
Project no. 248992

Project acronym: NEUNEU

Project title: Artificial Wet Neuronal Networks from Compartmentalised
Excitable Chemical Media

Small or medium-scale focused research project (STREP)

Deliverable 2.4 - Report or publication on computation with one
and two droplets

Period covered: from 1.2.2010 to 29.2.2012 Date of preparation: 18.9.2009

Start date of project: 1.2.2010 Duration: 36 months

Project coordinator name: Dr. Peter Dittrich
Project coordinator organisation name: Friedrich Schiller University Jena



A simple model of interactions between

Belousov-Zhabotinsky droplets

Joanna Natalia Goreckaa, Jerzy Goreckib,c,

Jan Szymanskib and Konrad Gizynskib

a Institute of Physics, Polish Academy of Sciences,

Al. Lotnikow 36/42, 02-668 Warsaw, Poland

bInstitute of Physical Chemistry, Polish Academy of Sciences,

Kasprzaka 44/52, 01-224 Warsaw, Poland.

c Faculty of Mathematics and Natural Sciences,

Cardinal Stefan Wyszynski University

Dewajtis 5, Warsaw, Poland

February 16, 2012

Abstract

Lipid covered droplets containing solution of reagents of oscilla-

tory Belousov-Zhabotinsky reaction and surrounded by hydrocarbons

form an interesting system for studying information processing oper-

ations that can be directly executed by a chemical medium. Activa-
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tions are transmitted between droplets in contact so the ensemble of

droplets can be regarded as a prototype of a neural network. In the

paper we introduce a simple mathematical model that can be used to

simulate the time evolution of interacting droplet system in realistic

experimental conditions. The chemical dynamics is described by the

recently introduced, two variable model that correctly predicts the

period of oscillations for a large class of conditions at which droplets

are investigated. The parameters describing diffusion of activator and

its transport through separating lipids layers are fitted to match the

experimental results. We apply the model to determine the stable

modes of coupled oscillations in two identical droplets.

1 Introduction

Unconventional computing is a field of interdisciplinary research focused on

interpreting the natural time evolution of a physical system as a sequence

of information processing operations [1, 2]. A special attention within the

unconventional computing is given to chemical systems because chemical

processes are responsible for sensing, communication and decision making in

living organisms. Studies on unconventional computation with chemical me-

dia are concerned with processes at various spatial and temporal scales. The

systems considered for information coding and processing include stationary

states of reaction networks [3, 4], macroscopic spatio-temporal structures

appearing in reaction-diffusion processes [5] as well as selective bonding phe-

nomena at the level of individual molecules [6, 7].

It has been demonstrated that relatively simple chemical systems can
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imitate the behavior of biological neural networks [3, 8]. A typical nerve

system is build of non-linear elements (neurons) that are linked together via

communication channels in which signals propagate and form a specific net-

work. A chemical medium showing similar behavior can be generated with a

clever geometrical distribution of excitable and nonexcitable regions. Studies

on a chemical equivalent of neuron networks, for example based on photo-

sensitive Belousov-Zhabotinsky (BZ) medium with excitability controlled by

illumination level [8], have shown that the geometrical structure of fragments

characterized by different excitabilities plays equally important role as the

chemical kinetics. Even for quite simple excitable kinetics we can construct

logic gates and build a universal computer by setting the proper structure

of illuminated and non-illuminated regions [10]. However, in all applications

of photosensitive medium to information processing a human factor played

the crucial role because an experimentalist manually fixed the geometrical

distribution of illumination levels or operated the devices used to control the

experiment.

It seems much more challenging to find a chemical medium in which the

structure required for information processing is self-generated at properly se-

lected nonequilibrium conditions. A medium composed of droplets contain-

ing the water solution of reagents of BZ reaction that are separated by the

oil-phase is one of the systems in which self-realization of information process-

ing functions seems possible [11, 12]. Our experiments were concerned with

droplets covered by a layer of phospholipids and surrounded by hydrocarbons

[13]. The diameter of droplets in such medium is by an order of magnitude

larger than the those studied by Epstein group [11, 12, 14, 15, 16]. The pres-
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ence of lipid monolayer stabilized droplets mechanically so the structures

they form remained unchanged for hours. The time evolution of excitations

in such medium, that can be interpreted as a sequence of information pro-

cessing operations, is determined by the kinetics of Belousov-Zhabotinsky

reaction. In the case of ferroin catalyzed reaction two states of the medium,

corresponding to large concentrations of the catalyst in the reduced or the

oxidized forms can be easily distinguished by the color. In the following

we regard the state corresponding to a high concentration of the oxidized

catalyst (blue color of solution) as the excited one. In a droplet containing

oscillatory solution of BZ-reagents the excited state periodically re-appears.

We have observed ( see Fig. 1) that excitations of one droplet can influence

its neighbors via exchange of reagents through separating lipid layers. There-

fore, the structure of multiple droplets can be regarded as a prototype of a

neural network, where individual droplets play the role of nonlinear elements

(neurons) that are linked together and communicate. Fig. 1 shows that in

a typical experiment droplet excitations are not homogeneous. For droplets

with diameters exceeding 1mm we frequently observed pulses of excitation

propagating inside them. In such case the excited region covered a small

fraction of droplet volume.

Experiments with multiple droplets are difficult. The theoretical studies

and in-silico simulations of droplet structures with potential interest for in-

formation processing operations are helpful because they allow to test a large

number of configurations and concentrations of reagents and select the most

interesting for real experiments. In order to translate theoretical predictions

from the virtual world into reality we need a mathematical model that can be
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related quantitatively with experimental conditions. The aim of this paper

is to propose a simple yet realistic model that can be used to simulate the

time evolution of multiple droplet system observed in typical experimental

conditions with Belousov-Zhabotinsky reaction. The model we present de-

scribes both spatiotemporal dynamics inside a single droplet and interactions

between droplets and it is as simple as the Oregonator [17]. The droplets in

our experiments are relatively large and the geometry of excitations prop-

agating inside a droplet is important for information processing functions

executed by the medium [18, 19]. The simulations of droplets have to base

on partial differential equations. A simple model of chemical kinetics can

significantly reduce the time of calculations if compared with multivariable

ones.

The paper is organized as follows. In the subsequent section we refine the

values of parameters describing chemical kinetics to obtain a good agreement

with periods of oscillations for concentrations of reagents used in experiments.

We estimate the diffusion of activator using the observed excitation velocity.

Activator degradation rate in the lipid bilayer is fixed to describe the trans-

formation of excitation frequency in communication between droplets. In

the next section we use the model to estimate the stability of oscillations in

two coupled identical droplets. We show that both in-phase and anti-phase

oscillations are stable, and we estimate the basin of attraction for each mode.
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Figure 1: The time evolution of excitations (light areas) in a system of in-
teracting droplets. The diameter of the largest droplets is 2 mm. The time
interval between consecutive frames is 6 sec.
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2 Spatio-temporal dynamics of BZ-droplets

In this section we discuss two types of spatiotemporal phenomena observed in

BZ-droplets: pulse propagation within a single droplet and transformation

of frequency when train of excitations is transmitted from one droplet to

another. Their analysis allows us to extract the values of model parameters.

We discuss the procedures of parameter fitting. The diffusion of activator

Dx in Eq.(6) is selected to give a correct value of pulse velocity observed in

experiments. The model for activator degeneration inside the double layer

is constructed to explain transformation of frequency of excitations passing

between droplets containing solutions of reagents that produce oscillations

with different periods.

2.1 Simple models of reaction kinetics.

We describe the chemical kinetics inside a droplet using Rovinsky-Zhabotinsky-

like models [21, 22]. Such models are useful for in-silico experiments because

they include a small number of differential equations, but still the equation

parameters can be fitted such that the results are in a good agreement with

experiment. The three-variable model [23] is based on the following kinetic

equations:

∂x

∂t
= ε1h0Nx− ε2h0x

2 − 2
αγε1
β

h0xy + 2
αγε1µ

β
h0Ny (1)

∂y

∂t
= qβ

M ∗K
h0

z

1− z
− γh0xy − γµh0Ny +M ∗K (2)
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∂z

∂t
=

h0N

C
x− α

K ∗M
Ch0

z

(1− z)
(3)

where the model variables x, y and z denote scaled concentrations ofHBrO2,Br−

and Fe(phen)3+3 respectively. The symbols C,K,M and N denote the total

concentration of the catalyst (C = [Fe(phen)2+3 ]+[Fe(phen)3+3 ]) and concen-

trations of KBr, CH2(COOH)2 and NaBrO3 respectively. Such choice of

model parameters reflects the fact that in our experiments BZ-droplets were

prepared with water solution of sulfuric acid, sodium bromate, potassium

bromide, malonic acid and ferroin [13, 23] and the concentrations of these

reagents are precisely known when an experiment starts. h0 is the Hammett

acidity function of the solution. For the concentrations of sulfuric acid used

in our experiments it can be approximated as 1.3 times the concentration of

H2SO4. The other parameters of the model: α, β, γ, ε1, ε2, µ and q do not

depend on concentrations of reagents used to prepare BZ-droplets. Their val-

ues are fitted to obtain the best match with periods of oscillations measured

in experiments.

The three variable model (Eqs.(1-3)) can be simplified if we assume that

the relaxation of y is fast and the stationary value of y is immediately ap-

proached. Calculating the steady value of y from Eq.(2) and substituting it

to Eq.(1) we obtain the two variable model:

∂x

∂t
= ε1h0Nx− ε2h0x

2 − 2αε1M ∗K(
1

β
+ q

1

h0

z

1− z
)
x− µN

x+ µN
(4)

∂z

∂t
=

h0N

C
x− α

K ∗M
Ch0

z

(1− z)
(5)
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with parameters α, β, ε1, ε2, µ and q.

Both models presented above can be used to predict the time evolution of

their variables in the BZ-droplets for typical concentrations of reagents used

in experiments. As it can be seen on Fig. 1 oscillations inside droplets are not

spatially homogeneous and excitations can be transmited from one droplet

to another when droplets are in contact. For completeness of mathematical

model we have to describe both phenomena. Having a limited amount of

experimental results we decided to make a model that is as simple as possible

with a small number of adjustable parameters. The oxidized form of catalyst

(z) is a large ion (it contains three bulky phenanthroline ligands ) and we

neglect its mobility if compared to the other reagents. Introducing diffusion

within the three variable model requires self-diffusion constants for both x

and y as well as cross-diffusion parameters. At the moment we have not

collected enough experimental data to give precise values of diffusions, so

we focus our attention on the two variable model with a single self-diffusion

constant Dx for x. Within these approximations equations describing spatio-

temporal effects inside a droplet are:

∂x

∂t
= ε1h0Nx− ε2h0x

2 − 2αε1M ∗K(
1

β
+ q

1

h0

z

1− z
)
x− µN

x+ µN
+Dx∆x (6)

∂z

∂t
=

h0N

C
x− α

K ∗M
Ch0

z

(1− z)
(7)

The ion representing the oxidized form of catalyst seems to be too large to

cross lipid bilayer separating droplets. Therefore in the model we use Eq.(7)

with no-flow conditions at droplet boundary. In order to get communica-
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tion between droplets in the model based on Eqs.(6-7) we have to assume

that HBrO2 can migrate through the double lipid layer. We introduce a

mechanism of activator transport between droplets and fit its parameters.

2.2 The parameters of two variable model

The parameters of the two variable model (Eqs.(4-5))) given in [23] were

obtained after optimization of periods over a large number of experiments

performed with different BZ-mixtures. In experiments discussed below the

concentration of sulfuric acid was around 0.5M . Selected results for the

period of homogeneous oscillations within a droplet as a function of acidity

of the medium are illustrated in Fig. 2. The experimental results are marked

by crosses. The three variable model with parameters from [23] gives quite

good estimation of the observed period ( empty circles), but, as we have

mentioned, its application for description of spatiotemporal effects requires

a model of diffusion for both HBrO2 and Br−. The periods predicted by

the two variable model with parameters from [23] (α = 2.6 ∗ 10−4, β = 200.,

ε1 = 4000., ε2 = 5800., µ = 2.1 ∗ 10−5 and q = 0.88) are marked with empty

squares. For these parameters the calculated period is approximately twice

as long as that observed in experiments. If a kinetic model fails to predict the

period then one should not expect to estimate correctly the value of activator

diffusion coefficient by comparing calculated velocity with this measured in

an experiment. In order to improve the two variable model we re-fitted

its parameters by optimizing calculated periods for concentrations of sulfuric

acid used in experimental studies on spatiotemporal effects. The optimization
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procedure was the same as described in [23] and over 20 different sets of

concentrations of BZ-reagents were considered. The re-adjusted values of

parameters for two variable model are: α = 2.6∗10−4, β = 1000., ε1 = 1200.,

ε2 = 6700., µ = 1.6∗10−5 and q = 0.51. As it can be seen, they are not much

different from the original values, but they lead to much better agreement

with experiment (the solid line on Fig 2). We will use these values in the

subsequent calculations.
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Figure 2: Period of oscillations as a function of concentration of sulfuric acid
for [NaBrO3] = 0.45M , [CH2(COOH)2] = 0.35M , [KBr] = 0.06M and
C = 0.0017M . Crosses show the experimental results, empty circles periods
calculated using the 3-variable model with parameters given in [23], empty
squares periods calculated with the 2-variable model with parameters given
in [23]. The solid line plots results of the 2-variable model with the re-fitted
parameters.
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2.3 The estimation of diffusion coefficient

In experiments we measure velocity of excitation pulses propagating in elon-

gated droplets. The solution of BZ-reagents is denser than the surrounding

oil phase so droplets placed in a narrow trench at the bottom of a cuvette

assume elongated shapes. If a droplet is long enough then an excitation pulse

generated at one of droplet ends reaches the stable form and velocity within

the droplet. The observed value of velocity can be compared with the numer-

ical solution of Eqs.(6-7)) and the value of Dx for which the numbers match

can be extracted. We studied wave propagation in droplets that were 6 mm

long and 2 mm wide (see Fig. 3 a). The excitation pulses propagated along

the droplet for more than 20 sec with a constant velocity (see Fig. 3 b). To

obtain unidirectional propagation of pulses we introduced a pacemaker ( a

piece of stainless steel seen as a black triangle at the left end of droplet in

Fig. 3(a)). The stainless steel acted similarly to a silver wire and reduced

the concentration of Br− ions that inhibit the reaction. The pacemaker be-

comes a source of pulses with high concentration of the oxidized catalyst

propagating to the left. Two excitation pulses can be seen in Fig. 3(a),

one at the right end of the droplet and another close to the large gas bub-

ble. As the result of forced activation of the medium the excitation maxima

re-appear at a given point more frequently than in a homogeneous medium

without the pacemaker. The observed average time between maxima of oxi-

dized catalyst in the elongated droplet was 21sec. A small (diameter 1.3mm)

separated droplet seen in the left bottom corner of Fig. 3(a). It contained

the same solution of BZ-reagents and the measured period of oscillations
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inside it was about 31 sec. For [H2SO4] = 0.45M , [NaBrO3] = 0.45M ,

[CH2(COOH)2] = 0.35M , [KBr] = 0.06M and C = 0.0017M the measured

value of excitation velocity is 0.2mm/sec.

In order to find the velocity of a propagating pulse and fix the value of

the diffusion coefficient Dx in Eqs.(6), such that the calculated velocity is

close to the observed value we simulated propagation of excitations in one

dimensional medium. A grid composed of 6000 points was used. Calcula-

tions were performed using the direct Runge-Kutta method with dt = 10−6

and dx=0.001. For concentrations of reagents used in the experiment the

period of oscillations predicted by the model based on Eqs.(4-5)) with re-

fitted parameters is equal to 33.9sec. This value agrees well with the period

of oscillation observed in the separated small droplet, but it is much longer

than the period of forced oscillations (21 sec) that generate excitation pulses

propagating in the elongated droplet (cf. Fig. 3(a)). The velocity of a train

of pulses depends on the frequency, so in simulations we considered a source

of excitation pulses with similar frequency as observed in the experiment.

We assumed that concentration of KBr at 1000 leftmost points of the grid

is reduced to 0.03M and the concentration of KBr at the remaining points

equals to 0.06M as in the experiment. For the reduced concentration of KBr

the calculated period of oscillations is 25.7 sec which is close to the period

between subsequent pulses observed in the experiment. The calculated time

evolution of z is illustrated in Fig 4. As expected the rapid oscillations in the

left part of the grid act as a source of propagating excitation pulses. After

a few initial oscillations the evolution of the whole system becomes domi-

nated by pulses propagating from the left. For Dx = 3.4 ∗ 10−7cm2/sec the
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pulse velocity is 0.2 mm/sec. This value of diffusion coefficient is used in the

subsequent calculations. In many papers on simulations of BZ-medium the

activator diffusion coefficient is approximated by 10−6cm2/sec and this value

is not much different from the result of our analysis.
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Figure 3: Fig. 3(a) illustrates a configuration of droplets in a typical
experiment on pulse propagation. The initial concentrations of reagents
were [H2SO4] = 0.45M , [NaBrO3] = 0.45M , [CH2(COOH)2] = 0.35M ,
[KBr] = 0.06M and C = 0.0017M . There are two droplets on the snapshot.
The diameter of the small droplet is 1.3mm. The upper elongated droplet is
6mm long and 2mm wide. In this droplet pulses of excitation (correspond-
ing to the oxidized catalyst) propagate along the droplet from left to right.
At the snapshot two such pulses can be noticed; one above the gas bubble
and one close to the right end of the droplet. Fig. 3(b) shows the green
component of the space-time plot along the line marked blue on Fig. 3(a).
The horizontal space size is 5.6mm and the vertical time scale corresponds
to 300sec.
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Figure 4: The time evolution of propagating excitations in one-dimensional
medium described by Eqs.(6-7)). Blue color marks high concentration of the
oxidized catalyst. A low concentration of KBr is assumed in the left part,
so excitation pulses originating from this region dominate in the medium.
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2.4 A simple model for communication between droplets

Fig. 1 illustrates that droplets in contact communicate: excitations can cross

the lipid layer and enter neighboring droplets. The excitatory type of cou-

pling between droplets was frequently observed in our experiments. In a

system of multiple droplets the region with the fastest oscillations becomes

a pacemaker that dominates the spatio-temporal evolution. We performed

a number of experiments in which concentrations of reagents in interact-

ing droplets were different. In many cases we observed transformation of

frequency when excitations were transmitted between droplets. Frequency

transformation is common when two nonlinear systems communicate [24, 25].

For example, it was observed in an array of small BZ-droplets separated by

an oil phase and communicating with an inhibitory messenger [15]. One

of our experiments showing frequency transformation with excitatory cou-

pling is illustrated in Fig. 5. Concentrations in the topmost droplet were

[H2SO4] = 0.6M, [NaBrO3] = 0.225M, [MA] = 0.26M, [KBr] = 0.06M and

the catalyst 0.0017M . For such concentrations the period of oscillations in

a separated droplet is about 120sec. Two other droplets contained the so-

lution of BZ-reagents where [H2SO4] = 0.6M, [NaBrO3] = 0.45M, [MA] =

0.35M, [KBr] = 0.06M and the catalyst 0.0017M . Here oscillation period

was about 20sec. The space-time diagram in Fig. 5 illustrates position of

excitation pulses along the vertical line going centrally through the droplets.

The dark, wedge-shaped areas mark gas bubbles seen on the snapshots above.

There was no pacemaker in this experiment. After the initial period the evo-

lution of the upper droplet was governed by excitation pulses coming from
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rapidly oscillating droplets below. During the experiment we observed the

frequency transformation: only a part of excitations that appeared in the

lower droplets activate the upper one. The space time plot shows transi-

tion from 3:1 to 2:1 frequency transformation, which is probably related to

the decrease in frequency of arriving excitation pulses. Although the time

evolution of concentrations in lower droplets was not spatially uniform, the

excitations arriving to the bilayer separating the upper droplet were similar

to that generated by a homogeneous evolution. In both cases the wave vector

of arriving excitations was perpendicular to the boundary.
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Figure 5: The time evolution of excitations (light areas) in three linked
droplets. The width of droplets is 1.5mm. Concentrations in the top-
most droplet were [H2SO4] = 0.6M, [NaBrO3] = 0.225M, [MA] =
0.26M, [KBr] = 0.06M, catalyst = 0.0017M ; in two droplets be-
low [H2SO4] = 0.6M, [NaBrO3] = 0.45M, [MA] = 0.35M, [KBr] =
0.06M, catalyst = 0.0017M . The upper row of snapshots illustrates 2:1
frequency transformation observed for long times. The space-time diagram
below shows transition from 3:1 to 2:1 frequency transformation observed in
the system. A growing gas bubble inside the mid droplet is represented by a
wedge-like region expanding to the right.
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The observed frequency transformation should be predicted by a correct

model describing interactions between droplets. The inhibitor z in the model

based on Eqs.(6-7)) represents the concentration of a large ionic complex.

We can assume that the complex is too bulky to penetrate a lipid bilayer.

Therefore, within the two variable model, only migration of activator between

droplets can be responsible for transmission of excitations. Let us consider

two droplets that are in contact. The double layer should be penetrable for

the activator, because otherwise no communication occurs. We described the

double layer as a medium separating the droplets (see Fig. 6). Migration of

HBrO2 between droplets and the double layer is represented by a diffusion

process with the diffusion coefficient Dl. We have no experimental data that

allow us to estimate Dl. In order to introduce as few new parameters in the

model as possible we assume that the diffusion coefficient Dl is the same as

the diffusion coefficient within a droplet and so equal to Dx estimated in the

previous section.

The numerical simulations of two interacting droplets were performed on

the grid schematically illustrated in Fig. 6b. Both droplets were represented

by spheres with centers on the z-axis. The grid points marked with triangles

oriented up and down were used to describe kinetics of BZ-reaction in the

upper and the lower droplet respectively. The bilayer was represented by a

layer of grid points equally distant from centers of droplets. Each of the points

representing the bilayer (the black dots in Fig. 6) has neighbors belonging

to each of the droplets. We considered excitation pulses that have rotational

symmetry along the z-axis. Within such approximation the problem becomes

two-dimensional which speeds up the calculations.
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For simulations we assumed that concentrations in the upper droplet were:

[H2SO4] = 0.6M, [NaBrO3] = 0.195M, [MA] = 0.175M, [KBr] = 0.06M,

and the catalyst 0.0017M . In the lower droplet they were : [H2SO4] =

0.6M, [NaBrO3] = 0.45M, [MA] = 0.35M, [KBr] = 0.06M, the catalyst

0.0017M . As in Fig. 5 the frequency of oscillations in the lower droplet is

larger than in the upper one. For the considered concentrations the two vari-

able model with re-fitted parameters predicts that separated droplets oscillate

with frequencies 20.5sec and 155sec, which agrees with the experiment. If

droplets are interacting than oscillations of the lower droplets periodically

excite the upper one. The experiment showed a stable 2:1 frequency ratio

between excitations arriving at the bilayer and those crossing it. The cal-

culations for interacting droplets were performed in cylindrical coordinates

with ∆t = 1. ∗ 10−6sec and equal steps in the z-direction and along the ra-

dius ∆z = ∆r = 0.0015mm. The radius of spheres representing droplets was

50 grid distances. The bilayer was formed by an array of 22 grid points.

Although the diameters of considered droplets was smaller than those in

experiments it does not affect simulations, because we considered no flow

boundary condition between droplets and hydrocarbons outside. The re-

sults of simulations have shown that within the assumptions listed above

the interaction between droplets is very strong and each excitation of the

lower droplet generates an excitation of the upper one. Thus, in order to

describe the observed behavior the amount of transmitted activator should

be reduced.
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In the FKN model [26] we find reaction:

2HBrO2 → HOBr +HBrO3 (8)

that describes degradation of activator if no other reagents are present We

can consider this process and describe the time evolution of activator in the

lipid bilayer with the equation:

∂x

∂t
= −Kdx

2 +Dx∆x (9)

and in the reduced variables Kd = ε2h0.

The numerical simulations have shown that if ε2 = 6700 then each ex-

citation of the lower droplet still generates an excitation of the upper one.

Therefore the mechanism of activator degeneration based on reaction (8)

gives too slow decay. Full synchronization between oscillations in droplets

was still observed for Kd = 106.

If we assume that some small ions (H+, Br−) can penetrate the lipid

bilayer then other reactions can lead to degradation of HBrO2 inside it.

Having no information on which reagents diffuse into the double layer and

what are their concentrations we described degradation ofHBrO2 as a simple

decay process with the unknown rate K:

∂x

∂t
= −Kx+Dx∆x (10)

The value ofK can be fitted from numerical simulations of systems studied in

experiments. In numerical simulations for selected concentrations of reagents

we observed that the lower droplet, where oscillations are frequent, strongly

influenced slowly oscillating upper droplet, but the reversible interaction was
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not recorded. We measured the firing number defined as the ratio between

the number of excitations in the upper droplet and the number of excitations

that arrived from the lower one. Fig.7 illustrates the firing number as a

function of the activator decay rate K. The dependence has a typical devil

staircase like form [25]. It is quite surprising that the range of K in which

for the considered concentrations 2:1 frequency transformation is observed

is limited to [2200sec−1, 4300sec−1]. For K > 50000sec−1 oscillations in

droplets are not synchronized. The time evolution of z in the lower and

upper droplets for a few selected values of activator decay rate is shown in

Fig. 8. The solid curve shows z(t) at the point on the symmetry axis 16 grid

distances above the center of the lower droplet. In this droplet z(t) was the

same for all considered values of K. All dashed lines plot z(t) at the point on

the symmetry axis 16 grid distances below the center of the upper droplet.

The curves corresponding to different values of K are artificially shifted by a

constant, to make them readable. For the considered values of K we observe

different firing numbers. They change from 0.25 for K = 7500sec−1 to 0.5

for K = 3500sec−1.

The estimated value of K (here around 3500sec−1) describes the degener-

ation of activator that should be taken into account to obtain the transforma-

tion of frequency observed in experiments. However, if activator migration

through lipids is slower than, assuming the same value of K, a larger amount

of activator will disappear. Therefore, the fitted value of K is related to the

diffusion coefficient of activator in the bilayer. If Dl 6= Dx, as assumed above,

then the value of K is different.

Numerical simulations indicate that relatively small size of droplets as-
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sumed in calculations does not have quantitative influence on the results.

Fig. 9 compares z(t) for droplets with diameters r = 50 and r = 100 grid

points. The decay rate used was K = 5500sec−1. The upper solid line shows

z(t) in the lower droplet, at the point r/6 above the center. The oscillations

in the lower droplet were uniform so the results for r = 50 and r = 100

are identical. In both cases BZ-solution oscillated with the period 20.5sec.

Two lower lines present z(t) at the point r/6 below the center of the up-

per droplet. The solid and the dashed lines show results for droplets with

diameters r = 50 and r = 100 respectively. If a droplet with selected con-

centrations does not interact with the other then the period of oscillations

is 155sec. Here oscillations in the upper droplet are more frequent because

they are forced by oscillations of the lower one. For both radii: r = 50 and

r = 100 every third oscillation of the lower droplet excites the upper one.

Therefore, the firing number does not depend on both droplet radius and

the size of contact layer. Moreover, due to a large difference in periods of

oscillations in separated droplets, the calculated firing number does not de-

pend on the initial states of droplets. The oscillations of the upper droplet

are nonhomogeneous. An excitation originates at the point of contact and

expands over the droplet. It can be noticed that z(t) for r = 100 is delayed

if compared with z(t) for r = 50. The delay just reflects longer distance

between the separating bilayer and the observation point inside the larger

droplet.
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Figure 6: The geometry of two droplets considered in numerical simulations.
The horizontal plane separating droplets contains points representing the
lipid bilayer. Fig. 6b illustrates a simplified, two-dimensional grid used in
simulations of interacting droplets. Triangles oriented up and down corre-
spond to the gridpoints representing the upper and lower droplet. The black
dots correspond to the lipid bilayer.
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Figure 7: The firing number as the function of the activator decay rate K.

27



0 100 200 300
time /sec

0.5

1.0

1.5

2.0

2.5

3.0

co
nc

en
tra

tio
n o

f Z

K = 3500

K = 4200

K = 4500

K = 7500

Figure 8: The comparison of z(t) in the lower droplet (the solid line) and in
the upper droplet (the dashed line) for a few values of the activator decay
rate K. The values of z(t) in the upper droplet are shifted up by a constant
factor.
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Figure 9: The comparison of z(t) for droplets with diameters r = 50 and
r = 100 grid points. K = 5500sec−1. The solid line at the bottom shows
z(t) in the lower droplet. The upper solid and dashed lines present z(t) in
the upper droplets with diameters r = 50 and r = 100 respectively.
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3 The stable modes of coupled oscillations in

two identical droplets

The model described in the previous section can be applied to find the stable

modes of two coupled BZ-droplets. In coupled nonlinear oscillators one can

expect synchronization in both in-phase and anti-phase modes [27]. These

modes can represent bits 0 and 1, so a coupled pair of droplets can be used as

a memory element in a droplet-based unconventional computer. In numeri-

cal study on mode stability we considered two identical droplets represented

by spheres with radius r = 50 grid points. The location of droplets were

the same as shown in Fig. 7. Concentrations of BZ-reagents inside droplets

were identical and equal to: [H2SO4] = 0.45M, [NaBrO3] = 0.45M, [MA] =

0.35M, [KBr] = 0.06M, and the catalyst 0.0017M . For these concentra-

tions of reagents the calculated period of oscillations is T = 35.1sec. At

the beginning of simulations we assumed uniform concentrations of x and

z in each droplet. We considered initial concentrations (x0, z0) that corre-

sponded to points on the limit cycle. The droplets were initialized at different

points of the cycle. The phase distance between points on the limit cycle can

be measured as the time t0 within which the system evolves between these

points. Presenting the results we use t0/T as the measure of distance. We

studied the distance between concentrations at droplet centers after one pe-

riod of oscillations T as the function the initial distance. The results for

K = 4200sec−1 are illustrated on Fig. 10. If the distance after time T is

smaller than the initial one then oscillations in droplets finally synchronize

in stable in-phase mode. For the considered values of parameters we ob-
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served such synchronization if the absolute value of initial phase difference is

smaller than 0.487T . It is quite interesting that for majority of initial con-

figurations in this range the stable phase difference is not 0, but has a small

value around 0.01. It is because the stable oscillation mode is represented

by homogeneous oscillations in one of the droplets that activate excitations

in the other. The observed difference in phases corresponds to the time of

excitation propagation form the bilayer where excitations appear to the cen-

ter of droplet where the phase is measured. If the initial phase distance is

smaller than 0.01T it remains stable during the evolution. On the other hand

if the absolute value of initial phase difference is larger than 0.49T than it

does not change after the period. It means that in a narrow range of initial

conditions the perturbations generated by excitations arriving from a firing

droplet are too small to change the state of the other. Therefore anti-phase

oscillations in the considered droplets are stable. Both types of evolution are

illustrated in Fig. 11. The solid and dashed lines illustrate z(t) in the lower

and the upper droplets respectively. For difference is phases smaller than

17.1sec oscillations synchronize in in-phase mode within a single cycle. If

the difference is larger than 17.2sec (the lines at the bottom) the anti-phase

mode of oscillations remains stable. We conclude that if K = 4200sec−1

then a system of two coupled droplets can play a role of memory with states

corresponding to in-phase and to anti-phase oscillations, although the region

of anti-phase oscillations is very narrow. In the ideal memory based on two

interacting droplets the basins of attraction for each of the modes should be

similar. The model presented above can be used to scan the space of reagent

concentrations for such system. The precise estimation of K in the model
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is very important for studies on the stable modes of interacting droplets,

because small changes in K can lead to qualitative changes in the charac-

ter of evolution. For smaller values of K the concentration of transmitted

activator increases and the basin of attraction for in-phase synchronization

becomes larger. Numerical simulations of BZ-droplets with concentrations

described above and the activator degeneration rate K = 3000sec−1, which

also explains 2:1 frequency transformation in the considered experiment, do

not show a stable anti-phase mode. Additional experiments on frequency

transformation for droplets with different concentrations of reagents should

allow for better estimation of K.
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Figure 10: The thick dashed line and symbols at corners show the phase
distance between concentrations in the droplet centers measured after time
T as the function of their initial distance. The thin solid line describes the
case when the distance after a period is the same as the initial distance. The
thin dashed line marks the position of zero.
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Figure 11: z(t) for two identical interacting droplets with diameters r = 50.
The solid and dashed lines show z(t) in the lower and the upper droplets
respectively. The initial phase difference between upper and lower droplets
is given next to the lines, K = 4200sec−1. For the phase difference smaller
than 17.1sec oscillations synchronize in the in-phase mode within a single
cycle. If the difference is large it does not change in time and the anti-phase
mode of oscillations remains stable (the bottom lines).
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4 Conclusions

In this paper we generalized previously introduced simple two variable model

of BZ reaction kinetics including diffusion of activator and the mechanism

of communication between droplets in contact. We estimated the values of

model parameters such that numerical calculations based on the model agree

with experimental studies on excitation propagation within a droplet and

transformation of frequency on the lipid bilayer separating droplets. We think

that the considered model can be used in future investigation on information

processing operations that can be executed by a medium composed of BZ-

droplets. The model contains just two variables and in intensive numerical

simulations of spatio-temporal evolution it is faster than multi variable mod-

els. This is important because some information processing operations, like

for example unidirectional propagation of excitations [13] between droplets,

are related with sizes and geometry of contacts. Reaction-diffusion equations

describing 3-dimensional medium have to be solved to simulate such behav-

ior. It is also important that the model, unlike commonly used Oregonator

[17], can be easily adopted to describe quantitatively an experiment with

typical concentrations of reagents.

We applied the model to find the stable modes of oscillations in two cou-

pled droplets containing the same mixture of reagents. The results strongly

depend on selected value of K. For K = 4200sec−1 that explains 2:1 fre-

quency transformation observed in experiment the model have shown that

both in-phase and anti-phase oscillations can be stable, although the region

where the anti-phase oscillations are stabile is very small. The stability of
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both phases indicates that a pair of oscillating droplets can be used as a

memory with 1 bit capacity.

More complex four variable model of BZ-droplet kinetics have been con-

sidered in a number of recent papers published by Epstein group [15, 16].

However the droplets in those experiments are much smaller than ours, so

the spatiotemporal effects inside a droplet can be neglected. Moreover, the

distance between droplets in Epstein group experiments was larger (around

100µm) than that between our droplets in contact. It was discovered that for

distant droplets the inhibitory coupling with Br2 molecules diffusing in the

oil phase was dominant and resulted in anti-phase synchronization. In our ex-

periments communication between droplets results from excitatory coupling

and in-phase synchronization prevails. However, the model described in the

paper shows that even with excitatory coupling anti-phase synchronization

can be stable.
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