
Project no. 248992

Project acronym: NEUNEU

Project title: Artificial Wet Neuronal Networks from Compartmentalised
Excitable Chemical Media

Small or medium-scale focused research project (STREP)

Deliverable 3.4 - Report or publication on signal dynamics within
many droplet systems

Period covered: from 1.2.2010 to 15.2.2012 Date of preparation: 18.9.2009

Start date of project: 1.2.2010 Duration: 36 months

Project coordinator name: Dr. Peter Dittrich
Project coordinator organisation name: Friedrich Schiller University Jena



Symbol Representations in Evolving Droplet
Computers

Gerd Gruenert, Gabi Escuela, Peter Dittrich

March 1, 2012

Abstract

We investigate evolutionary computation approaches as a mech-
anism to program networks of excitable chemical droplets. For this
aim, we first concentrate on the characteristics of symbol represent-
ing signals in this kind of coupled excitable systems when assigned
a specific task. Considering a given Boolean function like Identity,
OR, AND, NAND, XOR, XNOR or the half-adder as the target func-
tionality, 2D networks composed of 10 × 10 droplets. Three different
setups were tested: Evolving network structures with fixed on/off rate
coding signals, coevolution of networks and signals, and network evo-
lution with fixed but pre-evolved signals. Evolutionary computation
served in this work not only for designing droplet networks and input
signals but also to estimate the quality of a symbol representations:
We assume that a signal leading to faster evolution of a successful
network for a given task is better suited for the droplet computing
infrastructure. Results show that complicated functions like XOR can
evolve using only rate coding and simple droplet types, while other
functions involving negations like the NAND or the XNOR function
evolved slower using rate coding. Furthermore we discovered symbol
representations that performed better than the straight forward on/off
rate coding signals for the XNOR and AND Boolean functions. We
conclude that our approach is suitable for the exploration of signal
encoding in networks of excitable droplets.

1 Introduction

In an excitable medium the propagations and collisions of waves of chemical
activity can be used for computation [1]. We refer to droplets as small
amounts of excitable medium floating in oil that are covered with a layer
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of lipid molecules. The lipids stabilise the droplets against merging but
still allow two adjacent droplets to communicate when the lipid molecules
form a bilayer similar to that of biological cells [2]. Excitation waves can
be transmitted through droplets but can also interfere with one another,
dependent on their timing and on the chemical properties of the droplets and
the medium within. Hence, droplets arranged in a network form a potential
chemical computer [7, 14, 9].

In a droplet based computer, the spatiotemporal dynamics of the exci-
tation waves determine the computation, therefore the topology of the cou-
pled droplets plays a decisive role when “programming” such devices. Ad-
ditionaly we can also look at the signals representation in order to discover
an adequate and efficient interpretation for them. Here we refer to “pro-
gramming” in the broadest sense of specifying the desired functionality of a
computing device in contrast to the typically understood exact algorithmic
specification of data manipulation. Examples for this unconventional sense
of programming could be evolutionary algorithms, functional programming
languages, amorphous computing, spatial computing, collision computing,
chemical computing, membrane computing, natural computing, neural com-
puting [3] and liquid state machines [11].

In this study, we consider evolutionary algorithms [10, 15, 6] as a mech-
anism to infer adequate symbol representations when building logic gates
with droplet networks. Given an optimisation problem, an evolutionary al-
gorithm selects for good individuals in a population of solutions that changes
over time via genetic operators. Starting with a randomly generated popula-
tion and guided by the fitness function, the evolutionary algorithm gives us
after several generations an approximating solution to the problem. The use
of evolutionary algorithms to design logic gates and circuits has been studied
specially in the context of genetic programming [10] and evolvable harware
[12]. The idea is to implement computers based on reconfigurable hardware
that are able to adapt to a changing environment.

We are not aiming at building a single droplet network design that could
act as a universal computer, solving any kind of computable problem. But
it appears feasible and useful to build droplet devices that compute results
for different instances of a problem. Therefore, given a problem instance,
input data needs to be specified in some way. This could either happen
through the initial state of the droplet system or during the runtime, most
probably through external stimulation of certain droplets. In either way it
is an important design decision which encoding is used to feed inputs into
the droplet network. Most probably the optimal encoding will depend on
a number of factors like the type of task, the number of used symbols, pa-
rameters of the computing substrate and the applied quality measure. From
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the neurosciences we know for example the coding techniques rate coding,
population coding and temporal coding [4]. While rate coding uses the os-
cillation frequency to distinguish different meanings, different populations of
active neurons are meant by population coding. Temporal coding, in con-
trast, utilises the timing differences between droplets as information carrier.
These coding schemes might be candidates for excitable droplets as well.

To find adequate symbol representations for droplet computers, we start
by evolving droplet networks that fulfil a functionality, given by simple
Boolean functions. Similar to evolutionary algorithms or to genetic program-
ming the evolved droplet network topology can be seen as the definition for a
program that can be executed on the droplet computing architecture. Then
we explore the coevolution of the droplet network topologies with different
symbol encoding options for two symbols and basic Boolean logic functions.

2 Methods

Droplet Networks

We generate simulations of droplet networks in a 10 × 10 grid of simulation
droplets that are connected in a von Neumann neighbourhood, such that all
directly adjacent cells can excite each other. Up to four different kinds of
cells are used, which represent empty cells, normal droplets, droplets of lower
excitability and droplets with longer oscillation periods. Furthermore, there
are two fixed input droplets and two fixed output droplets defined on the
network grid. They can be used to dynamically feed a stream of excitations
into and out of the droplet network. We represent a specific droplet network
instance as an n by n matrix as visualised in Figure 1a:

N =


d1,1 d1,2 · · · d1,n
d2,1 d2,2 · · · d2,n

...
...

. . .
...

dn,1 dn,2 · · · dn,n


di,j ∈ {∅, dNorm, dLowEx, dSlow, dIn0, dIn1, dOut0, dOut1}

A von Neumann neighbourhood around each droplet di,j defines the connec-
tivity of the droplets, i.e. droplets that are at the positions di,j−1, di,j+1,
di−1,j or di+1,j are connected and can excite di,j or be excited by it.

To allow fast simulations while being able to fine-tune the droplet tim-
ing parameters and noise levels, we simulate the droplet networks using our
discrete-event simulation approach [8] with the following parameters: Nor-
mal droplets dNorm as well as input and output droplets are modelled with
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an expected oscillation period of 16 s, which is composed of 10 s responsive
time τres, 1 s excited time τex and 5 s refractory time τref . Signal propaga-
tion delays τprop are 1 s. Droplets self-excite after not being triggered into
an excitation externally after the responsive time τres of about 10 s. The ex-
act timing parameters for each phase are sampled using normal distributions
with a standard deviation of 0.05 s around the mean values given before.
Less excitable droplets dLowEx use the same timing distributions but require
at least two adjacent droplets to be excited at the same time to trigger an
excitation. For the droplets with longer periods, all timing mean values as
well as the standard deviations are multiplied by a factor of 3

2
.

Signal Encoding

When representing binary signals by rate coding, we stimulate droplets as
much as possible for a symbol ’1’ and not at all for a symbol ’0’. When
droplets are maximally stimulated, the oscillation time will be τex + τref =
6 s. Normal droplets that are left alone do not stop oscillating but their
frequencies are lower with periods of τex + τref + τres = 16 s.

To allow more complex symbol representations, we use a timing pattern
that determines which input droplet is stimulated from the outside at which
times. We divide the length T of the stimulation pattern up into m small
intervals {I1...Im}, each of the length 4t = T

m
. Hence, interval Ij is defined

between the times (j − 1) · ∆t and j · ∆t. We define a channel’s pattern
as a Boolean vector, which states if droplets are stimulated in the interval
Ij or not. To describe meaningful symbols, ∆t should be small in compari-
son to a droplet’s oscillation period, resulting in a fine temporal resolution.
Meanwhile, the total length T of the symbol should probably be long in com-
parison to the droplet’s oscillation to allow symbols to consist of more than
a single excitation.

S = (aI1 , aI2 , ..., aIm)′

ai ∈ {0, 1}, S ∈ {0, 1}m, m ·∆t = T

Besides stimulating exactly one specific droplet, we can imagine that it
might prove sensible to treat a larger number of droplets equally in larger
droplet networks. We will denote such a set of equally treated droplets as a
droplet channel for input and output signals. To communicate a symbol to
the network, we could use single or multiple channels.

Consequently, for symbols composed of many channels C, we can extend
the signal definition S to a matrix S ′ that stores the activation state ac,Ij of
each channel c ∈ C for each interval Ij:
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Input
Task 0 0 0 1 1 0 1 1

Expected
Output
õcp

Identity 0 0 0 1 1 0 1 1
OR 0 1 1 1
AND 0 0 0 1
NAND 1 1 1 0
XOR 0 1 1 0
XNOR 1 0 0 1
Half-adder 0 0 1 0 1 0 0 1

Table 1: Boolean functions that were used as fitness criteria in evolution.
Two input and up to two output channels were used.

S ′ =


a1,I1 a1,I2 · · · a1,Im
a2,I1 a2,I2 · · · a2,Im

...
...

. . .
...

a|C|,I1 a|C|,I2 · · · a|C|,Im


Task Definition

To evaluate the quality of a droplet network and of different symbol encod-
ings, we define Boolean functions that should be fulfilled in terms of their
truth tables. As displayed in Table 1, we tested seven different functions
with up to two input and output channels.

Fitness Evaluation

Ultimately, the aim of these experiments is to find symbols that can be used
by the network internally as input as well as for output. But to evaluate
the fitness of a droplet network for binary operations using arbitrary sym-
bols, a metric that determines the similarity between an input symbol and
a recorded output excitation stream would be necessary. As discussed in
Section 4, choosing an appropriate metric is not trivial. Consequently, we
are evolving complex symbol representations to feed into the network but we
do not yet expect the network to reproduce these complicated symbols as
outputs. Instead we use simple rate coding for the outputs: high activity is
interpreted as symbol ’1’ and low activity as symbol ’0’.

The evaluation is divided into distinct phases p by assigning each combi-
nation of input symbols to one phase, resulting in four phases for two binary
inputs. For each phase p, the system is simulated with the appropriate input
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Figure 1: Individuals for the Evolutionary Algorithm:
(a) Rendering of an evolved 10 × 10 droplet network instance. Each square
represents a droplet on a two dimensional array. Black cells represent empty
spaces that are not excitable. Dark red, orange and yellow cells represent
normal, less excitable and long period droplet respectively. The four blue
cells represent fixed input / output droplets; input droplets on the left and
output droplets on the right. A von Neumann neighbourhood around each
cell defines the connectivity of the droplets, i.e. droplets that are directly on
top, bottom, left or right are connected and can excite one another.
(b) Example of two symbols that evolved together with a network instance
to realise the XOR function. The lower row of the image represents symbol
’0’ while the upper row represents symbol ’1’. Time advances left to right
over 100 frames with a time step of 0.5 s, leading to a total length of 50
s per symbol. The input droplets are stimulated only in the intervals that
are represented by yellow vertical bars and are left alone where the black
vertical bars are rendered. The symbols are fed into the droplet network
repeatedly, recapitulating the stimulation pattern every 50 s. At least three
oscillation cycles are completed per symbol repetition because the simulated
droplets’ self-excitation periods are around 16 s. Since droplets are modelled
with refractory times, not every yellow stimulation bar will actually lead to
an excitation in the droplet but can as well be disregarded in the droplets
refractory phases, especially when two excitations follow each other closely.
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signals for a fixed time and the number of received excitations at the droplets
of output channel c are stored in ocp. We denote the maximal and minimal
peak numbers of any channel-phase pair as omax and omin. The symbol that
is expected at the output droplets for the channel-phase pair is referenced as
õcp ∈ {0, 1} instead.

The final fitness F is influenced by two different aspects, F1 and F2, of the
output behaviour. First, the normed difference between highly activated and
less activated channel-phase pairs should be maximised to allow some kind of
discrimination. We define the difference between the maximum and minimum
peak numbers divided by the maximum peak number as F1. F1 is zero if all
peak numbers are equal and at most one when the minimum value is zero.
Second, the truth table should be fulfilled, leading to a function F2. Here, the
worst case channel-phase pair defines the overall fitness. Each channel-phase
pair peak number should lie as close as possible to the minimum or maximum
peak number, dependent on the expected output õcp. Finally, if a minimum
discriminability is exceeded and also the Boolean function is fulfilled, the
distance between minimum and maximum rates should further be expanded.

F =


F1 if F1 < 0.2

F2 + 1.0 if F1 ≥ 0.2 and F2 < 0.9

F1 + 2.0 if F1 ≥ 0.2 and F2 ≥ 0.9

(1)

F1 =
omax − omin

omax

(2)

F2 = min
c,p

{
1− ocp−omin

omax−omin
if õcp = 0

ocp−omin

omax−omin
if õcp = 1

(3)

Experimental Setup

We employed an evolution strategy of the type (8, 30)−ES, meaning a comma
strategy with 8 parents and 30 children, running for 250 generations where
the parents of each generation are discarded. The best symbol representation
of each generation of a single experiment is displayed in Figure 2. For each
experiment, we ran a batch of 50 evolutionary optimisations to build mean
values. In total, we conducted 35 experiments for all the combinations of
the seven target functions from Table 1 and the five experimental variations:
Network only evolution with three or four droplet types, network and signal
coevolution with three or four droplet types and network only evolution with
pre-evolved symbol representations. The symbol representation for the pre-
evolved signals was taken from the coevolution experiment that achieved the
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(a) Symbol ’0’ (b) Symbol ’1’

Figure 2: Evolutionary trajectory of two symbol representations over 250
generations coevolution with a droplet network. The y-axis denotes the evo-
lutionary generation while the x-axis represents the stimulation interval for
each fitness evaluation similar to the signal plot in Figure 1b. The regulari-
ties that can be observed along the x-axis in both graphics are not evolved
regularities but result from the repetition of the pattern: As the pattern of
100 intervals is fed into the simulator during fitness evaluation in a repeated
manner, three repetitions of the input signal are plotted over 300 time frames.

best fitness. Using four droplet types means using empty droplets, normal
droplets, less excitable droplets and long period droplets, while the latter is
discarded for the three droplet type experiments.

For mutating the droplet network, the probability of switching an arbi-
trary position is 0.05. When using four droplet types, the probabilities for
changing to an empty cell, to a normal droplet, to a low-excitability droplet
and to a long-period droplet are 0.4, 0.4, 0.1 and 0.1 respectively. For the
runs without the long-period droplet type, the remaining probabilities read 4

9
,

4
9

and 1
9
. Single point crossover recombination is applied with an uniformly

chosen position in the row-by-row linearised representation of the droplet
network. For mutations of the input signal, the probability of switching an
arbitrary position is 0.025. When a mutation occurs, the probability for gen-
erating a ’1’ is 0.1 while a ’0’ is generated with probability 0.9. Single point
crossover recombination is applied with an uniformly chosen position.

3 Results

Small droplet systems of about 100 droplets were arranged by means of evo-
lutionary algorithms to satisfying the Boolean functions Identity, OR, AND,
NAND, XOR, XNOR and half-adder. Obviously, some target functions are
easier to evolve than others. Using rate coding only, the OR and AND func-
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tions evolve fastest, followed by the identity function. Based on the slower
fitness increase, functions that involve inversions like the XOR, the half-
adder, the XNOR, and NAND functions (cf. Figure 3a) are more difficult.

A network successfully implementing the half-adder functionality did not
evolve in our experiments so far. The problem of inverting signals should
easily be resolved when using multi-channel symbol representations. Despite
these difficulties, even a complicated function like XOR were evolved, even
for single channel rate coding signal inputs, albeit not as fast as a simple
OR or AND functions. Interestingly, the identity function, meaning a mere
connection between both inputs and outputs, is not a simple task compared
to AND or XOR when coevolving input signals (cf. Figure 3b). Apparently
coevolving networks and symbol representations for the identity function is
almost as hard as evolving the half-adder. While using rate coding, in con-
trast, the identity function evolved faster than the XOR function. Evolution
with and without the third droplet type with long oscillation periods did not
result in significantly worse evolution progress.

Shown in Figure 4, at least in the case of the AND and XNOR functions,
pre-evolved signals exist (cf. Figure 5) that are clearly leading to a faster
evolution of droplet networks than simple rate coding. Here droplet networks
and signals were originally coevolved. Then one of the best evolved symbol
representations was used consistently through a full network-only evolution
run. The evolved signal looks similar to rate coding signals but a single
activation peak remained for the ’0’ symbol that might lead to better syn-
chronisation. Further experiments will be necessary to investigate if evolved
signals will show the same characteristics repeatedly. An extreme rise in
evolution effectivity was observed for the NAND function. However, this is
most probably only due to a crosswise substitution of the signals for symbols
’0’ and ’1’, such that the problem is reduced to a rate coded OR function.
Problems that did not benefit significantly from pre-evolved symbol repre-
sentations were the OR, the XOR, the Identity function and the half-adder.
Nonetheless, the pre-evolved symbols never led to worse evolution trajectories
in our experiments.

4 Discussion

Besides designing droplet network structures and symbol encodings, evolu-
tionary algorithms also served another purpose in this work: To some extent,
evolutionary algorithms also offer a measure of complexity, telling us whether
a problem is simple or hard to solve. Or, given two distinct symbol encodings,
which of them makes searching for a solving network structure easier.
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(a) Network only Evolution
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(b) Network and Signal Coevolution

Figure 3: Average fitness of population’s best individual over 50 experiments
for evolving different target functions from Table 1. Generally, all fitness
values are lower for the signal and network coevolution because of the higher
dimensional search space. Exceptions are those functions that benefit from a
simple swapping of rate coding signals, i.e. the NAND and XNOR functions.
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Figure 4: Average fitness of populations’ best individual over 50 experiments
for evolving the AND function using rate coding, coevolution and pre-evolved
symbol representation. Purple and cyan curves correspond to evolution ex-
periments that ignored the fourth droplet type with longer oscillation periods.
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(b) Evolved XNOR Symbols

Figure 5: Evolved symbol representations for the AND and the XNOR func-
tions that performed better than rate coding. (a) While the AND symbol
looks very similar to rate coding symbols, there is one peak included for
symbol ’0’ that might serve as a helper for synchronisation. (b) For the
XNOR signals, both symbols are represented by a series of about 30 seconds
activation followed by ca. 20 s rest. The difference between both symbol rep-
resentations could be either in the shift of the active phases of about 10-20 s
or in the exact pattern of each signal.
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A straight forward construction of two adequate symbols might be to max-
imise the distance between them. The problem here is to define the distance
metric that would heavily influence the result of the maximisation. Ideally
these experiments would only depend on the properties of the computing sub-
strate itself and not on arbitrary definitions that are put in from the outside.
But any kind of metric like the Hamming distance or the spike train simi-
larity measures from the neurosciences [5] seem sensible but artificial with
respect to the computing droplet substrate. A meaningful alternative would
be to run a nested evolution of a droplet network simulation as distance met-
ric - the easier it is to evolve a network that discriminates both signals, the
larger the distance between both symbols. Still, the computational efforts
for a single evaluation of the fitness function appear immense. This led us to
the different approach of coevolving signals and droplet networks for simple
binary problems at first.

Even though simple logic functions were evolved here, the automatic con-
struction of larger, more complex systems might be hard, especially when fit-
ness functions cannot provide enough gradient for the optimisation algorithm
to follow.

The “multi-step” fitness functions that we used in Equation 1 tries to
focus different aspects of generating the network functions at different times,
dependent on how close to perfect the solution is. But since it is generally
impossible to find all non-dominated solution candidates by mapping multiple
fitness criteria onto a single scalar value, we will transition to using Pareto
optimisation for future experiments [13, 16].

Generally the influence of the droplet network dimensions should be inter-
esting - especially how few droplets can generate the sought-after behaviour,
what number of droplet species are essential, is there a preferential length
for droplet signal patterns and how many input channels should be used per
symbol? Also the aspect of robustness has not yet been in the focus of this
work. Nonetheless it appears important if a droplet network and symbol
representation led to a high score accidentally or if the performance can be
sustained under different initial conditions and with noise.
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