaction vessel does not contain a nor A.

The reaction rules representing an XOR gate are derived directly from the
truth table: A boolean computation 1 ⊕ 0 = 1, for example, is converted to the
reaction rule A+ b → C, so that we arrive at four reaction rules: R1 = {a+ b →
c, a + B → C, A + b → C, A + B → c}. The Hasse diagram in Figure 1 (A)
shows the hierarchical organizational structure of this reaction network with 28
organizations. All organizations consist of combinations of molecules that do
not react with each other. A set of molecules that does not react is obviously
closed. Furthermore, it is self-maintaining since with no reactions among the set
species, a zero flux vector v = 0 fulfills all required conditions of Definition 3.
With the species set of an organization being closed and self-maintaining, it is
more likely to observe the presence of molecular species of an organization than
of an other species combination in the reaction vessel. If the dynamics of the
reaction network is modelled using ordinary differential equations, there exists
a related organization for every fixed point of the system [16].

When implementing xor using only the four reactions mentioned above, we
can see in Figure 1 (A) that half of the organizations represent contradictory
situations, e.g. a and A being present in an organization at the same time. If
both the uppercase and lowercase species of a variable are present, the variable
is computed to have a value of 0 and 1 at the same time. In order to avoid these
cases, destruction reactions of the form a + A → ∅ are added for each boolean
variable a, b, and c. These reactions ensures that contradictory situations vanish
quickly in the reaction vessel. The resulting set of reactions for the chemical xor

gate is: R2 = R1 ∪ {a + A → ∅, b + B → ∅, c + C → ∅}. Rule set R2 represents
the xor gate without any input specified. Its Hasse diagram of organizations is
shown in Figure 1 (B). The number of organizations is reduced from 28 to 15.
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Fig. 1. Hierarchy of organizations for the chemical reaction network implementing an
xor logic gate. (A) The network consists only of the reactions directly derived from
the truth table (see bottom left). (B) Destruction reactions are added to exclude con-
tradictions. (C) Defining one input. (D) Adding the second input. The hierarchy of
organizations collapses from (A) to (D), with the desired output as the only organiza-
tion left in (D).



Setting an input variable to a certain value is equivalent to adding an inflow
reaction to the network. The inflow reaction creates a molecule representing the
desired value of the variable from “nothing”, e.g., ∅ → a corresponds to setting
a = 0. Note that the network structure is changed due to the different input
reactions, so that the result of the algebraic analysis changes for each input. We
start with providing one input only, leaving the other input variable undefined.
Figure 1 (C) shows the results for the four resulting networks R2 ∪ {∅ → a},
R2 ∪ {∅ → A}, R2 ∪ {∅ → b}, and R2 ∪ {∅ → B}, respectively. We can see that
providing one input signal has further reduced the behavioral freedom of the
reaction system. Only three combinations of molecules are left, which may be
encountered in the reaction vessel in a stationary state. Furthermore we can see
that – in this special case – the output is not determined from a stoichiometric
point of view, since in all four Hasse diagrams an organization containing c and
C is present.

When we finally provide both inputs, the Hasse diagram of organizations
collapses, so that only one organization remains for every input condition (Fig-
ure 1 (D)). This implies that, no matter how we chose the dynamics, no other
molecular species than those of the organization can sustain themselves in the
reactor regardless of the initial state. We can see that the remaining organization
contains the desired output molecule c or C, respectively. The analyzed networks
are R2 ∪ {∅ → a, ∅ → b}, R2 ∪ {∅ → A, ∅ → b}, R2 ∪ {∅ → a, ∅ → B}, and
R2 ∪ {∅ → A, ∅ → B}.
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Fig. 2. Hierarchical structure of closed sets of molecular species in the reaction network
implementing an xor logic gate. In addition to 7 reaction rules (4 reactions from the
truth table and 3 for simultaneous destruction to avoid contradictory situation), two
influxes are included in the reaction network. Since the destruction reactions do not
violate the closure property of a set, contradictory situations such as co-existence of c

and C in closed sets are observed.

3.1 Is closure sufficient? (Moving to discussion?)

As described in Section 2, an organization is defined as a set of molecular species
that is closed and self-maintaining. To address the question whether the property
of closure is already sufficient for the analysis or not, we determine all closed sets
of the reaction network containing 7 reaction rules and two influxes. Figure 2



shows the resulting hierarchical structure of closed sets. Comparing this hierar-
chy with the hierarchy of closed and self-mainaining sets in Figure 1 (D), we
find that the smallest closed sets coincide with the only organizations found in
the network. But we find that other closed sets contain contradictory situations,
e.g., c and C being present at the same time. The destruction reactions designed
to eliminate this cases do not work as they do not effect the closure property of
any species set. Only requiring self-maintenance leads to the desired exclusion
of contradictions.

3.2 Dynamic Simulation
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Fig. 3. Dynamical concentration change of 6 molecular species is shown. The reaction
network composed of 7 reaction rules (4 reactions from the truth table and 3 decaying
reactions) and two influx to implement a xor logic gate. The reactions are defined as
irreversible mass action kinetics, and the influx is an irreversible constant flux. The
dynamical behavior of the reaction system is stochastically simulated with the bio-
chemical network simulator Copasi [23]. The kinetic parameters for logic computation
reactions is set to 0.001, and 0.1 for decay reactions. The parameter for constant influx
is set to 1, and the volume of the compartment is 1 ml. See text for details.

When providing each chemical reaction rule with a kinetic rate, it is possi-
ble to analyze the dynamical behavior of the reaction system. The influxes are
assumed to be an irreversible constant flux, and the other reaction rules work in
accordance with irreversible mass action kinetics. Figure 3 shows a dynamical
behavior of a reactor in terms of the concentration trajectory of the molecu-
lar species from the xor reaction network. The reaction system is stochastically
simulated with the biochemical reaction network simulator Copasi [23], a descen-
dant of Gepasi[24]. Initially, there exist no molecular particles in the reactor, and
two influxes of a and b are present. This corresponds to the case in which both
the input variables a and b are set to 0. The output calculates to be c = 0 with
the generation of molecular species c.



At the time point of 100 s, the contents of input variable b is switched to 1
so that the influx of molecular species b is replaced by the influx ∅ → B. Since
the reactor is not initialized, the molecular particles b and c from the previous
computation are deteriorating first. The desired output C does not appear until
the time point of approximately 200 s. Then, instead of a, the molecular particles
of species A are injected continuously starting from the time point of 300 s. The
remaining molecular species a and C from the previous computation are deleted
in the beginning, and the desired answer emerges in the end.

As seen from the dynamical simulation, the emergent behavior in terms of
the qualitative final state of the reactor is independent of the initial state due
to the continuous injection of input particles. The molecular particles of output
species are generated continuously, and unnecessary species are degraded from
the collision with the anti-particle. From the algebraic analysis, the independence
of the emergent behavior is predicted as one organizational structure in the
reaction network. Since no other qualitatively stable sets are recognized in the
xor reaction network with two influx, the qualitative emergent behavior mode is
structurally constrained to one. When the network does not have the influx, on
the other hand, the number of organizations is 15. Results of the computation as
a qualitative emergent behavior cannot be conclusive until the initial condition
of the reactor is given. (X)

4 Case Study II: A Chemical Flip-Flop

In this section, we apply our approach to a more complicated example: the
flip-flop logic circuit. As opposed to the previous example, a flip-flop circuit is
bistable, which is achieved by two feedback connections. The fact that the circuit
is bistable will also become apparent when we analyze the organizations of our
chemical instantiation of the flip-flop. This allows us to explain the dynamical
behavior of the chemical flip-flop in terms of chemical organization theory on an
abstract level, which does not need to refer to concentration levels.

The RS (Reset and Set) flip-flop circuit consists of two nand gates connected
in parallel as shown in Figure 4 (A). The behavior can be described by the truth
table as shown in Figure 4 (B). The output of one logic gate is connected to
one of the two inputs of the other gate, forming a feedback loop. The “set”
operation (S̄, R̄) = (0, 1) changes the output Q to 1, and the “reset” operation
(S̄, R̄) = (1, 0) sets Q to 0. When both inputs are set to 1, the output is kept
as in the previous state. The one-bit information whether the output Q has
been 0 or 1 is stored by the “hold” operation, ie. (S̄, R̄) = (1, 1). Normally, the
input (S̄, R̄) = (0, 0) is prohibited, because the circuit will go into a state where
Q = 0 and Q̄ = 0. Application examples for the flip-flop are memory circuits
and circuits that can count.

Starting from the logic circuit diagram, a chemical reaction network is con-
structed in the same way as for the xor gate. The input variables of the circuit
are labeled a and b, and the output variables are c and d. For one nand gate,
the input variable is a and d, and the output is c. In the same way as for the
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Fig. 4. A chemical reaction network is constructed to implement the RS flip-flop logic
circuit with the help of chemical organization theory. The logic structure of the circuit is
shown in (A), and the behavior is shown in (B) as a truth table. The chemical reaction
network implementing the flip-flop with 8 molecular species and 12 reaction rules, and
the hierarchical organizational structure of the network is shown in (C). By adding
influx to the network, the number of organizations is reduced as shown in (D) and
(E). When the molecular species related to both input variables a and b are supplied
continuously as an influx, the organizational structure corresponds to the operation of
the flip-flop logic circuit. See text for details.



xor reaction network described in the previous section, four reaction rules are
derived from the nand truth table. Another four reaction rules are derived for
the other nand gate with b and c as input and d as output. Finally, destruction
reactions for all species are added, so that contradictory states degenerate, as in
the previous example. The flip-flop reaction network is constituted by 8 molec-
ular species M = {a, A, b, B, c, C, d, D} and 12 reaction rules shown in Figure
4 (C).

When we applied our analysis to the flip-flop reaction network without any
input flow, we found 25 organizations consisting of up to two molecules, which do
not react (Figure 4 (C)). These organizations represent all possible “qualitative
states” of the reaction vessel, provided that there is no input flow.

When two input species are injected into the system, the number of organi-
zations found in the network is reduced to two resp. three for each input case as
seen in Figure 4 (E). When the output species c, C, d, and D are not present in
the reactor, no reaction occurs due to the feedback loops. Thus, the smallest or-
ganization contains only the two inflow species. Above it, the designated output
species are included in the organizations. We can interprete this in the following
way: The flip-flop exists if c, C, d, or D is present in the reaction vessel. Re-
moving c, C, d, and D would also extinguish the chemical flip-flop. Or in other
words, the input molecules alone can not generate the organization representing
an operational mode of the flip-flop.

The operation of the flip-flop can be described by transitions between orga-
nizations: The set and reset operation move the reaction system to the states
corresponding to organization {a, B, C, d} (set) and {A, b, c, D} (reset). Recall
that for the set and reset operation we add {∅ → a, ∅ → B} and {∅ → A, ∅ → b}
to the set of reaction rules, respectively.

For the hold operation (∅ → A, ∅ → B), the flip-flop has two stable states
represented by the organizations {A, B, C, d} and {A, B, c, D}. If the vessel
had been in organization {a, B, C, d} before, it will move into organization {A,
B, C, d}; and if it had been in organization {A, B, c, D} before, it will move into
organization {A, B, c, D}. Symbolically speaking, the lowercase input species is
replaced by its uppercase version due to the input change, but the output state
remains unchanged.

For the sake of completeness, the cases in which only one influx is added
to the network are shown in Figure 4 (D). If the reactor is initialized to be
empty, the input species injected by the influx do not react. So, again, the
smallest organizations contain only the input species. Adding one species that
does not interact with the input species forms another organization. Since it does
not react, it also does not need to be produced, since no species decays in the
algebraic chemistry unless a decay reaction is explicitly defined. For example,
no reaction rule is applicable in the organizations consisting of the input species
a and the species related to variables b and c. Since adding other species makes
a reaction rule applicable that uses up a molecular species that can not be
reproduced, there exists no organization of size greater than two.



4.1 Dynamical Simulation
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Fig. 5. Dynamic behavior of the chemical reaction network implementing a RS flip-flop
logic circuit shown in Figure 4. The top figure shows the time course of the input species
a, A, b, and B. The bottom figure shows the concentrations of the output species.
Irreversible mass action kinetics is assumed for all reactions. Reaction rates are set to
k = 0.1 for all second order reactions and k = 1 for all irreversible constant influxes like
∅ → A. The reaction system is stochastically simulated with the biochemical network
simulator Copasi [23] using a compartment size of 10 ml.

In order to validate the discussion of the previous section we performed
stochastic simulations (using MGS [11] and Copasi [23]) of reaction systems
implementing the chemical flip-flop. Figure 5 shows a typical simulation run.
The influx is defined as an irreversible constant flux with kinetic parameter set
to 1. For all other reactions we chose irreversible mass action kinetics with the
kinetic parameter set to 0.1. During the first “hold” phase (0 - 100 s), the con-
centration of C and d remain high. In the following “reset” phase (100 - 200 s),
the input reactions ∅ → A and ∅ → b are added to “reset” the system so that the
output variable c is set to 0. The concentration of C and d decreases gradually
and species c and D accumulate in the reactor. The system eventually reaches
a state in which only members of the organization {A, b, c, D} are present as
expected from the algebraic analysis. In the next phase (200 - 300 s), the input
flow of b is replaced by that of B, ∅ → B, to “hold” the output of the previ-



ous phase. Although the input species have changed, no qualitative change is
detected in the bottom graph. Finally, in the last phase (300 - 400 s), the “set”
operation is executed by changing the influx ∅ → A to ∅ → a. The transition to
the state represented by the organization {a, B, C, d} is observed.

Although the same input species are injected in the two “hold” phases, the
qualitative states of the reactor are different depending on the initial conditions.
The bistable behavior of the flip-flop circuit is implemented dynamically by the
chemical reaction system, which we have expected from our theoretical analysis
in the previous section. The reaction network with the two influxes ∅ → A and
∅ → B has two organizations with four species: The system state in the first
“hold” phase corresponds to the organization {A, B, C, d}, and the members of
the organization {A, B, c, D} are present during the second “hold” phase.

5 Concluding Remarks

In this paper, a theoretical analysis method is proposed that helps to discover
and implement computing capabilities in (artificial) chemical reaction networks.
Given a list of molecular species and a list of reaction rules, the reaction network
is decomposed into a hierarchy of closed and self-maintaining sub-networks called
organizations. We have shown that the hierarchy of organizations helps to assess
the emergent dynamical behavior of the chemical reaction network under study.
When the approach is applied to a reaction network implementing a xor logic
gate, the hierarchy of organizations helps to predict its emergent dynamical
behavior. Defining different inputs leads to different organizations corresponding
to the various states of the gate. As another example, a flip-flop logic circuit
in which two nand gates are connected to each other via feedback loops is
implemented by a chemical reaction network. From the theoretical analysis, the
bistable behavior is reflected by two organizations found in the network. Using
chemical organization theory, we where able to explain the properties of the
chemical flip-flop in a new, comprehensible way by referring to the Hasse diagram
of organizations (Figure 4). Furthermore the “constructive” dynamics of the flip-
flop could be described as a movement between organizations (Figure 4 (E)).
This description is more compact than a classical description referring to the
8-dimensional concentration state space, as demonstrated in Section 4.1.

When designing a system with numerous small, extensively interacting com-
ponents, its global behavior cannot easily be predicted from the known local
interactions. A general theory of emergence is desirable not only for analyt-
ical purposes, but also for engineering such systems. If local interactions are
restricted to processes that are expressible as chemical reaction rules, the theory
of chemical organization helps to determine the system’s repertoir of potential
behavior patterns. Since only network structure is considered for the analysis,
also non-chemical reaction networks, e.g. social interaction networks, can be
investigated. The encouraging results presented in this paper suggest that the
theory of chemical organizations is a promising candidate to contribute to a gen-



eral theoretical framework to master self-organization in complex chemical-like
information systems.
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