Outline

Motivation

Register Machines

Chemical Implementation Case Study

Future Work

Engineering of Chemical Register Machines Prague International Workshop on Membrane Computing 2008

R. Fassler, T. Hinze, T. Lenser and P. Dittrich {raf, hinze, thlenser, dittrich}@minet.uni-jena.de

2. June 2008

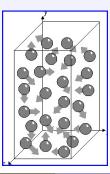
Outline	Motivation 000	Register Machines	Chemical Implementation	Case Study	Future Work
Outlir	ne				
1	Motivation • Goal				

- Realization
- P-System
- 2 Register Machines
- 3 Chemical Implementation
 - Chemical Variables
 - A Chemical Clock
 - Master Slave Flipflop
 - Chemical Registers
 - Chemical Program Control
- 4 Case Study
 - Integer Addition
 - Maximum
- 5 Future Work

Motivation

- Goal: Chemical system with Turing completeness
 - Use mass action kinetics only
 - Binary chemical information encoding
 - No assumptions like molecule structure or a hierarchy of membranes

Motivation


Realization:

- Artificial chemistry as P-System
- Registers composed of flip flops store information
- Chemical clock orders operations on registers
- P-System expands registers if necessary

P-Systems as Artificial Chemistries

Similarities:

- Many autonomous units like molecules or agents
- Decentralization
- Nondeterminism
- Stochasticity
- Data parallelism

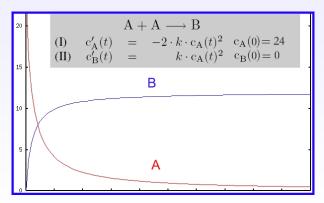
Register Machine

Definition: $M = (R, L, P, \#_0)$ with

- Registers $R = \{ \mathrm{R}_1, \ldots, \mathrm{R}_m \}$
- Labels (addresses) $L = \{ \#_0, \dots, \#_n \}$
- Instructions P
- Initial label $\#_0$
- Registers store binary values for natural numbers

Motivation

- Goal
- Realization
- P-System
- 2 Register Machines
- 3 Chemical Implementation
 - Chemical Variables
 - A Chemical Clock
 - Master Slave Flipflop
 - Chemical Registers
 - Chemical Program Control

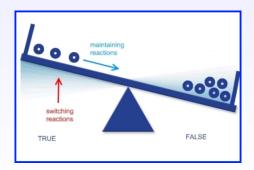

4 Case Study

- Integer Addition
- Maximum

Outline	Motivation	Register Machines	Chemical Implementation Case Stu	
Mass	Action K	inetics		

Definition: • Speed of an reaction depends on reactants concentrations and a constant factor

- No saturation
- No inhibitors

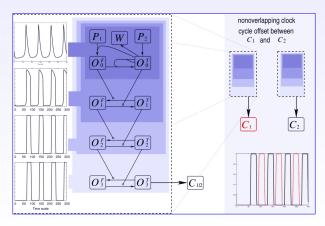

Outline

Variables:

Case Study

Chemical Implementation of Logical Variables

- Two species representing "true" and "false"
 - Correlated concentrations
 - Reactions to switch between "true" and "false"
 - Reactions to maintain consistency


Outline Motivation Register Machines

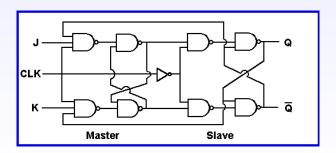
Chemical Implementation Case Study

Future Work

A Chemical Clock

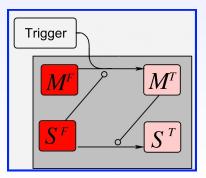
- Based on Belousov- Zhabotinsky reactions
- Cascade of variables derives high/low signals
- Two offset oscillators form the clock signal

Outline Motivation Register Machines Ch


Chemical Implementation Case Study

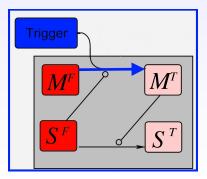
Future Work

Master Slave - Flipflop (MS-FF)


MS-FF: - technical role model

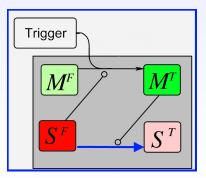
- Two-part device storing one bit
- Clocked to switch with offset
- Short switches at intended time
- Only one switch per positive edge

Master Slave - Flipflop


- Master part switches if triggered
- Slave part will adapt master part
- Encoded by two variables
- M/S-reactions separated by two clock signals

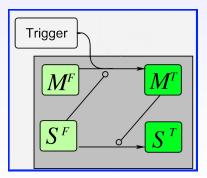
Outline Motivation Register Machines Chemical Implementation Case Study Future Work

Master Slave - Flipflop

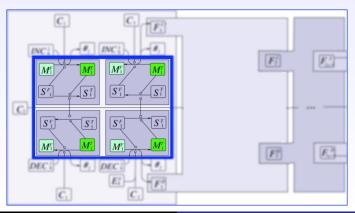

- Master part switches if triggered
- Slave part will adapt master part
- Encoded by two variables
- M/S-reactions separated by two clock signals

Outline Motivation Register Machines Chemical Implementation Case Study Future Work

Master Slave - Flipflop


- Master part switches if triggered
- Slave part will adapt master part
- Encoded by two variables
- M/S-reactions separated by two clock signals

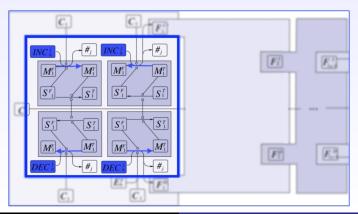
Outline Motivation Register Machines Chemical Implementation Case Study Future Work


Master Slave - Flipflop

- Master part switches if triggered
- Slave part will adapt master part
- Encoded by two variables
- M/S-reactions separated by two clock signals

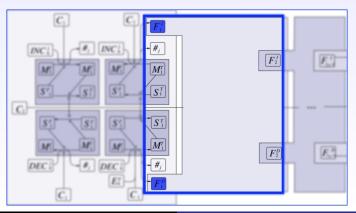
Outline	Motivation	Register Machines	Chemical Implementation Case Study ○○○○○○●○○○○○○○○○○○○○○○○○○○○○○○○	Future Work
Chem	ical Regi	sters		

- Registers: One MS-FF for each bit, chained
 - Extra variable to check if empty
 - Only the first bit can be flipped manually
 - Add carries will flip further bits

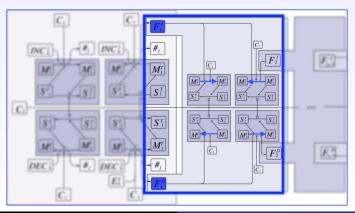


Outline	Motivation	Register Machines	Chemical Implementation Case Study	Future Work
Chem	ical Regi	sters		

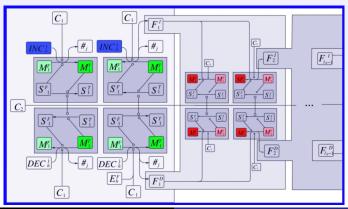
Registers: • One MS-FF for each bit, chained


 \circ

- Extra variable to check if empty
- Only the first bit can be flipped manually
- Add carries will flip further bits


Outline	Motivation	Register Machines	Chemical Implementation Case Study	Future Work
Chem	ical Regi	sters		

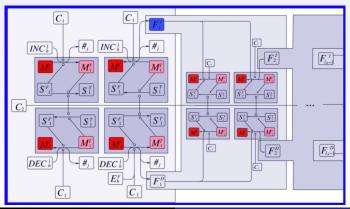
- Registers: One MS-FF for each bit, chained
 - Extra variable to check if empty
 - Only the first bit can be flipped manually
 - Add carries will flip further bits


Outline	Motivation	Register Machines	Chemical Implementation Case Study	Future Work
Chem	ical Regi	sters		

- Registers: One MS-FF for each bit, chained
 - Extra variable to check if empty
 - Only the first bit can be flipped manually
 - Add carries will flip further bits

Outline	Motivation	Register Machines	Chemical Implementation Case Study	Future Work
Chem	ical Regi	sters		

- Registers: One MS-FF for each bit, chained
 - Extra variable to check if empty
 - Only the first bit can be flipped manually
 - Add carries will flip further bits

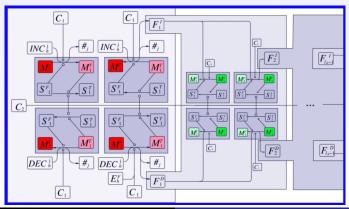


Raffael Fassler

Engineering of Chemical Register Machines

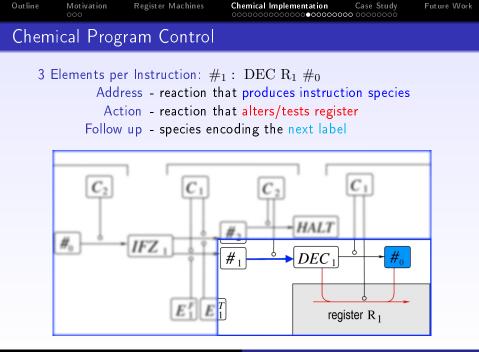
Outline	Motivation	Register Machines	Chemical Implementation Case Study	Future Work
Chem	ical Regi	sters		

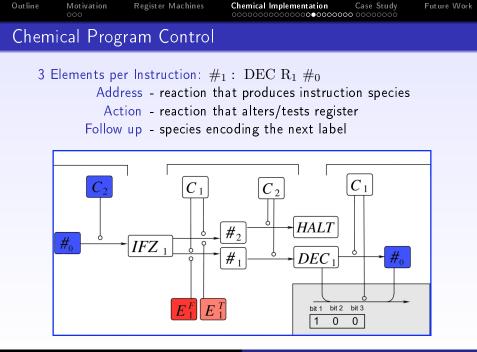
- Registers: One MS-FF for each bit, chained
 - Extra variable to check if empty
 - Only the first bit can be flipped manually
 - Add carries will flip further bits

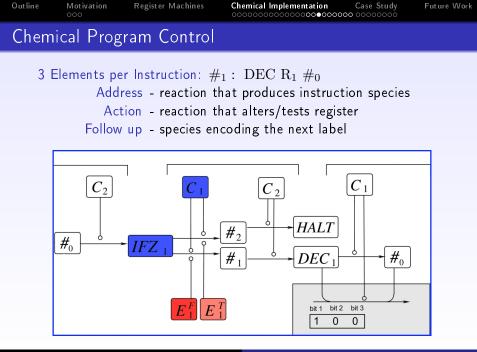


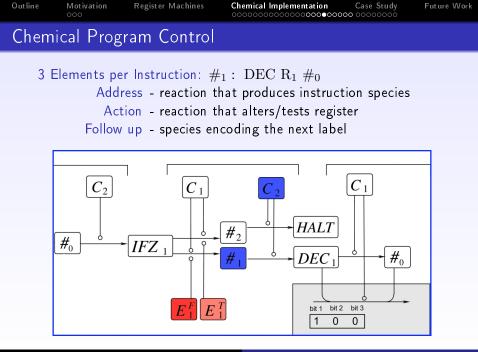
Raffael Fassler

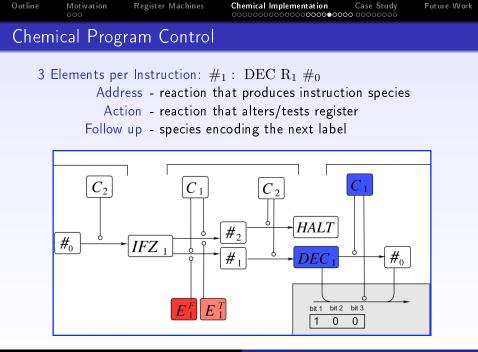
Engineering of Chemical Register Machines

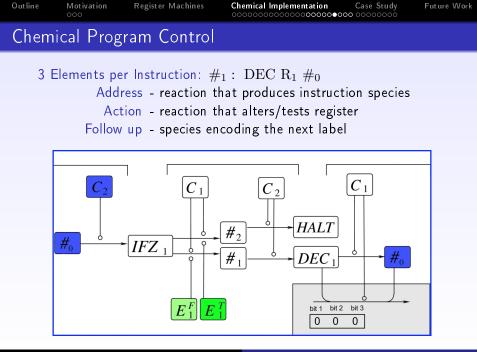

Outline	Motivation	Register Machines	Chemical Implementation Case Study	
Chem	ical Regi	sters		

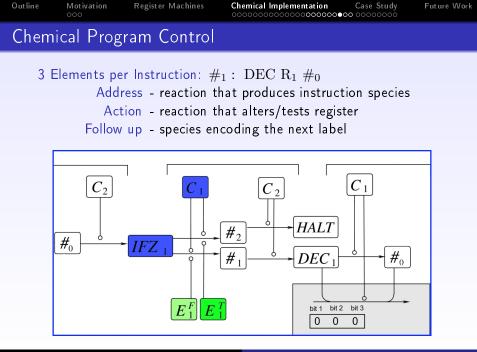

- Registers: One MS-FF for each bit, chained
 - Extra variable to check if empty
 - Only the first bit can be flipped manually
 - Add carries will flip further bits

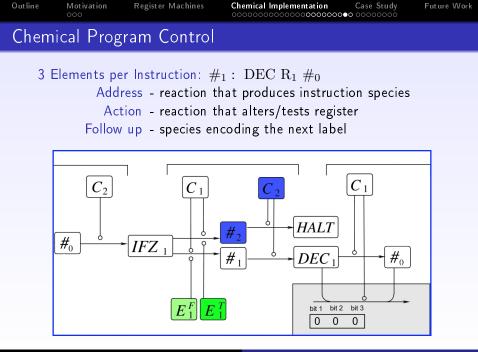


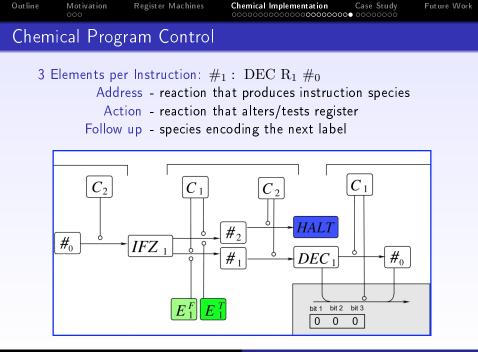

Raffael Fassler

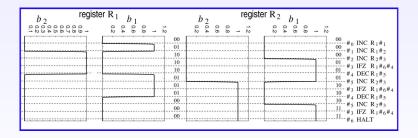

Engineering of Chemical Register Machines





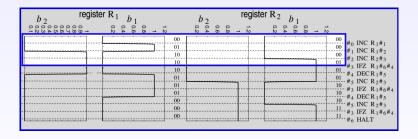





Case Study

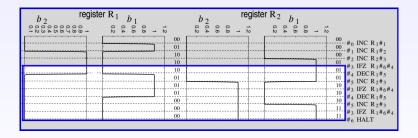
Implemented Examples:

- Counter mod 4
- Integer addition
- Max(x,y,z)


Outline	Motivation	Register Machines	Chemical Implementation	2	Future Work
Case	Study				

Integer Addition: 2 + 1 = 3

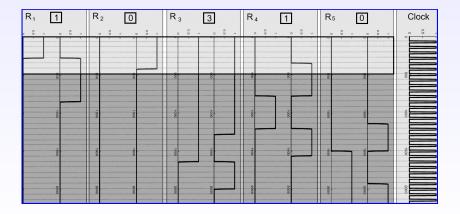
Outline	Motivation	Register Machines	Chemical Implementation	Case Study ○○ ○●○○○○○	Future Work
Intege	er Additic	n			


Initialization: 2 + 1 = 3

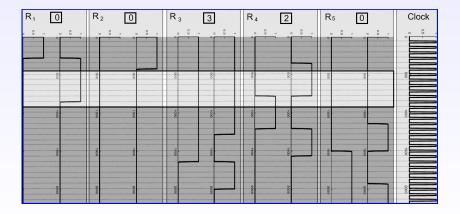

Outline	Motivation	Register	Machines

Integer Addition

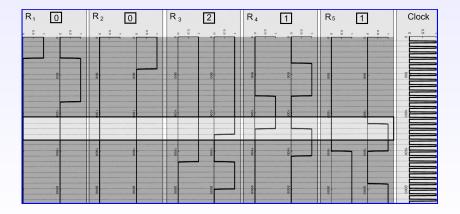
Computation: 2 + 1 = 3


Computation: max(2, 1, 3)

Engineering of Chemical Register Machines Raffael Fassler

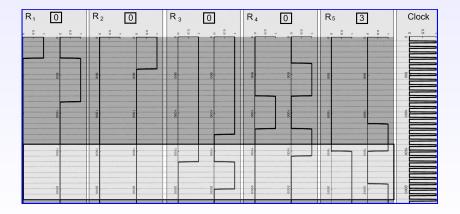

Case Study

Computation: max(2, 1, 3)


Case Study

Computation: max(2, 1, 3)

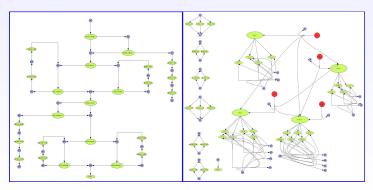
Case Study


Computation: max(2, 1, 3)

Engineering of Chemical Register Machines Raffael Fassler

Case Study

Computation: max(2, 1, 3)


Engineering of Chemical Register Machines Raffael Fassler

Case Study

Outline	Motivation	Register Machines	Chemical Implementation	Case Study	Future Work
Futur	e Work				

Parallelization:

- Consecutive read/write operations are merged into threads
- Operations in an thread are performed parallel
- Threads take the same time as a single operation

Outline	Motivation	Register Machines	Chemical Implementation	Case Study	Future Work

Thank you for your attention!