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Abstract

Here we review and extend models on different scales for a comput-
ing architecture made from networks of excitable chemical droplets.
The model system of the Belousov-Zhabotinsky (BZ) reaction en-
closed in lipid-coated droplets in oil is used to study signal trans-
mission dynamics of chemical computers and their modelling. The ex-
citable medium oscillates in the sub-excitable, excitable or self-exciting
regimes, leading to excitation pulses that spread over the medium and
can be used for information processing. We review a homogeneous
differential equation model, the spatially extended partial differential
equation model and a cellular automaton model of the chemical reac-
tion and propose a new high level modelling approach for the droplets,
which uses discrete states and potentially stochastic transition func-
tions to represent the complex chemical state of each droplet. We
show how the parameters like oscillation periods, diffusion coefficients
and wave propagation speed for the models can be deduced from the
lower level models and from experimental data. Furthermore we offer
an outlook on the currently ongoing work and the role of the different
modelling and simulation scopes within.

1 Introduction

Chemical computers might be used in many fields of applications, ranging
from controlling bioreactors to designing smart drugs, as reviewed in [14, 13,
48].
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In this article, we focus on modelling and simulation of compartmen-
talised, excitable chemical media for computation. An excitable medium, for
example accommodating the Belousov-Zhabotinsky (BZ) reaction [47, 34, 1],
can oscillate - either temporally or temporally and spatially - for many pe-
riods while consuming energy from the chemical substrate. Different media
compositions generate qualitatively different behaviour: When the medium
is in the excitable regime, it is able to oscillate for one period, once it is stim-
ulated, but it will not spontaneously enter a new oscillation phase but return
to the quiescent state. Self-exciting medium, in contrary, will start oscillat-
ing spontaneously. However, this medium can still be used for information
processing, since new oscillation waves can also be triggered externally be-
fore the self-excitation happens. A more complicated behaviour is shown
by a sub-excitable medium, that is basically less excitable than the initially
mentioned excitable medium. That is, an excitation wave entering a droplet
from one direction will not spread in any direction but will keep a “memory”
of its direction. Also, when two sub-excitable waves collide, the resulting
wave will propagate into a new direction, rendering this medium suitable for
collision-based computing [2, 3, 25].

In our case, the BZ medium is compartmentalised into small droplets
[8, 41] that form, when the medium is dripped into oil. The compartments
are stabilised against merging through lipid molecules that self-assemble at
the border between the aqueous and the oil phase. Where two droplets
meet, a lipid double layer membrane can be formed that still allows chemical
reagents to pass through and to trigger an excitation in the neighbouring
droplet.

Based on a small experimental system of four droplets, we are giving
an overview on the simulation techniques to describe and understand the
behaviour of different kinds of Belousov-Zhabotinsky medium on different
scales. After a short review of ordinary and partial differential equation and
cellular automaton models, we introduce an event-based model that can be
used to simulate a droplet network on large spatial and temporal scales. To
motivate the requirement for distinct modelling scales, we give an overview
on finished and ongoing work in the NEUNEU project1 and explain how the
modelling is applied therein.

1www.neu-n.eu

3



1.1 Principal Properties of the Belousov-Zhabotinsky
Medium

The Belousov-Zhabotinsky (BZ) medium is a chemical mixture that can os-
cillate and be triggered into excitation. It is can easily be made by mixing
sodium bromate, malonic acid, potassium bromide and ferroin in sulfuric
acid [18]. However the resulting process is rather complicated: it has even
been modelled using 26 chemical species and 80 reactions [24], so some kind
of simplification is necessary for understanding the system. We will first
summarise those aspects of the reaction that we will focus on in this work.

Most obviously, the BZ system exhibits different phases [15, 22, 17, 4]. A
chemical redox indicator like forroin can provide information on the phase of
the reaction system by switching from red to blue when a high concentration
of reduced catalyst is outweighed by oxidised catalyst.

These phases, as visualised in Figure 1, show up under well-stirred con-
ditions or with spatial resolution. Beginning in the responsive phase when
the medium looks red, it can be triggered into an excitation or self-excite,
displaying an almost immediate change from red to blue colour. When the
fast change occurs, the medium is in the excited phase shortly and becomes
refractory directly afterwards, rendering it unresponsive against further stim-
ulation. Then the system recovers its red colour relatively slow and becomes
ready for the next oscillation cycle. Once the BZ medium can be excited
again, either by the excitation in the neighbourhood or through external in-
fluences, we shall refer to the medium as responsive here. Dependent on the
type of medium, the responsive phase can be quite stable and last until some
perturbation occurs. In case of the self-exciting BZ mixture, in contrast, the
responsive phase can be instable such that a new oscillation cycle is started
after the system was responsive for some time.

Excited droplets can influence their neighbours, but these can only react
with a new excitation if they are in the responsive phase. When a droplet
is excited we assume its oscillation can not be influenced by neighbouring
excited droplets. But even when a droplet triggers its neighbour into a new
oscillation, there will be some delay between the excitation of one and the
next droplet, since the BZ waves will first have to cover some distance from
one BZ compartment through the membrane and into the other droplet.

We analyse the system states in different areas of an exemplary BZ system
of four linearly arranged droplets in Section 2 and estimate their oscillation
periods and wave propagation speeds. Even though the chemical reaction
process of the BZ medium is an inherently stochastic process and subject
to random perturbations, the excitation periods of the droplets appear to
be quite reliable. Nevertheless, there are qualitative changes happening in
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Figure 1: Abstract BZ Reaction cycle for self-exciting and excitable media.
The complex Belousov-Zhabotinsky reaction can coarsely be described as
a cyclic change of chemical conditions on the left side. For the excitable
medium, the system can wait for external stimuli very long without going
through an oscillation cycle by itself. The distribution functions α(t), β(t),
γ(t) and ψ(t) describe the probability distributions for changing from one
system state to another after staying there for time t.
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the medium that are beyond the scope of our modelling, e.g. the continuous
degradation of the medium and the concomitant increase of the oscillation
periods. Furthermore, spiral waves [44, 22] form and disappear, maybe due to
gas bubbles or spatial changes in the droplet structure. Though our models
do not cover the genesis of these phenomena, we were able to describe the
situation once the special conditions are established.

1.2 Hypothetical Droplet Types

Like specialised electronic components on a circuit board, we suggest to
utilise a variety of specialised droplet types. The “normal” droplets, that
we were describing so far and that we are considering in this paper’s exper-
iments and models, can be characterised as Or droplets: when we consider
droplet “crossroads”, where a droplet is connected to three or four other
droplets, a signal arriving on one lane will spread out in all other directions
as long as the other droplets are responsive. Nonetheless, we will introduce
some hypothetical droplet types that can be of use when designing more
complex droplet computers as pointed out in the Outlook Section 5.

Or The standard droplets as we are describing them in Sections 2 and 3.
These droplets distribute incoming excitations to all other adjacent and
responsive droplets. If there are two inputs to a droplet of this type,
both inputs can equally lead to an excitation, such that the droplet
behaves like a logical “And”.

High Activity A droplet that is filled with quickly oscillating, self-excitatory medium
might be used to supply a droplet network with continuous signals, e.g.
acting as pacemaker or timing signal. It is possible to manufacture
this kind through a different BZ medium composition or by externally
influencing the droplet, for example via optical stimulation.

And Droplets that can be stimulated by two or more synchronously arriv-
ing excitation waves, but not by a single one, might be build from
droplets that contain less excitable BZ mixture. It is an open question,
dependent on the further exploration of the droplets in laboratory ex-
periments, how much synchronisation between the two input signals is
necessary to allow an activation of the And droplet.

Diode Another possibly valuable droplet type can propagate signals solely in a
single direction while blocking signals arriving from the other direction.
It could thus help to insulate some parts of a droplet network from the
influences of other substructures and in general to have more control
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species concentration
sulphuric acid 0.6 M
sodium bromate (NaBrO3) 0.45 M
malonic acid 0.35 M
potassium bromide (KBr) 0.06 M
ferroin 1.7 mM

Table 1: Composition of the BZ medium.

over the range of system dynamics. A chemical implementation can be
achieved using diode membrane channels [31], through differently sized
droplets [39, 41] and probably also with a different media composition.

Repeater To solve potential timing problem of the And Droplets, we assume
that we can manufacture a repeater droplet that will, once activated,
repeat an excitation signal for longer than the typically short excited
phase. This can be realised through droplets with different sizes [39]
or medium compositions [21], resulting in different oscillation periods.

Inhibition A droplet that, once activated, inhibits its adjacent droplets might
prove extremely helpful. One could argue that the oscillation in the in-
hibitory droplet might consume the substrate of its neighbour droplets
or that it might throw its neighbours into the refractory state, bypass-
ing the excited state. Even though this type of droplet might be hard
to produce, we will still consider the implications of the theoretical
existence of such a droplet.

2 Example System and Experimental Data

Processing

We describe our modelling approaches by a system that consists of four
stacked droplets of different sizes as displayed in Figure 2a. The droplets
are filled with BZ medium of the composition summarised in Table 1. This
leads to self-exciting oscillations, as predicted by the differential equation
models (Section 3.1). The largest diameter of the droplets is approximately
10−3 m and the length of the droplet chain is approximately 6 ∗ 10−3 m.
Though the droplets in this system change their form slightly over time, the
general structure and the droplets’ linear arrangement stays constant over
the experimental time of approx. 48 minutes or 2880 s (Supplementary movie
1)
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Figure 2: Droplet system and extracted oscillation data. a) Different posi-
tions along the droplet system are marked with the symbols d1 till d6. b) The
excitation state of position d3 is plotted over the whole experimental time.
Additionally, a green line indicates the threshold that will later be used to
extract oscillation periods from this data. Vertical black lines show the in-
terval that is represented in Figure 2c. c) The intensities at the positions d2
till d6 are plotted over a small time window. Due to impurities and the small
size of droplet d1, we could not extract excitation data here.
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By extracting the blue channel of the experiment video, we can observe
the state of the complex BZ reactions in one dimension. The blue channel is
extracted as the average of a 10 by 10 pixel rectangle around the six different
positions marked in Figure 2a. The blue colour component of the video
and thus the concentration of the oxidized catalyst over time is displayed in
Figure 2b for the position d3 only and in Figure 2c for all positions but over
a smaller time frame. Probably due to impurities and due to the small size
of the lowest droplet, we could not extract usable oscillation data for the
position d1.

From the oscillation data, we measured the oscillation periods that are
displayed in Figure 3. The oscillation periods are determined by approx-
imately overlaying a “threshold line” centrally over each of the oscillation
plots analogous to the green line displayed in Figure 2b. Then the interval
between the times when the threshold line is crossed upwards gives the os-
cillation periods for each position as displayed in Figure 3. In this figure,
the main accumulation of oscillation periods increase linearly over the whole
experimental time, starting from about 5 s and arriving at about 15 s oscil-
lation period length. Some outlying points originated from the noise in the
video data as seen in Figure 2c which leads to some positions being identified
as rising oscillation flanks mistakenly. Likewise, some actually rising flanks
may not be found, resulting in longer oscillation periods in the plot.

In a similar way, we calculate the interval between oscillations at neigh-
bouring positions to estimate the delay of the excitation wave between these
positions as displayed in Figure 4. The time delay for the wave propagation
is not equal between all positions pairs. Nonetheless, this does not imply
that the wave travels through the medium at different speeds. Instead, the
positions are not exactly the same distances apart. Additionally, crossing
the lipid membrane, e.g. between the positions (d1,d2), (d3,d4) or (d4,d5),
does take the excitation wave longer than travelling the same distance inside
a droplet, e.g. between the positions (d2,d3) or (d5,d6).

The system is observed for 2880 s, counting around 300 oscillations during
this time. The system’s oscillation periods are increasing almost linearly over
the experiment as shown in Figure 3. Nevertheless we are using constant
oscillation periods in all modelling scopes here, even though we are working at
incorporating the dynamically changing system behaviour. Since the system
showed a rich variety of different behaviours around the time tm = 1000 s,
we chose this time for the modelling in the next section.

The lowest and smallest droplet at position d1 with a diameter of about
0.6 mm oscillates the fastest and, for most of the time, controls the oscilla-
tions in the remaining system. Another interesting behaviour of the observed
droplets is a phase of slower self-excitation of the top droplet at positions d5
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Figure 3: Oscillation periods extracted from experimental video. For sim-
plicity, only positions d2, d3 and d4 are shown in this plot. Generally, the
oscillation periods increase over the experiment, following an approximately
linear regime. A large cluster of oscillation periods is found on the line lin-
early climbing from 5 up to 15 s (second auxilary line). These oscillations are
results of trigger waves originated at position d1. Most of the time, as can
be observed in supplementary video 1, these waves spread out and dominate
the whole system. A second cluster of oscillations on the line from 10 up
to 25 s is mostly observed in the first half of the experiment (first auxilary
line). Here droplets self-excite because of broken influence of position d1,
supplying an estimate for the self-oscillation periods of droplets. Oscillations
plotted below the lowest auxiliary line are most likely due to measurement
and data extraction errors, such that two successive oscillations would often
add up to elements on the main accumulations. As an exception, around the
time 1200 s, a spiral wave pattern emerges close to position d3 and leads to
faster oscillations at position d2 and d3. Since these waves arrive with a high
frequency, the BZ solution at the lipid bilayer between positions d3 and d4
does not have enough time to recover. Hence only every second wave can
be transmitted over the gap between the droplets. Partially this long time
between two oscillations already leads to self-excitations.
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Figure 4: Signal propagation times, extracted from video data in Figure 2.
The red crosses indicate the time delays between excitation of one droplet
position and the following position. The green lines are fitted along the
main aggregation of signal propagation times around 10 s and is used to pa-
rameterise the delay times of the discrete-event model in Section 3.4. The
aggregations of delay times around 10 s are caused by a single excitation
wave passing the system in forward direction, i.e. from di to di+1. The other
two major aggregations, which are increasing and decreasing over the ex-
perimental time, are caused by waves that pass position di before or after
the wave that is considered for position di+1. While the wave propagation
speed stays approximately constant over the experiment, the delay between
two successive waves at two distinct positions changes with the oscillation
frequency over the experiment, leading to the increasing and decreasing sec-
ondary aggregations in the plots. In the time window between times 1000
s and 1500 s, the direction of the waves is partially inverted, leading to a
change in the measured time delays as well. Furthermore, there are some
delays marked far-off the main aggregations, which are mostly a result of
mistakes at identifying the rising flanks of the oscillation due to noise.
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system property observation
timeframe

position fitted function

trigger-wave from d1
period

200 .. 2880 s d1 .. d6
9

2000
t+ 3.5 s

self-excitation period 500 .. 1500 s d2 .. d6
9

2000
t+ 10.25 s

refractory time, lipid
bilayer

1200 s d3, d4
9

2000
t+ 2 s

oscillation period, spi-
ral wave

1230 s d3, d2
9

2000
t+ 1 s

Table 2: Summary of the functions that are fitted based on Figure 3. The
fit of the trigger waves’ oscillation period, which control the system most of
the time, is obvious. Fitting the self-excitation times that can be observed
between times 500 till 1500 s is harder because of the smaller number of
samples and a large variance therein. Choosing a linear function with the
same slope as the trigger-wave function leads to an acceptable fit, at least in
the small time window that the self-oscillations appear in. For the remaining
parameters, the refractory times of droplet centres, droplet borders and the
oscillation times of spiral waves, there is basically just one point along the
time axis available. So following the previous two functions, we assumed
the same slope again here. Nonetheless, for modelling the system behaviour
around time t = 1000 s, the error should be relatively small because the
underlying observations are made close to this time as well.

and d6 in a time window between simulation time 300 s and 800 s. In this
phase, the top droplet self-excites with an oscillation period that is longer by
a factor of about 2, compared to the oscillations induced by the lowest droplet
at position d1. There is also a short abnormal phase between the times 1050
s and 1250 s when a spiral forms in the lower middle droplet and leads to an
oscillation period that is reduced by a factor of approximately 0.7, compared
to the triggered oscillations. While these fast oscillations propagate into the
lowest droplet after some time, they do not cross the membrane to position
d4 and above. These observations allow us to characterise the behaviour of
the droplets as summarised in Table 2.
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3 Modelling Excitable and Self-Exciting Drop-

lets

For model building, there are typically versatile approaches available that
influence model characteristics like the level of detail, the accuracy, the sim-
plicity, computability and other features. Differential equation approaches
are often based on first principles, highly detailed but mostly also compu-
tationally demanding. They are probably best suited for understanding the
behaviour of the BZ reaction, especially when happening under uncommon
conditions like inside a lipid membrane with its side effects. This under-
standing is the basis for optimising the chemical composition of medium, oil
and lipids to produce a desired behaviour.

But for figuring out which kinds of behaviour could actually be of use
to perform some kind of computation, faster and larger models including
hundreds and more droplets become necessary. This is for example the case
with cellular automaton or event-based simulation models of droplets that
are simplified to use discrete states instead of continuous concentrations. In
an even more abstract sense we will also need modelling techniques, such
as high level programming languages to describe the function of complex
droplet networks. We will give a short outlook into this direction in Section
5.

Naturally, the further one of these modelling viewpoints is apart from the
first principles of the system, the harder will it be to obtain the necessary
parameters. Ideally, we would like experiments and first principle models to
parameterise the models on the next abstraction level. In contrast here, some
of the higher level properties such as oscillation periods and wave propagation
velocities can be observed directly in the experiment.

3.1 Well-Stirred Ordinary Differential Equation Model

Starting with the local BZ medium behaviour, i.e. without considering diffu-
sion, the most prominent models are the Brusselator [37] and the Oregonator
[34, 15] models using ordinary differential equations. We are using variations
of these model by Szymanski et al. [41] and Gorecki et al. [21], that allow
obtaining the necessary system parameters directly from the experimentally
used concentrations [41, 21, 18]. In the simplified two variable interpreta-
tion, the model describes the dynamics of one activating chemical species
x and one repressing chemical species z. They correspond to bromous acid
(HBrO2) and ferroin (Fe(phen)3+3 ) concentrations, respectively. It reads as
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follows:

∂x

∂t
= ε1h0Nx− ε2h0x2 − 2αε1MK

(
1

β
+ q

1

h0

z

1− z

)
x− µN
x+ µN

(1)

∂z

∂t
=
h0N

C
x− αKM

Ch0

z

1− z
(2)

The necessary model parameters are h0: the Hammett acidity function of the
solution and the concentrations of K : KBr, M : CH2(COOH)2, N : NaBrO3

and the catalyst C : [Fe(phen2+
3 )]+ [Fe(phen3+

3 )] as listed in Table 1. Further
fixed parameters are µ = 1.6 ∗ 10−5, α = 2.6 ∗ 10−4, ε1 = 1200, ε2 = 6700, β =
1000 and q = 0.51.

The oscillation cycle, cf. Figure 1, starts the excited phase with a moder-
ate concentration of the activator x and a low concentration of the repressor
z. Then the amount of repressor and activator rise rapidly and lead to a
negative second derivative dx

dt
for the activator equation until x will finally

drop back to its initial low value. From this point on, we call the BZ solution
refractory with a low activator concentration and high but slowly decreasing
repressor concentration z.

Now, if there was a small inflow of activator into the system, the BZ
mixture could not be triggered into the next oscillation because the high
repressor concentration would quickly degrade the activator. But when the
repressor concentration z drops below a critical value, an inflow of activator
x will not be degraded fast enough and the BZ mixture can be triggered into
a new oscillation cycle. We define the responsive phase such that it begins
when a specific activator inflow is sufficient to trigger the next excitation in
the BZ mixture and lasts until the next excited state begins. Clearly the
begin of the responsive state and thus the threshold for the concentration of
the repressor z depends on the amount of activator that flows into the sys-
tem. This inflow would typically stem from an arriving excitation wave when
considering spatially inhomogeneous BZ mixtures. Hence it is not possible to
describe this point without a characterisation of the membrane boundaries
or the diffusion coefficients. In contrast, when using partial differential equa-
tions and appropriate diffusion coefficients in the next section, the inflow of
activator from an arriving excitation wave is defined.

Dependent on the BZ system characteristics, the next responsive phase
can last infinitely in the case of the excitable medium. Alternatively, the
repressor can, in self-excitable medium, drop so low that the next excitation
wave is triggered reliably after a certain interval.
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3.1.1 Stability Analysis of the Well-Stirred Ordinary Differential
Equations Model

Stability of a system can be determined by the crossing of its nullclines. The
nullcline (or zero isocline) refers to the slope of a function which will always be
the same (zero), regardless of the initial conditions. More precisely, assuming
that the right-hand-sides of the nonlinear differential equations (Eqs. 1 &
2) are f(x, z) and g(x, z) respectively. Then, the x-nullcline is the set of all
points in the x-z plane satisfying f(x, z) = 0. The z-nullcline is the set of
all points satisfying g(x, z) = 0. Equilibrium points (or fixed points) are the
intersection points of x-nullcline and z-nullcline. Hence, in this BZ system,
there are potentially three fixed points (for the given parameter values). They
are as (x, z) pairs: P1 = (−1.5 ∗ 10−8,−7 ∗ 10−4), P2 = (6.9 ∗ 10−5, 0.97) and
P3 = (−0.016, 1.0). To analyse the stability of these states (fixed points),
we calculate analytically the Jacobian and evaluate its eigenvalues. These
eigenvalues with respect to each fixed point are respectively: (206.3, 0.16) an
unstable Node, (103.1,−4.6) a Saddle point and (−60657.4,−4.4) a stable
Node. Since, we are working on a chemical system, therefore solely the
unstable Saddle fixed point P2 = (6.9 ∗ 10−5, 0.97) is realistic and relevant.

Next, any gradient system has no limit cycle and any close orbit. We
tested the differential equation system and observed it is not gradient. That
is the partial derivatives of the functions are equal to zero. That helps us to
determine a limit cycle from our phase space plot (see phase space Figure 5
C & D). Subsequently, we simulated the differential equation model (t=300s)
and scan all parameters individually and independently.

We found that high values (increasing the default given values) of α, µ,
N , M and K lead to high (more) oscillations while low values of q, ε2 or C
lead to decrease oscillations.

Amplitude with respect to x is getting higher by increasing any of α, M
and K and getting lower by increasing h0 and ε2. Amplitude with respect
to z is getting higher when increasing h0 and low z-amplitude can be reach
by increasing α, ε2, M and K. The system has no significant effect via
changing ε1. Interestingly, h0 has a switching value around 0.0013. As long
as h0 belongs to the interval 0.000001 and 0.0013, oscillations decrease with
increasing h0. Once, h0 becomes higher than 0.0013, oscillations increase
with an increasing h0 value. Furthermore, the h0 value does not affect the
amplitudes of the oscillations.
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Figure 5: Numeric simulation and phase space of the BZ system trajectory.
In plots A and B, blue denotes the concentration of the activator species x
and purple the repressor species z. In comparison to plot A, plot B uses a
logarithmic y-axis for a better observation of species x. Plots C and D show
the phase space with logarithmic x-axis. The blue dot is the position of the
system’s fixed point. Since z moves very close to the z = 1 system boarder,
plot D shows the same phase plot with additionally transformed z-axis to
z′ = log(1− z).
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3.2 Reaction-Diffusion Partial Differential Equation
Model

For describing the spatial and temporal propagation of excitation waves in
addition to the well-stirred dynamics of the BZ system, we need to include
space. In the simplest form, this can be done by adding the Laplacian term
into differential equation (1) of system variable x that is supposed to diffuse
[21, 18], arriving at equation (3). We consider the molecules represented by
system variable z to be larger, leading to diffusion on a slower timescale that
will be ignored here. This change introduces the diffusion coefficient Dx of
species x as new parameter, resulting in the equations:

∂x

∂t
= ε1h0Nx− ε2h0x2− 2αε1MK

(
1

β
+ q

1

h0

z

1− z

)
x− µN
x+ µN

+Dx4 x (3)

∂z

∂t
=
h0N

C
x− αKM

Ch0

z

1− z
(4)

The partial differential equation models of BZ droplets proved their value
for investigating the interaction between two droplets [18] and, in a slightly
modified form, for designing circuits or logic gates of about ten droplets for
sub-excitable medium as we will show in Section 4.

Many parameters, such as diffusion coefficients for different species or at
different locations in the droplet, might be hardly observable. Here, param-
eter fitting approaches are a practical way of deducing knowledge about the
system from macroscopic properties like wave propagation velocities or os-
cillation periods [18]. On the downside, these parameter fitting methods are
indirect and results are not guaranteed to be unique.

However, the spatial expansion of the ordinary differential equation model
of the last section is not straightforward. Causes are the immense compu-
tational efforts of the simulation, numerical instabilities, diffusion properties
through the lipid bilayer that have to be determined in addition to coeffi-
cients in the medium and boundary conditions at the droplet borders. For
example in supplementary movie 1, the waves’ passage over droplet borders
and the resulting wave delay can be observed. Also, close to the droplet
borders the BZ reaction can be repressed [39], whereas we assume a spatially
homogeneous BZ medium in equations (3) and (4). Computations can be
sped up using graphics card acceleration with CUDA [28] and by specialised
simulation techniques [12]. Nonetheless, the numerical integration of such
a partial differential equation system is computationally expensive and will
mostly be used for small systems, considering few excitation waves.
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3.3 Cellular Automaton Models

The problems of complex parameter sets and high computational expenses
can at least partially be resolved in cellular automata [43, 45]. In this case,
more phenomenological, ad hoc models are built, which rely on less unobserv-
able parameters, but also less on first principles but rather on the observable
properties of the system. Space is mostly discretised into a regular grid. Also
time and cell states are discrete and update rules describe how each cell’s
state is calculated from the cell and its neighbourhood’s previous state. The
discretisation usually uses a varying number of states that fall into the classes
of excited, refractory and resting or responsive phases. Examples for such
automaton models could be four state systems [22] or three state automaton
models [1, 4, 27] that were already used to simulate systems of large droplet
numbers.

Generally, cellular automata do not necessarily produce the same be-
haviour for different spatial lattices [38]. For instance, when simulated in
two or three dimensions, the earlier cellular automaton models did not cor-
rectly reproduce the curvature that is observed in the real BZ medium. Also
they did not account for the dispersion relation, meaning that the medium is
less excitable shortly after being excited and thus transmits excitation waves
slower. These effects were captured in more recent simulations [17, 12].

Even though there are approaches of timed automata [11], there is an-
other challenge when modelling using cellular automata: the typically fixed
time steps pose additional constraints in contrast to the irregular propor-
tions between different phases in the BZ system. This means that either the
temporal resolution of the phases is coarse or that a large number of states
has to be used for each phase to generate the observed timing fractions.

3.4 Discrete-Event Model for BZ Droplets

To follow the efficient simulation approach of cellular automata while in-
cluding the possibility for exact timing, we propose a discrete-event based
modelling and simulation approach [16]. The parameterisation of this model
is relatively simple and can be derived from principal observations of the
excitable medium. Furthermore, many droplet system can be simulated effi-
ciently, i.e. many hundred excitations of systems of about 100 droplets can
be simulated in less than a second. It uses coarse grained space and few
discrete droplet states but continuous time. These states are the excited, the
refractory and the responsive phase as introduced in Section 1.1 and as used
by most cellular automaton approaches. Either deterministic or stochastic
state transition functions can be applied, though we will only demonstrate
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deterministic state transitions in this paper. We define the state transition
behaviour of the droplets with the following mathematic functions:

• α(τ) Probability density function for the transition time from respon-
sive state to the excited state. Hence this parameter describes the
inclination of the system to self-excite.

• β(τ) Probability density function for the transition time from excited
to the refractory phase. Hence the length of the excited phase.

• γ(τ) Probability density function for the transition time from refractory
to responsive phase. Hence the length of the refractory phase.

• ψ(τ ′) Probability density function for the transmission time of a signal
from one excited droplet to another responsive droplet taking the time
τ ′.

For these functions, τ is the time since entering the current state. For
the transmission of excitation waves, in contrast, τ ′ is the time needed to
propagate the excitation from one droplet to another. The basic condition for
transmission is that one droplet is excited while the other one is responsive.
But since the spreading of waves takes some time, a delay τ ′ is sampled
from the distribution function ψ(τ ′). So if one droplet is excited between the
times t1 and t2, it can trigger an excitation in an adjacent droplet if this is
responsive between t1 + τ ′ and t2 + τ ′.

Simulations

From an initial state of the system, all following events are sampled using
the distribution functions α(τ), β(τ), γ(τ) and ψ(τ ′). The times for these
events are organised in a priority queue so that only changing droplets’ states
contributes to computational costs. At each simulation step, the earliest next
event from the event list is selected, removed, verified and then executed by
modifying the simulation data structure. Subsequently, all possible events
for the modified droplet are inserted into the event queue. Events have to be
verified to check if the situation of the droplet they concern has not changed
in the time between issuing the event and the current simulation time. An
event belonging to a droplet can for example become outdated if another
droplet triggers it into an early excitation or if it is stimulated from outside
the system to input data or to simulate noise. Therefore, less active or
inactive parts of droplet networks do not require high computational efforts.
The computational complexity of simulating a network of n droplets for a
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time t scales with O(t · n · log(n)). The factor n is due to the increase in the
number of events with more droplets while the logarithmic factor results from
modifying the priority queue. Our simulation software can be downloaded
from the project website2.

Spatial Discretisation

An intuitive discretisation of space might be to choose one discrete droplet
per position in Figure 2a, i.e. six droplets, such that the larger droplets are
divided into smaller sub-compartments. In this case, this approach would not
reproduce the observed wave dynamics:

Observing the experimental system in Section 2, the time required for ex-
citation waves to pass from one position di to an adjacent one di+1 is in the
same order of magnitude as the oscillation period. More importantly, the
wave propagation time is larger than the refractory period of about seven
seconds. This means, the actually travelling excitation waves can be hidden
in the signal transmission times of the discrete model. Then, an excitation
wave can pass from one sub-compartment to another via the signal transmis-
sion delay, even if there is another excitation wave moving in the opposite
direction, which would actually annihilate the first wave in the real or differ-
ential equation systems. Furthermore, cyclic oscillations can form between
two sub-compartments when two abstract oscillations move in opposite di-
rections without cancelling each other out. By subdividing droplets into
smaller sub-compartments, we can choose the spatial discretisation so fine
that the signal propagation time τ ′ becomes smaller than half of the smallest
refractory period. This resolves the problem: Any excitation started from
sub-compartment di at time t0 will not arrive at sub-compartment di+1 before
t0 + τ ′. When sub-compartment di+1 is now sending out an opposed exci-
tation at t0 + τ ′ − ε, shortly before the first wave hits, di+1 will clearly be
refractory. The opposed wave will hit the first sub-compartment di at the
earliest at time t0 + 2τ ′− ε, which is still before the first sub-compartment di
leaves the refractory state again.

So we divided the positions up into few smaller sub-compartments, such
that the wave propagation times for the smaller compartments are shorter
than half of the refractory times as displayed in Figure 6. Hence we rep-
resent the real system of four droplets with a system of 33 discrete sub-
compartments. Each of the positions from Figure 2a is replaced by a set of
four to six sub-compartments for the gradual signal transmission, another two
to represent the signal transmission properties of the lipid bilayer and one

2www.neu-n.eu
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more sub-compartment to record the excitations at the centres of d1 till d6.
The lipid bilayer representing sub-compartment are shared by two adjacent
positions and are replaced by sub-compartment of higher excitability in the
case of the contact region between positions (d2, d3) and (d5, d6), where no
bilayer is present in the experiment. For the sub-compartment representing
medium, we used a refractory time of six seconds, while using seven seconds
for the lipid bilayer representing sub-compartment.

Discrete-Event Model Instances

To demonstrate the capability of the discrete-event model to reproduce the
qualitative system behaviour, we show the two most prominent behaviours
of the BZ droplet system presented in Section 2. To instantiate the discrete-
event model in this case, we need to provide the distribution functions α(τ),
β(τ), γ(τ) and ψ(τ ′). In consistence with the differential equation models
introduced before, we will only use deterministic transition functions by using
the Dirac delta function δ(τ − τ0). The τ0 values will then be chosen as the
timing parameters that are known from the experiments (c.f. Section 2)
or could be determined from the ordinary differential equation models. In
spite of the deterministic functions chosen here, it would also be possible to
sample the phase transition times for example from Normal distributions,
which would require the variances as further parameters though. We know
that the concentration of the activating species HBrO2 is noticeably high
only for a very short period of time from the ordinary differential equation
modelling in Section 3.1. Hence we simplify the excited phase to a single point
in time, switching from the responsive to the excited and to the refractory
behaviour instantly by setting β(τ) = δ(τ − 0). The transition functions for
the discrete-event model sub-compartments as we are using them here are
summarised in Table 3.

First, we simulate the dominance of the trigger waves, generated at posi-
tion d1 around experimental time 1000 s, over the remaining system in Figure
7. In simulation and approximately also in the real system, all signals are
oscillations with the same periodicity as d1 but with a shifted phase.

As second instance of the discrete model, displayed in Figure 8, we de-
crease the self-excitation period of position d3 down to 6.7 s. This value is
close to the oscillation periods observed between experimental times 1000
and 1200 s when a spiral wave dominates position d2 and d3. Furthermore,
the oscillation frequency is below the 7 s refractory period that we chose for
lipid-bilayer droplets, resulting in blocking at least every second trigger wave.
It means that the dominance of the trigger waves from position d1 is inter-
rupted for positions d4 till d6. Instead these upper droplets are controlled by
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sub-compartments, 12.8 s

Division into four

sub-compartments, 11.75 s

Physical droplet system:

Discrete-event model using virtual droplets:

Figure 6: Mapping from the physical droplet system into the model com-
posed of sub-compartments. While the upper part of the figure represents
the physical droplet system as displayed in Figure 2, the lower part rep-
resents the discretisation into homogeneous and discrete sub-compartments.
Here, the white compartments represent the actual BZ medium between the
observed positions and simulate the gradual propagation of excitation waves.
The coloured compartments are not delaying the wave propagation but are
used for varying excitabilities and for observation. We use the blue sub-
compartments to represent the droplet borders with their potentially higher
excitability threshold that can lead to trigger waves spreading through the
medium but not propagating over the lipid bilayers as observed in Section
2. The red droplets are the analogues to the blue droplets, representing the
medium at the centre of the large droplets. Green droplets represent the
positions d1 ... d6 and are introduced into the model for observing the states
at these positions.
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Parameter τ0 in δ(τ − τ0) for distribution:
α(τ) β(τ) γ(τ) ψ(τ)

length of phase: responsive excited refractory transmission
d1 0 s 0 s 8 s 0 s
d2, d3, d5, d6 9 s 0 s 6 s 0 s
d3 normal 9 s 0 s 6 s 0 s
d3 spiral 0.7 s 0 s 6 s 0 s
lipid bilayer droplet 8 s 0 s 7 s 0 s
medium d1 - d2 0 s 0 s 6 s 10

4
s

medium d2 - d3 9 s 0 s 6 s 11.2
4

s
medium d3 - d4 9 s 0 s 6 s 12.8

6
s

medium d4 - d5 9 s 0 s 6 s 11.75
4

s
medium d5 - d6 9 s 0 s 6 s 9.8

4
s

Table 3: Parameters for the discrete-event model used in the shown sim-
ulations. δ(τ − τ0) denotes the Dirac delta function. The parameters are
estimated from analysing the experimental data and from ordinary differen-
tial equation modelling. Parameters for droplet d1 are chosen with a zero
responsive time since we only know that it triggers excitations every eight
seconds, but not if it would be possible to excite it earlier. For the signal
transmission times, fractions of four and six are chosen, because the exper-
imental droplets are subdivided into four or six smaller sub-compartments
droplets, to reduce the otherwise large signal transmission delay. For the
transmission time between position d1 and d2, we chose 10 s since no mea-
surements were available here. Membrane sub-compartments and the lipid
bilayer sub-compartments are parameterised with different fractions between
refractory and responsive time: The lipid bilayer area seems less excitable
since trigger waves that propagated through the medium could not pass over
the droplet borders in the experiments.
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Figure 7: Comparison of the discrete model simulation for excitable droplets
with the experimental system in positions d2 and d5 (cf.Fig. 2a). The data
reflects the predominant control of the trigger waves generated by the first
droplet at position d1. The time axis for the experimental data is shifted with
the function t′ = (t − 5 s) to fit the curves of the discrete-event simulation.
Furthermore, the experimental blue channel intensity is scaled to fit the
interval (0, 2) that is used by the discrete-event simulator to indicate the
states responsive, refractory and excited with 0, 1 and 2 respectively. No
further scaling of the time-axis was applied.
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Figure 8: Comparison of the same simulation and experimental data as in
the previous figure, but now at a later time-interval showing the effect of
faster spiral waves in positions d2 and d3 on the remaining system. Since
the system is modelled at time 1000 s but the related system behaviour is
found around time 1200 s, the time axis for the experimental data is rescaled
with the function t′ = (t∗0.95+57.5) to compensate for the lower oscillation
frequency at this slightly later time of the experiment.
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every second spiral wave that can pass into the third droplet at position d4.
If the period of the spiral waves was a bit longer, every second wave would
not have arrived fast enough to stop positions d4 till d6 from self-excitation.
This effect can be observed in the video (Supplementary file 1) around time
1300, when self-excitation appears in the upper droplets.
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4 Modelling of Sub-Excitable Droplets

Also sub-excitable BZ droplets were modelled using partial differential equa-
tions to design small networks implementing logic and arithmetic functions
that could later be used as building blocks for larger systems [25].

Logically symbolic waves are able to traverse the network modulated by
interaction with pathways and other waves. The disc interior can be exploited
for free space collision style reactions [5] whereas the pore loci and efficiency
can compartmentalise the resulting reaction [7]. Circuits have been created
from logical sub assemblies in orthogonal and hexagonal networks [25, 7].
The functional density can be increased when including more variations in
relative disc size, pore efficiency and connection angles [25].

Disc designs have been simulated on a two variable version of the Oreg-
onator model [34] as a model of the BZ reaction [46, 49] adapted for photo-
sensitive modulation of the Ru-catalysed reaction [30] similar to the partial
differential equation system described in Section 3.2 Use of a photo-sensitive
adapted version of the Oregonator model permits a simple migration from
simulation to experiment. Circuit designs from the simulation can be pro-
jected directly onto an actual photo-sensitive BZ medium [26]. Numerical
simulations are achieved by integrating the equations using the Euler-ADI3

method [36].

Contrasting previous logic gates and composite circuits designs using the
BZ substrate, for example [42, 40, 32, 19], presented below are a selection of
logic gates that can be created using nothing other than interconnected BZ
discs. Wave fragment flow is represented by a series of superimposed time
lapse images (unless stated otherwise). To improve clarity, only the activator
wave front progression is recorded.

The operation of an AND gate and it’s inversion, the NAND gate, are
shown in Figures 9 & 10. The result of a wave collision in the NOT gate
(Figure 11) was exploited to deflect and extinguish the source wave into the
disc edge, whereas in the AND gate the collision between the two inputs
results in 2 perpendicular fragments, one of which develops in the output
cell to produce the result. A NAND gate can be created by combining the
NOT gate and the AND gate (c.f. Figure 10). NAND gates are known as
universal gates since all other gates can be created from arrangements of
NAND gates alone.4

Essential to both adaptive behaviour in natural and synthetic computa-
tion is memory. It allows animals and machines to build an internal state

3Alternating direction implicit method.
4NOR gates are also universal gates.

27



(a) 01 → 0 (b) 10 → 0 (c) 11 → 1

Figure 9: Two input AND gate (c = a • b) where inputs a, b are top left and
right discs (blue rings) and output c is the bottom central disc (green ring).
(a) (a, b)(0, 1) A wave from input b propagates uninterrupted and terminates
in the opposing input disc a. (b) (a, b)(1, 0) Likewise, a wave from input b

propagates uninterrupted and terminates in the input disc b. (c) (a, b)(1, 1)
Waves from both input discs a and b collide in the central disc and eject two
perpendicular waves, one of which propagates into the output disc c.

(a) 00 → 1 (b) 01 → 1 (c) 10 → 1 (d) 11 → 0

Figure 10: Two input NAND gate (c = a • b) where inputs a, b are top left
and right discs (blue rings) and output c is the bottom left disc (green ring),
source input is located on the bottom right (blue ring). Operation is identical
to the AND gate (Figure 9) but with an inverter (Figure 11) integrated along
the bottom disc row. (a), (b) & (c) The source input provides a logical
‘1’ output for all input combinations other than (a, b)(1, 1). (d) (a, b)(1, 1)
Output from the AND gate portion of the gate collides with the source input
creating a logical ‘0’ output.

independent from the current external world state. We present an example 1
bit volatile read write memory cell constructed entirely with BZ discs. Inde-
pendent but similar to previous designs [32, 33] in so much that the existence
or absence of a rotating wave represents the setting or resetting of 1 bit of
information.

When two BZ waves progress in opposite directions around an enclosed
channel, loop or ring of connected discs, then at some point the two opposing
wave fronts will meet and are always mutually annihilated. Nevertheless, if
a unidirectional wave can be inserted into the loop then that wave front will
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(a) 0 → 1 (b) 1 → 0

Figure 11: Inverter gate (a = b) where the input a is centre left (blue ring),
bottom disc (green ring) is the output b and a supply, or source logical ‘1’ top
most disk (blue ring). (a) a = 0 The gate initiates with the source pulse in
the top disc. In this case, no signal is present at the input disc and the source
pulse travels to the output disc (bottom) resulting in a logical 1 output (1
→ 0). (b) a = 1 Again the source pulse travels from top to bottom, but in
this case a collision with a signal present on the input disc produces a logical
0 output. (0 → 1).

rotate around the loop indefinitely5. Furthermore the rotating wave can be
terminated by the injection of another asynchronous wave rotating in the
opposite direction. Opposing inputs into a loop are analogous to a memory
set or reset. Reading the state of the cell without changing the state can be
achieved by connecting another output node where a stream of pulses can be
directed to modulate other circuits [20] (Figure 12).

The loop and a unidirectional gate (diode) are the two key constructions of
this type of memory cell. Unidirectional gates in BZ media have previously
been created by exploiting asymmetric geometries or chemistry on either
side of a barrier [9]. An alternative design is possible however using discs
connected with different apertures. The operation relies on the relationship
between the wave expansion and the angle of the connection. Fine control
of the wave beam would in theory allow other angles of connectivity [6] and
other functions.

5 Outlook

Next to generating reusable logic gate designs in Section 4, we will further
exemplify the use and necessity for models on different scales by showing

5For as long as the chemical reagents can sustain the reaction.
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(a) (b)

Figure 12: Memory cell with additional diodes on the cell inputs. Two
additional angled diode junctions are added to each of the input discs (a &
b). This prevents a reverse wave flow back down either of the inputs. An
example output disc is also connected (top left). (a) Wave insertion at (top
right) a input node results in a persistent counter-clockwise wave. Reverse
wave flow down the opposing (bottom) input is blocked by an angled diode
junction. (b) Simultaneous a & b inputs produce one output pulse c and
annihilate wave rotation.

an outlook into our currently ongoing research. This research on computing
droplet systems heavily depends on the presented droplet models and their
simulation.

5.1 Conventional Circuit Designs from Logic Gates

Even though networks of conventional binary logic gates might not be the
ideal application for droplet based computing, the simplicity of writing down
binary logic formulas might lead to some important applications such as
smart drugs, which could already benefit of implementing even simple logics.

As a simple example of a larger sized droplet system using binary logic,
the “input counter” network is shown in Figure 13. It encodes inputs and
outputs to and from the network through the absence or presence of exci-
tations. It discriminates between zero, one, two or three inputs that are
stimulated independently. In response, it should always stimulate exactly
one out of four possible output lanes maximally, dependent on the number
of activated inputs.

The connectivity of the network is displayed in Figure 13a and leads to
the 3d structure of the network that is displayed in Figure 13b when fed
into the simulator. Noticeably the schematic graph uses droplet connections
that cross over, effectively necessitating a three dimensional implementation
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Figure 13: A counting droplet network as design and in simulation. Depen-
dent on the number of stimulated inputs, four different outputs will be excited
maximally, representing the sum of the stimulated channels. a) Schematic of
the droplet circuit using Or, High Activity and the postulated And, Repeater,
Diode and Inhibition droplet types. b) The three dimensional implementa-
tion of the network design is shown with red droplets denoting responsive
medium, while the white and blue tones represent the excited and refractory
states.

of the droplet system that we cannot yet produce experimentally.

5.2 Evolutionary Design of Droplet Networks

Next to engineering approaches for designing computing droplet networks,
we are investigating different “programming” schemes. Using evolutionary
algorithms, we do not specify how the problems should be solved but what
properties the solution to the problems should posses. To this aim a fit-
ness function is specified that evaluates how close a droplet design fulfils the
requirements. This means that the specified demands do not have to be
confined to the correct production of results but can among others also in-
volve the size of the solution droplet network or its robustness against noise.
The fitness evaluation is most likely implemented via simulation, at least in
the first steps, until a set of candidates solutions emerge that can be tested
experimentally.

We also study spontaneous formation of networks composed by droplets
exhibiting local interactions, whose architectures are able to compute. Com-
putability is here measured qualitatively in terms of network’s competence
to reach to specific states, as well as quantitatively, using information theory
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measures to evaluate its operational capacities. Moreover, we analyse the role
of selection pressure when evolving such architectures. In a first attempt to
simulate this process, the developing spatial configuration is regulated by the
localisation and states of the droplets and their interactions. Later, we apply
external signals as perturbations that trigger phase changes in droplets, pos-
sibly generating reorganisations in the network (and hopefully self-healing
actions). These events are then used to understand how to control in some
way the process of development and also determine the robustness of the
system.

From another point of view, not only the structures of droplet networks
matters but also the encoding of signals that are fed into it, i.e. as input data
or parameter to any kind of computation. To this aim we investigated the
combined evolution of stimulation patterns and droplet network structures
for computing simple binary functions in [23] as displayed in Figure 14.

In an exemplary futuristic application, droplet networks could be used as
“intelligent” drugs that could be activated under very specific conditions. So
we are for example evolving classifiers for biomarkers, e.g. from the bench-
marking dataset Proben1 [35].

6 Conclusions

In this paper we presented a summary on current techniques of modelling
compartmentalised excitable media exemplified with lipid covered droplets
of Belousov-Zhabotinsky BZ medium swimming in oil. Accompanied by an
experimental system of four droplets and analysing their behaviour over a
time of about 48 minutes during which we registered about 300 oscillations
waves. Starting from a non-spatial ordinary differential equation model, a
spatial perspective is reviewed in the partial differential equation models.
Then, spatial and temporal discretisation is to speed up simulation studies
using cellular automata is discussed. Finally, in the Sections 3.4, an event-
based model is proposed to achieve higher timing precision while preserving
the efficiency for the investigation of large systems.

Even though we showed the qualitative reproduction of the systems be-
haviour with the discrete-event model, there are some effects that are not
yet covered by this approach. Most obviously, the oscillation periods are
increasing over the experimental times up to a factor of about three. This is
neither covered by the differential equations nor by the discrete droplet mod-
els. While we are currently working on extending the differential equation
systems to include this effect, it might in principle be easier to reproduce
this effect in the more phenomenological event-based systems by adding the
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Figure 14: Evolution of droplet networks topologies in combination with sym-
bol encoding patterns. (a) Rendering of an evolved droplet network instance.
Each square represents a droplet on a two dimensional array. Black cells
represent empty spaces that are not excitable, different red tones represent
different species of excitable droplets that were modified by an evolutionary
algorithm. The four blue cells represent fixed input / output droplets. A
von Neumann neighbourhood around each cell defines the connectivity of
the droplets, i.e. droplets that are directly on top, bottom, left or right are
connected and can excite one another.
(b) Example of two symbols that evolved together with a network instance
to realize the XOR function. The lower row of the image represents symbol
’0’ while the upper row represents symbol ’1’. Time advances in x direction
over 100 frames where the input droplets of (a) are stimulated only in the
intervals that are represented by yellow vertical bars.
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global time t as another parameter, such that the probability distribution
functions look like α(t, τ), β(t, τ), γ(t, τ) and ψ(t, τ ′). Furthermore, the dis-
persion relation [29, 17] is another currently neglected effect, meaning that
excitation waves move faster when the medium had more time to recover after
the previous excitation. Here partial differential equation approaches already
capture this effect but it would also be possible have a signal transmission
function ψ(τ ′) that considers the droplets excitation history.

Observing the experimental data of Figure 2c, it becomes clear that a
certain level of noise is part of the system, even though some quantum
of the noise will also be due to the camera and digitalisation process. So
we expect some uncertainty about the length of the oscillation period [10],
about the length of its phases, about the amplitudes, about the geometries
of droplets, about the excitability of droplets and about the connectivity be-
tween droplets. These effects are probably rather troublesome properties of
the system that will make the design of robustly working droplet computers
more challenging. Consequently, a useful model of computing droplets sys-
tems will have to consider random perturbations. Though we do not show
how to estimate the correct noise levels from the experiments here, especially
the discrete models allow a parameterisation of the transition functions, e.g.
by representing the fluctuations as Gaussian probability density functions
instead of the Dirac delta function.
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Supplementary Material

• Supplementary movie 1: droplet chain 1 1.mpg can be downloaded
from the project website:
http://www.chemicalneuronalnet.uni-jena.de/neuneu media/de/MoviesAndPictures/droplet chain 1 1.mpg and shows
the experiment described in Section 2.
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