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Motivation

• Systems Biology deals with interplay of
biological components rather than components
themselves.

• Reconstructing nonlinear networks from
(incomplete) data is a necessary but
difficult task.
=⇒ Evolutionary computing is well suited to this!

• Furthermore, bio-inspired algorithms provide a flexible,
fault-tolerant, reliable computing paradigm.
=⇒ Evolutionary computing can support design of such

algorithms.

• Help in understanding emergence of biological complexity.
=⇒ Evolution becomes observable.
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Biological Principles of Cell Signalling
Information Processing in Living Cells
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ESIGNET – Research Project
Evolving Cell Signalling Networks (CSNs) in silico

European interdisciplinary research project

• University of Birmingham (Computer Science)

• TU Eindhoven (Biomedical Engineering)

• Dublin City University (ALife Lab)

• University of Jena (Bio Systems Analysis)

Objectives

• Study the computational properties of CSNs

• Developing new ways to model and predict real CSNs

• Gain new theoretical perspectives on real CSNs

Computing Facilities

• Cluster of 33 workstations
(two Dual Core AMD OpteronTM 270 processors, Rocks Linux)
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Artificial Network Evolution
Introductory Example

Task: addition of two positive real numbers

R0

output1

X1

input1

R1

X2

R2

input2

R0

X1 output1

input2

R2 R1

input1

snapshots of artificial network evolution

• R0, R1, R2 identify reactions
• input1, input2, output1:

distinguished species
• X1, X2: auxiliary species
• Stepwise modification of network

structure and kinetic parameters
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Two-Level Evolutionary Algorithm
Artificial Network Evolution in Detail

• Separation of structural evolution from parameter fitting
• Idea: parameters can adapt to mutated network structure
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• Upper level: network structure, analogue to graph-GP
• Lower level: parameter fitting using standard Evolution

Strategy

=⇒ All networks handled as SBML models
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Operators and Parameterisation
Artificial Network Evolution in Detail

EA used here employs eight different mutations

Operators for structural evolution

• Addition/deletion of a species

• Addition/deletion of a reaction

• Connection/removal of an existing
species to/from a reaction

• Duplication of a species with all its
reactions (discussed in detail later)

Operator for parameter evolution

• Mutation of a randomly selected
kinetic parameter by addition
of a Gaussian variable

Network size can be limited.
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Parameter Fitting by an Evolution Strategy
Artificial Network Evolution in Detail

• Small population size
=⇒ due to high computational costs of fitness evaluation

• Non-overlapping generations (comma-selection)
=⇒ supports self-adaptation

• Self-adaptation of strategy parameters
=⇒ balancing between exploration of search space and

fine-tuning

• Parameter settings copied from parent to offspring
networks
=⇒ incremental parameter fitting

• Initial parameters uniformly distributed between given
minimal and maximal values
=⇒ no extra bias introduced
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Selection and Fitness Evaluation
Artificial Network Evolution in Detail

Selection on structural level

• Overlapping generations (plus-selection), elitistic
=⇒ good solutions cannot be lost

• Fixed population size (10 . . . 100)
=⇒ due to computational costs

Fitness evaluation

• Numerical integration of reaction
network using ODE solver (SOSlib)

• Fitness measure given by weighted
squared distance to target
time course (output species)
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Result: Logarithm Network
Evolving Arithmetic Functions

• We compare three settings:
• two-level EA
• one-level EA (simultaneous structural and parameter

evolution) for many generations
• one-level EA with a larger population

• Setup such that all approaches use same number of
fitness evaluations (normalisation)

• Two-level approach clearly superiour for this task
• Both other approaches converge prematurely
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Result: Third Root Network
Evolving Arithmetic Functions

• Same three settings as in logarithm example

• Depicted on logarithmic scale

• Result also confirms advantage of two-level EA

• Differences are not as pronounced as in logarithm example
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Result: Effect of Duplication Operator
Duplication of a species with all its reactions

species duplication

• Search for “soft" mutation operators

• Inspired by gene duplication in living organisms

• Adapted to evolution of arithmetic functions
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• In log example, duplication doesn’t improve or worsen observed results

• However, we still regard duplication as potentially promising
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Case Study: Human Spindle Assembly Checkpoint
Biological Background

• Sequence of events starting from
one cell leading to two daughter cells

• Focus on checkpoint mechanism in
mitosis (cell division)
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• SAC prevents cell cycle progression until all chromosomes are
attached to mitotic spindle

• Defects lead to cell death, aneuploidy, aging, and cancer
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Case Study: Human Spindle Assembly Checkpoint
Modelling and Evolutionary Optimisation

• 17 species, 11 reactions

• Compartments represent
chromosomes

• Structural evolution adds two
(unrealistic) reactions:

BubR1Z → Mad1∗X + BubR1∗Y
BubR1∗X + Cdc20Y → Mad2X + Cdc20Y
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Conclusions and Outlook

• Two level approach enhances performance of EA for
biological network reconstruction

• Duplication operator interesting and promising approach in
general, although first results for the logarithm network
show no convincing effect yet

• So far, we mostly tested evolution of networks for
arithmetic functions

• Evolutionary method can improve and predict realistic
complex networks exemplified here by human Spindle
Assembly Checkpoint

• Further studies will target additional parameter settings as
well as application to evolution of computing devices

• Interested in our software? thlenser@minet.uni-jena.de
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