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Abstract. We intro duce a new algorithm for autonomous experimenta-
tion. This algorithm usesevolution to driv e exploration during scienti¯c
discovery. Population size and mutation strength are self-adaptive. The
only variables remaining to be set are the limits and maximum resolution
of the parameters in the experiment. In practice, theseare determined by
instrumentation. Aside from conducting physical experiments, the algo-
rithm is a valuable tool for investigating simulation models of biological
systems.We illustrate the operation of the algorithm on a model of HIV-
immune system interaction. Finally , the di®erencebetweenscouting and
optimization is discussed.

1 In tro duction

Perplexing complexity is prevalent in biology acrossthe scale from single cells
to ecosystems.Unraveling the intricate and manifold interplay of components in
biological systemsnecessitatescomprehensive information. Acquiring this infor-
mation is challenging becausethe complexity of living systemsentails extensive
factor interaction. As an implication of these interactions the results of biolog-
ical experiments have in generala narrow scope. Thus it is often impossibleto
synthesizequantitativ e system-level models form data in the existing literature,
becausemeasurements were obtained in disparate or unreported contexts.

Consequently , experiments are the limiting resourcefor quantitativ e systems
biology. Automated high-throughput methods and recent sensortechnologiesare
well suited to addressthis problem. To realize their potential, however, compu-
tational techniques have to be brought to bear not only to discover regularities
in existing data, but rather the experimental procedure itself has to be embed-
ded in a closed-loop discovery process.Only the latter a®ordsthe intervention
of the computer during the experimental processrequired for full utilization of
both the material subject to investigation and equipment time [1,2].

With the advent of large-scalebiological modelsthe needto apply autonomous
experimentation alsoto simulations becameapparent. For example,a di®erential
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Fig. 1. Scouting combines the notion of information being equivalent to surprise value
[11] with evolutionary computation for autonomous exploration. Seetext for details

equation model of the epidermal growth factor receptor signaling pathway con-
tains 94 time varying state variables and 95 parameters [3]; or a recent model
of E. coli contains more than 1200 metabolites and reactions [4]. Aside from
the combinatorial explosion of the parameter spacewith increasing number of
parameters,the analysisof the dynamic behavior of such systemsis further com-
plicated by the the rich interactions among the parameters that is typical for
biological systems.

In the present context, the work by Kulkarni and Simon [5] is of particu-
lar interest. They developed a program that attempts to generateexperiments,
in which unexplained phenomenaare enhanced.Notably, the program doesnot
start out with a pre-set goal as is common in optimization experiments but
decideson its objectives dynamically. This work demonstrated that an algo-
rithm can successfullynavigate an immensesearch spaceby emulating the in-
terplay of adjusting hypothesesand modifying experiments, which is character-
istic of human experimenters [6]. Recently , evolutionary computation has been
applied to autonomous experimentation [7] and was employed in conjunction
with computer-controlled °uidics to characterize protein responsewith regard
to chemical signals [8]. This method, named scouting, has also been suggested
for detecting and localizing unusual chemical signatures [9]. A drawback of the
scouting algorithm so far was that several application-dependent parameters
needto be set by the user to achieve good performance.

We developed self-adaptivescouting combining the scouting algorithm with
two parameteradaptation strategies.In the following, ¯rst the improvedscouting
algorithm with self-adaptive mutation strength and population sizeis presented.
Then, we illustrate the operation of the new algorithm on a simulation model
of HIV-imm une system interaction [10]. Finally, the crucial di®erencebetween
scouting and optimization is discussedin Section 4.

2 The Self-adaptiv e Scouting Algorithm

The scouting algorithm is an evolutionary experimentation method for design-
ing experiments dynamically, and experiments are scheduled to achieve maxi-
mal information gain at each step. In accordancewith communication theory,
information is quanti¯ed as the surprise value of arriving data [11]. No a priori
knowledgeabout the systemunder investigation is required. An overview of the
algorithm is depicted in Fig. 1. Given an experiment f , the scouting algorithm



interacts with it by sending speci¯cations x of the experiment and receiving
observed responsesr . During the scouting run, every experiment performed con-
tributes to an experiencedatabase,which storesthe observations (pairs of x and
r ). This databasetogether with a prediction mechanics (labeled as expectation)
forms an empirical model f 0 of the experiment given, and this model is used to
formulate an expected responser 0 from the experiment. The deviation d(r ; r 0)
betweenthe expectedand the real responseconstitutes the surprise for the spec-
i¯cation. In the evolution step, the speci¯cation is an individual o®springand
the surprise value is used as the ¯tness in generating the next o®springs.As
a result of this algorithm, experiments are performed densely in regions where
unexpected observations occur.

2.1 Adaptiv e Mutation Strength

In the evolution step of the algorithm, an o®spring is created from the parent
by adding a normally distributed value with mean 0 and standard deviation ¾.
Varying ¾ controls the strength of the mutation. Given the current surprise
value s and the current mutation strength ¾, the mutation strength is adapted
as follows:

¾Ã ¾¢e( ¹s¡ s)=¹s; (1)

where ¹s is the averagesurprise value over all past experiments. As a result of
this adaptation, the region from which o®springare chosenshrinks if the current
surprise is above the averagesurprise.A surprisevalue below the average,on the
other hand, causesthe region to expand|ev entually leading to random search.

We also investigated standard step size adaption methods from evolution
strategies (ES), e.g., ref. [12,13] and found that those adaptation methods fail
to keepup with the dynamics of our ¯tness landscape1.

2.2 Adaptiv e Population Size

Originally , the population size ¸ had to be given by the user and determines
the number of o®springgeneratedfrom one parent (i.e., a (1; ¸ )-strategy in ES-
terminology). If the population sizeis constant, we found that someindividuals
with high ¯tness are discardedbecausethere wasoneindividual with even higher
¯tness selectedasthe parent for the next generation.Conversely, it alsohappened
that individuals with low ¯tness were selectedas a parent.

The secondadaptation scheme is developed to avoid this situation. We in-
tro duced an adaptive generation change.Whenever the surprise value is higher

1 In the scouting algorithm, the ¯tness is obtained as the deviation between an ex-
pectation computed from the experience database and an observation. Since every
experiment is stored in the experience database, the expectation improves contin-
uously and the ¯tness landscape changes rapidly . In a deterministic setting (e.g.,
where the experiment is a simulation without randomness) even the individual with
the highest ¯tness will have zero ¯tness when it is evaluated a secondtime (cf. [14,
15]).



than a threshold, the speci¯cation of the experiment is selectedasa parent. The
threshold at generation g is denoted as £ (g) and de¯ned as the averagesurprise
value of the second-best individuals in the past generations:

£ (g) :=
1

g ¡ 1

g¡ 1X

k=1

s(k )
2;¸ k

for g > 1; £ (1) := 0: (2)

Following Beyer and Schwefel [16], we use the notation of order statistics
(e.g., ref. [17]) by identifying the surprisevalue of the second-best individual out
of ¸ k individuals of generationk by s(k )

2;¸ k
. The population sizeat generationk is

¸ k . For a generation with only one member, we de¯ne this individual to be the
\second-best": s(k )

2;1 := s(k )
1 , where s(k )

i is the surprise value of the i th individual
of generation k (in the order of experiments performed).

The threshold is calculated as described above becausethe second-best sur-
prise valueseparatesthe best, which is selectedasthe parent for the next genera-
tion, from the other o®spring.The second-best surprisevalue works implicitly as
a threshold in each generation.Furthermore, this method guaranteesthe thresh-
old to be above the averagesurprise value ¹s, so that the mutation strength ¾
can becomeboth bigger and smaller using the schemeof Sec.2.1.

2.3 Pseudo Co de

The complete scouting algorithm is presented here in more detail as pseudo
code. During initialization (line 1{5), the minimum mutation strength ¾min and
the number of experiments to perform tmax is set by the user. The mutation
strength ¾is initialized with 1. The number of the current experiment t and the
number of the current generation g is set to 0. In line 6{9, an initial experiment
speci¯cation is randomly chosen, the experiment performed, and stored with
responser in the experiencedatabaseDB. x (g)

i is the experiment speci¯cation
of the i th individual of generation g. Within the while -loop, a new generation
is started by choosing the parent x (g) of generationg to be the last individual of
the last generation (line 13). The new generation is then populated within the
rep eat -loop. In line 16, a new experiment speci¯cation is created as a mutated
copy of the parent individual (seeSec.2.1), and the expectation r 0 is computed
from the experiencedatabase. This is done here, as in ref. [8], by averaging
over the (up to) 5 closestexperiment entries from the experiencedatabasewith
inversecubic distance weighting. The responser is derived by performing the
experiment, and the result is stored in the experience database. Finally, the
surprisevalue is calculatedin line 21,and the mutation strength is adaptedin line
22 (seeSec.2.1). In generation g, the mean surprise value over all experiments
is calculated as follows:

¹s :=
1
g

gX

k=1

1
¸ k

¸ kX

i =1

s(k )
i : (3)

The rep eat -loop is left and a new generationstarted, oncethe surprise value of
an experiment is above the threshold £ (g) (seeSec.2.2).



Algorithm: Self-adaptive Scouting

1 ¾min Ã minim um resolution # minimumresolution
tmax Ã maximum experiments # number of exp. to perform
¾ Ã 1 # mutation strength
t Ã 0 # time (experiments)

5 g Ã 0 # time (generations)
x (0)

¸ 0
Ã random speci¯cation # choose initial experiment

r Ã f (x (0)
¸ 0

) # conduct experiment
t Ã t + 1 # increment time (experiments)
DB Ã InsertIntoDB( DB, ( x (0)

1 ; r )) # initialize experience db

10 while t < tmax do
g Ã g + 1 # start a new generation
¸ g Ã 0 # number of individuals
x ( g) Ã x ( g¡ 1)

¸ ( g ¡ 1)
# choose the parent

rep eat
15 ¸ g Ã ¸ g + 1 # add a new individual by

x ( g)
¸ g

Ã Mutate( x ( g) ; ¾) # mutating the parent

r 0 Ã Predict( DB; x ( g)
¸ g

) # compute expectation

r Ã f (x ( g)
¸ g

) # conduct experiment
t Ã t + 1 # increment time (experiments)

20 DB Ã InsertIntoDB( DB, ( x ( g)
¸ g

; r )) # experience database

s( g)
¸ g

Ã d( r ; r 0) # compute surprise

¾ Ã Max(¾min ; ¾¢exp(1 ¡ s( g)
¸ g

=¹s) ) # adapt mutation strength

un til s( g)
¸ g

> £ ( g) or t ¸ tmax

end

3 Scouting an HIV-imm une System Mo del

Now we demonstrate the behavior of our new algorithm by applying it to a
concrete model of immunological control of HIV by Wodarz and Nowak [10].
The model is a 4-dimensional ordinary di®erential equation (ODE) system. A
mathematical analysisrevealsthat the model hastwo asymptotically stable ¯xed
points. Using scouting, we will now explore how the model behaves depending
on its initial state given a ¯xed parameter setting.

3.1 De¯nition of the Exp erimen t

The experiment is a dynamic simulation of the the immunological control model
taken from [10], which contains 4 variables: uninfected CD4+ T cells x, infected
CD4+ T cellsy, cytotoxic T lymphocyte (CTL) precursors(CTLp) w, and CTL
e®ectorsz. The dynamics is given by the ODE system: _x = ¸ ¡ dx ¡ ¯ xy; _y =
¯ xy ¡ ay ¡ pyz; _w = cxyw ¡ cqyw ¡ bw; _z = cqyw ¡ hz. Uninfected CD4+ T
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Fig. 2. Surprise value s( g)
i and mutation strength ¾while exploring the behavior of the

HIV immunology model with the self-adaptive scouting algorithm. A surprise value
higher than the average decreasesthe mutation strength. The mutation strength is
increased, when the surprise value is less than the average (see Eq. 1). This muta-
tion strength adjustment helps the scouting algorithm to concentrate the samples on
surprising regions

cells are produced at a rate ¸ , decay at a rate dx, and becomeinfected at a
rate ¯ xy. Infected cells decay at a rate ay and are killed by CTL e®ectorsat a
rate pyz. The production of CTLp at rate cxyw requiresuninfected CD4+ cells,
virus load represented by y, and CTLp themselves.CTLp decay at a rate bw and
di®erentiate in CTL e®ectorsat a rate cqyw. CTL e®ectorsdecay at a rate hz.
Here we set the parameters as in ref. [10]: ¸ = 1; d = 0:1; ¯ = 0:5; a = 0:2; p =
1; c = 0:1; b = 0:01; q = 0:5; h = 0:1.

Given a speci¯cation x = (x1; x2; x3; x4), we perform the experiment and
obtain the response r = (r 1; r 2; r 3; r 4) in the following way: (1) We set the
initial state of the ODE system as follows: x t =0 = x1; yt =0 = x2; wt =0 = x3 £
0:05; zt =0 = x4. (2) We integrate the ODE numerically (using lsode built in
octave [18]) for a duration of t1 (here, t1 = 500) and obtain the responseas the
¯nal state: r 1 = x t = t 1 ; r 2 = yt = t 1 ; r 3 = wt = t 1 ; r 4 = zt = t 1 :

3.2 Scouting the Mo del

For scouting, we set the range of speci¯cation x of the experiment to [0; 1]4

and the minimum mutation strength ¾min = 0:01. We allow a total number
of tmax = 2000 experiments in a scouting run. Every experiment integrates
numerically the ODE representing the HIV immunology model.

Figure 2 shows the progressof the surprisevalue s(g)
j (left top) and mutation

strength ¾(left bottom) of a typical run of (self-adaptive) scouting.On the right-
hand side, experiments 50{100 are shown in detail. Surprise value and mutation
strength are plotted together with the averagesurprise value ¹s to illustrate the
mutation strength adaptation. The di®erencebetweenthe current surprisevalue
and the average surprise determines the adaptation of the mutation strength
according to Eq. 1.

The time evolution of the population size¸ g is plotted on the lefthand sideof
Fig. 3. For the purposeof explaining the population sizeadaptation, the right-
hand side of the graph shows in detail the surprise value of every individual
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Fig. 3. Population size ¸ g and threshold £ ( g) . Seetext for details

experiment from generation 10{17, the second-best surprise, and the threshold.
Generation 17 consists of 6 individuals x 40 : : : x45 (x i denotes the i th experi-
ment conducted). Becausethe surprise of the 6th o®spring is greater than the
threshold, the individual x 45 is selectedto be the parent of generation 18. The
surprise experiencedby the experiment x 43 = x (17)

4 is the second-best surprise
value in the generation. This value is usedto calculate the threshold for the fol-
lowing generation. Sincethe ¯rst o®springof generation 15 (x 35 = x (15)

1 ) yields
a higher surprise than the threshold, the population size of generation 15 is 1.
The second-best surprise value for this generation is, in this case,the best one.

Figure 4 shows the 2000 speci¯cations sampled by the scouting algorithm.
The 4-dimensionaldata is projected on 6 graphs showing every possiblecombi-
nation of the four dimensions.Each point represents an initial state of the ODE
model. The samplingpoints seemto spreadequally exceptfor the last graph with
CTL precursorsand e®ectorsas axes.The pattern appearing in the last graph
matcheswith the border of the two basinsof attraction of the two asymptotically
stable ¯xed points of the ODE model. The respective dynamical behavior of the
model is shown in Fig. 5. As seenin Fig. 4, scouting hasexplored the borderline
between the two modes of behavior more accurately, thus the borderline can
be described much more precisely than for caseswhere systematic or random
sampling would have beenused.To illustrate this, a 2-dimensionalprojection of
systematic sampling given by a full 74 factorial designis shown in Fig. 6. In this
designof experiments, each of the 4 factors x1; : : : ; x4 is explored equidistantly
on 7 levels [19]. With approximately the samenumber of experiments as in the
scouting method, the borderline can only roughly be approximated.

4 Scouting is not Optimization

It is important to note that scouting as described here is not a classicalopti-
mization method. Generally, the aim of optimization algorithms is ¯nding the
best solution among all possible solutions. More formally, given an objective
function F : Y ! Q, which assignsto each solution from the search spaceY a
certain quality q 2 Q, an optimization algorithm tries to ¯nd the solution y 2 Y
such that F (y ) getsmaximized. The result of optimization is a singlebest-so-far
solution y . For scouting, an experiment f : X ! R is given, where X is the
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Fig. 4. Six di®erent 2-dimensional projections of 2000 sampled locations (speci¯ca-
tions) of a typical scouting run on the HIV immunology model developed by Woodarz
and Nowak [10]. This model is described as an ODE with four variables. The scouting
algorithm initializes the variables, which are plotted as dots, and observes the states
of the model after 500 time steps as the response.When the locations are plotted with
CTL precursors and e®ectorsas axes (lower rightmost plot), a pattern of densearea
shows up. The pattern matcheswith the border of two modesof behavior of the model,
which are shown in Fig. 5

search spaceconsisting of all possibleexperiment speci¯cations and R the set
of all possibleresponses.In contrast to optimization, the objective here is not
to ¯nd a single best experiment x 2 X (or a pareto set), but to gain as much
information about f aspossibleby conducting experiments. The result of scout-
ing is an experiencedatabase,which embodies the completeknowledgeacquired
about f and can be consideredas an empirical model.

Trivially , every computational problem can be formulated as an optimiza-
tion problem, e.g., by de¯ning the objective function to be optimum when
its argument is the solution of the problem. For example, a sorted sequence
y = (y1; : : : ; yn ) optimizes the objective function F (y ) =

P
i<j (yi < yj ). Most

sorting algorithms, however, contradict the typical picture of optimization where
a sequenceof evaluations of the objective function leads to a solution. Bubble
sort, for instance, might be better regarded as a greedy strategy that seeksa
local optimum to achieve the global optimum. The same is true for scouting
with respect to the (implicit) aim of maximizing the total information about the
experiment f . Every step (or every generation) of the scouting algorithm can be
viewed asa step of a greedystrategy that tries to maximize the local information
gain in terms of maximal surprise in the next experiment.
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5 Concluding Remarks
We intro duced an algorithm capableof exploring unknown phenomenawithout
the needfor manual adjustments aimed at an application domain. We described
how the two parameterscrucial for the exploration, the mutation strength and
the population size,can be adapted automatically, and why existing techniques
for evolutionary optimization were not applicable. Our experiencewith the al-
gorithm provides some evidence that it can be applied usefully for exploring
complex systems.However, the next important step is to quantify the perfor-
mance of scouting systematically. A suitable assessment measuremay be the
predicting strength of the experience database after a given number of sam-
ples.The processof evolution underlies the complexity observed throughout the
realms of biology|it may also hold the key to tackle this complexity.
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