Artificial Network Evolution

Results

Case Study

Conclusions o

Towards Evolutionary Network Reconstruction Tools for Systems Biology

T. Lenser T. Hinze B. Ibrahim P. Dittrich

{thlenser,hinze,ibrahim,dittrich}@cs.uni-jena.de

Bio Systems Analysis Group Friedrich Schiller University Jena

www.minet.uni-jena.de/csb

5th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics

Towards Evolutionary Network Reconstruction Tools

Artificial Network Evolution

Results

Case Study

Conclusions o

Outline

Towards Evolutionary Network Reconstruction Tools in Systems Biology

Introduction

Motivation, Cell Signalling, ESIGNET Artificial Network Evolution

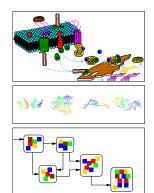
Two-Level Evolutionary Algorithm Operators, Parameterisation, Fitting Selection and Fitness Evaluation

Results

Evolving Arithmetic Functions log, $\sqrt[3]{}$ Effect of Duplication Operator

Case Study: Spindle Checkpoint

Biological Background Modelling and Evol. Optimisation Conclusions



Introduction	
0000	

Results

Case Study

Conclusions

Motivation

- Systems Biology deals with interplay of biological components rather than components themselves.
- Reconstructing nonlinear networks from (incomplete) data is a necessary but difficult task.

gene expression data visualised by microarray (TU Dresden, BIOTEC)

- \implies Evolutionary computing is well suited to this!
- Furthermore, bio-inspired algorithms provide a flexible, fault-tolerant, reliable computing paradigm.
 ⇒ Evolutionary computing can support design of such
 - algorithms.
- Help in understanding emergence of biological complexity.
 ⇒ Evolution becomes observable.

Introduction
0000

Results

C<mark>ase Study</mark> oo Conclusions

Motivation

- Systems Biology deals with interplay of biological components rather than components themselves.
- Reconstructing nonlinear networks from (incomplete) data is a necessary but difficult task.

gene expression data visualised by microarray (TU Dresden, BIOTEC)

 \implies Evolutionary computing is well suited to this!

- Furthermore, bio-inspired algorithms provide a flexible, fault-tolerant, reliable computing paradigm.
 - \implies Evolutionary computing can support design of such algorithms.
- Help in understanding emergence of biological complexity.
 ⇒ Evolution becomes observable.

Introduction
0000

Results

C<mark>ase Study</mark> oo Conclusions

Motivation

- Systems Biology deals with interplay of biological components rather than components themselves.
- Reconstructing nonlinear networks from (incomplete) data is a necessary but difficult task.

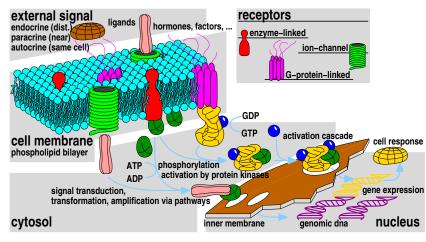
gene expression data visualised by microarray (TU Dresden, BIOTEC)

 \implies Evolutionary computing is well suited to this!

- Furthermore, bio-inspired algorithms provide a flexible, fault-tolerant, reliable computing paradigm.
 - \implies Evolutionary computing can support design of such algorithms.
- Help in understanding emergence of biological complexity.
 ⇒ Evolution becomes observable.

Biological Principles of Cell Signalling

Information Processing in Living Cells



Towards Evolutionary Network Reconstruction Tools

0000

Artificial Network Evolution

Results

Case Study

Conclusions o

ESIGNET – Research Project

Evolving Cell Signalling Networks (CSNs) in silico

European interdisciplinary research project

- University of Birmingham (Computer Science)
- TU Eindhoven (Biomedical Engineering)
- Dublin City University (ALife Lab)
- University of Jena (Bio Systems Analysis)

Objectives

- Study the computational properties of CSNs
- Developing new ways to model and predict real CSNs
- Gain new theoretical perspectives on real CSNs

Computing Facilities

 Cluster of 33 workstations (two Dual Core AMD OpteronTM 270 processors, Rocks Linux

Towards Evolutionary Network Reconstruction Tools

T. Lenser, T. Hinze, B. Ibrahim, P. Dittrich

SIXTH FRAMEWORK PROGRAMME

DCU

TU/e

Artificial Network Evolution

Results

Case Study

Conclusions o

ESIGNET – Research Project

Evolving Cell Signalling Networks (CSNs) in silico

European interdisciplinary research project

- University of Birmingham (Computer Science)
- TU Eindhoven (Biomedical Engineering)
- Dublin City University (ALife Lab)
- University of Jena (Bio Systems Analysis)

Objectives

- Study the computational properties of CSNs
- Developing new ways to model and predict real CSNs
- Gain new theoretical perspectives on real CSNs

Computing Facilities

 Cluster of 33 workstations (two Dual Core AMD OpteronTM 270 processors, Rocks Linux)

Towards Evolutionary Network Reconstruction Tools

DCU

SIXTH FRAMEWORK PROGRAMME

TU/e

Artificial Network Evolution

Results

Case Study

Conclusions o

ESIGNET – Research Project

Evolving Cell Signalling Networks (CSNs) in silico

European interdisciplinary research project

- University of Birmingham (Computer Science)
- TU Eindhoven (Biomedical Engineering)
- Dublin City University (ALife Lab)
- University of Jena (Bio Systems Analysis)

Objectives

- Study the computational properties of CSNs
- Developing new ways to model and predict real CSNs
- Gain new theoretical perspectives on real CSNs

Computing Facilities

 Cluster of 33 workstations (two Dual Core AMD OpteronTM 270 processors, Rocks Linux)

DCU

SIXTH FRAMEWORK PROGRAMME

TU/e

Artificial Network Evolution

Results

Case Study

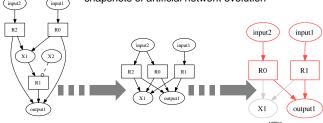
Conclusions o

Artificial Network Evolution

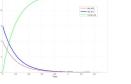
Introductory Example

Task: addition of two positive real numbers

snapshots of artificial network evolution



- R0, R1, R2 identify reactions
- input1, input2, output1: distinguished species
- X1, X2: auxiliary species
- Stepwise modification of network structure and kinetic parameters



Towards Evolutionary Network Reconstruction Tools

Artificial Network Evolution

Results

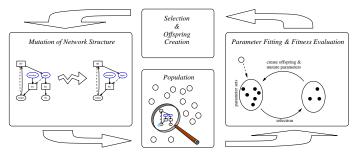
Case Study

Conclusions o

Two-Level Evolutionary Algorithm

Artificial Network Evolution in Detail

- Separation of structural evolution from parameter fitting
- · Idea: parameters can adapt to mutated network structure



- Upper level: network structure, analogue to graph-GP
- Lower level: parameter fitting using standard Evolution Strategy
- \implies All networks handled as SBML models

Towards Evolutionary Network Reconstruction Tools

Artificial Network Evolution

Results

Case Study

Conclusions o

Operators and Parameterisation

Artificial Network Evolution in Detail EA used here employs eight different mutations

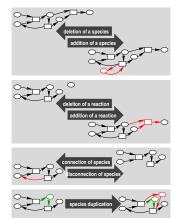
Operators for structural evolution

- Addition/deletion of a species
- Addition/deletion of a reaction
- Connection/removal of an existing species to/from a reaction
- Duplication of a species with all its reactions (discussed in detail later)

Operator for parameter evolution

 Mutation of a randomly selected kinetic parameter by addition of a Gaussian variable

Network size can be limited.



Parameter Fitting by an Evolution Strategy

Artificial Network Evolution in Detail

- Small population size
 - \Longrightarrow due to high computational costs of fitness evaluation
- Non-overlapping generations (comma-selection)
 - \implies supports self-adaptation
- Self-adaptation of strategy parameters
 - \Longrightarrow balancing between exploration of search space and fine-tuning
- Parameter settings copied from parent to offspring networks
 - \implies incremental parameter fitting
- Initial parameters uniformly distributed between given minimal and maximal values
 - \Longrightarrow no extra bias introduced

Artificial Network Evolution

Results

Case Study

Conclusions o

Selection and Fitness Evaluation

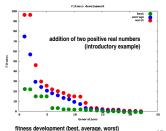
Artificial Network Evolution in Detail

Selection on structural level

- Overlapping generations (plus-selection), elitistic
 ⇒ good solutions cannot be lost
- Fixed population size (10...100)
 ⇒ due to computational costs

Fitness evaluation

- Numerical integration of reaction network using ODE solver (SOSlib)
- Fitness measure given by weighted squared distance to target time course (output species)



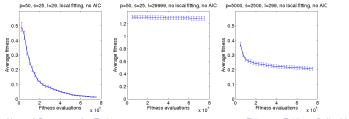
ESIGNET

Conclusions o

Result: Logarithm Network

Evolving Arithmetic Functions

- We compare three settings:
 - two-level EA
 - one-level EA (simultaneous structural and parameter evolution) for many generations
 - one-level EA with a larger population
- Setup such that all approaches use same number of fitness evaluations (normalisation)
- Two-level approach clearly superiour for this task
- Both other approaches converge prematurely



T. Lenser, T. Hinze, B. Ibrahim, P. Dittrich

Artificial Network Evolution

Results

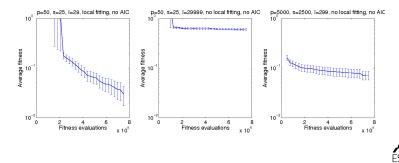
Case Study

Conclusions

Result: Third Root Network

Evolving Arithmetic Functions

- Same three settings as in logarithm example
- Depicted on logarithmic scale
- · Result also confirms advantage of two-level EA
- Differences are not as pronounced as in logarithm example



Artificial Network Evolution

Results

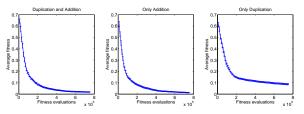
Case Study

Conclusions o

Result: Effect of Duplication Operator

Duplication of a species with all its reactions

- Search for "soft" mutation operators
- Inspired by gene duplication in living organisms
- Adapted to evolution of arithmetic functions

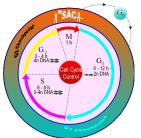


- In log example, duplication doesn't improve or worsen observed results
- However, we still regard duplication as potentially promising

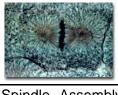
Introduction	Artificial Network Evolution	Results	Case Study	Conclusions
0000	00000	000	•0	0

Case Study: Human Spindle Assembly Checkpoint

Biological Background



- Sequence of events starting from one cell leading to two daughter cells
- Focus on checkpoint mechanism in mitosis (cell division)



Spindle Assembly Checkpoint (SAC)

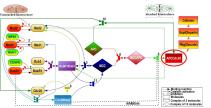
- SAC prevents cell cycle progression until all chromosomes are attached to mitotic spindle
- Defects lead to cell death, aneuploidy, aging, and cancer

Towards Evolutionary Network Reconstruction Tools

Introduction	Artificial Network Evolution	Results	Case Study	Conclusions
0000	00000	000	0●	0

Case Study: Human Spindle Assembly Checkpoint

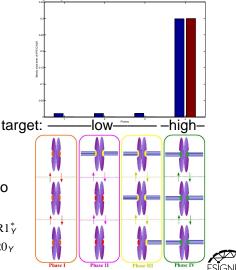
Modelling and Evolutionary Optimisation



- 17 species, 11 reactions
- Compartments represent chromosomes
- Structural evolution adds two (unrealistic) reactions:

 $BubR1_Z \rightarrow Mad1_X^* + BubR1_Y^*$

$$BubR1^*_{X} + Cdc20_{Y} \quad \rightarrow \quad Mad2_{X} + Cdc20_{Y}$$



Towards Evolutionary Network Reconstruction Tools

Intr		ł	ct	
mu	00	10	οι	
00)		

Results

Case Study

Conclusions

Conclusions and Outlook

- Two level approach enhances performance of EA for biological network reconstruction
- Duplication operator interesting and promising approach in general, although first results for the logarithm network show no convincing effect yet
- So far, we mostly tested evolution of networks for arithmetic functions
- Evolutionary method can improve and predict realistic complex networks exemplified here by human Spindle Assembly Checkpoint
- Further studies will target additional parameter settings as well as application to evolution of computing devices
- Interested in our software? thlenser@minet.uni-jena.de

