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Introduction
Modern conventional computers are programmable, pre-
dictable and relatively easy to understand and engineered
—at least compared to most complex non-linear systems.
These properties are the result of various dynamical con-
straints that are universal to conventional computers, such as
the clock mechanism that synchronises the update of logic
gates and other components; the ubiquitous discretization
steps (where continuous values are discretized into binary
1s and 0s); and the almost complete isolation of internal pro-
cesses of computers from the environment of the computer.
We are investigating an alternative computational medium
composed of signalling synthetic protocells to explore the
implications of relaxing some of these dynamical constraints
that are typical of conventional computers. Is it possible to
build useful and/or programmable computers out of uncon-
ventional media such as protocells that do not have a syn-
chronizing clock? Or that do not employ a conventional rep-
resentation of 0s and 1s? Or that are less decoupled from
their environment?

The protocells that we are investigating are aqueous
droplets suspended in oil. Each droplet contains the reagents
for the Belousov-Zhabotinsky (BZ) oscillating chemical re-
action (Zhabotinsky, 2007), resulting in self-exciting dy-
namical units that, when in contact with each other, are capa-
ble of propagating signals similar in some respects to signal
transduction in biological neurons. Networks of these sig-
nalling protocells are therefore a kind of wet artificial neural
network, sharing more in common with biological nervous
tissue than conventional computer electronics.

It is envisaged that in the future more advanced proto-
cells will be employed to make self-organising computers,
or computers that can operate within the human body. But
first it is necessary to develop a better understanding of how
complex non-linear systems can be harnessed to accomplish
useful or “minimally-cognitive” tasks (Beer, 2003) such as
categorical perception, boolean logic, and dynamical con-
trol.

Moreover, by learning how to construct or assemble net-
works of complex non-linear units like the BZ-protocells

we also gain insight into how other complex and non-linear
“computational” media (such as nervous tissue) can con-
duct, modify and modulate signals and information, and how
it can play an important role in the sensorimotor loops of
a situated and embodied agent (Stewart et al., 2011). This
bottom-up approach to the construction of alternative com-
putational media is an important complement to the more
widespread top-down neuroscience where biological neural
networks are slowly being reverse engineered.

With these long and medium-term goals in mind, we have
set out to (i) design functional collections of signalling pro-
tocells (comparable to the logic gates of conventional com-
puting) that could be combined to produce more complex
networks, (ii) identify effective signal encoding(s) that fa-
cilitate the transmission and manipulation of the signal by
protocell networks, and (iii) identify design techniques and
methodologies for creating functional signalling protocell
networks out of complex non-linear media. To accomplish
these goals, we are taking a three pronged approach involv-
ing in vitro experimentation, simulation and modelling to in-
vestigate the dynamical properties of the protocells and net-
works thereof; and experimental computer-aided design and
machine-learning techniques to partially automate the de-
velopment of functional protocell networks. We now briefly
summarize our published results, before describing our cur-
rent efforts.

Summary of published research
To elucidate the experimental foundations of working with
wet chemical computers on microfluidic chips (King et al.,
2012), the NeuNeu project consortium (www.neu-n.eu) has
conducted various research projects involving simulation,
modelling and experimentation. One branch of this research
involves the investigation of droplet networks, where the
droplets are assumed to be small enough that internal spatial
dynamics can be ignored. In this vein, the computing po-
tential of two-droplet systems has been demonstrated in ex-
periment and simulation (Szymanski et al., 2011) and differ-
ential equation models have been identified that allow us to
accurately describe droplet dynamics and interactions (Szy-



manski et al., 2011). More abstract simulation models have
also been developed to make possible faster and larger-scale
simulations (Gruenert et al., 2013), allowing us to analyse
higher-level design principles and questions pertaining to
system architecture, such as possible benefits of moving be-
yond naive or simple signal encodings (e. g. high firing-rate
= 1, and low firing-rate = 0) to explore various alternatives
(Gruenert et al., 2012).

In a parallel branch of simulation and experimental work,
our collaborators have been investigating more spatial forms
of computing, involving larger reservoirs containing sub-
excitable BZ medium. In these conditions, isolated spatial
propagating waves can form, combine and interfere in spa-
tial and geometrical ways to accomplish computation-like
tasks, such as logic gates (Holley et al., 2011; Adamatzky
et al., 2012).

Ongoing research
Information measures for analysing and guiding
the artificial evolution of unconventional
computational media.
Following information theory (Shannon and Weaver, 1948)
and information dynamics measures (Lizier, 2013) in cellu-
lar automata and in neural networks (Vicente et al., 2011),
which help to identify information propagation, storage and
modification systems, we are developing analysis tools for
understanding the information flows of experimental and
simulated droplet systems. These tools are intended to aid
in the tracking and understanding of the flow of informa-
tion through unconventional computational media, in a way
that is largely independent of the encoding of the informa-
tion and to thereby facilitate the search for complex and
potentially useful system behaviours in random or evolved
droplet networks, which are inherently less modular and
decomposable than conventional engineered computational
systems. We are also exploring the use of information the-
oretical measurements to constrain the design of functional
networks. By identifying necessary changes in the state of
information at different stages of computation, we believe
it may be possible to guide machine-learning algorithms to
more effectively design functional networks.

Defining computational-unit fitness implicitly using
tautological closed loops.
To facilitate the artificial evolution of of Basic Compos-
able Units (“BCUs” – c.f. logic gates) for unconventional
computational media, we are developing a novel technique
in which optimal BCU behaviour is defined not explicitly
(“given this input, the unit should produce that output”), but
implicitly, through its influence on network properties in a
closed network consisting of multiple instances of the unit.
The network is designed in such a way that only if the units
are performing the desired task (e. g. acting as a NAND
gate), will certain network properties hold (e. g. dynamics at

two points in the network should be similar to each other and
different to a third point), and machine-learning techniques
tune the BCU properties maximise these network properties.
In this way, we implicitly describe the desired behaviour of
the units without overly constraining their design, allowing
the artifical evolution to concurrently design the BCUs and
the encoding of the signal that they operate upon.
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Using Re-Entrant Networks of Repeated Units to Facilitate the Automated 
Design of Logic Gates in Unconventional Media: A New Method

Matthew Egbert, Gerd Gruenert, Peter Dittrich

Introduction
Unconventional Computing (UC) is a rapidly developing field, where materials that are not typical 
of modern computers, such as quantum systems (1), reaction diffusion systems (2,3), biological 
materials such as neurons, synthesized protocells, or DNA, are assembled or controlled to perform 
computational tasks. Some unconventional computers may be able to perform certain computational 
tasks orders of magnitude faster and with greater accuracy than conventional computers, and this is 
one primary motivation for the study of UC. A second motivation is the rapid technological 
progress in synthetic biology and nano-technology, where we are seeing the development of 
increasingly small and autonomous engineered “nanites” and synthetic protocells. The potential for 
these new forms of technology is radical, but before we can fully benefit from them, we must 
improve our ability to control these systems. 

Current attempts to control these systems tend 
to work on a case-by-case basis, finding 
feedback loops or ways to couple 
environmental stimulus or “input” to system 
actions to produce a target behaviour. A more 
ambitious goal is to achieve programmable 
control of unconventional media, where motifs 
can be combined to assemble or configure 
(i.e., program) unconventional media to 
perform a wide variety of tasks. The effort to 
transition from controllable unconventional 
media to programmable unconventional media 
mirrors the transition in the 20th century from 
feedback-based machines of the cybernetics 
era, to modern programmable computers, and 
the benefits of programmability are 
demonstrated by the widespread use of computers in virtually every aspect of the modern world, 
from stock-trading to surgery to social interaction. It would be a tremendous technological advance 
to be able to program various unconventional media, such as protocells or chemical computers, but 
we do not yet know how to do so, nor do we have effective techniques for learning how to do so in 
a particular unconventional medium.

One possible approach to bringing the benefits of programmability to unconventional media, is to 
implement in the unconventional medium, a universal logic gate, such as NAND. All other basic 
logic operations can be implemented using only NAND or NOR (4), and, if implemented in a 
sufficiently robust and flexible manner, many NAND gates could be combined to provide the 
functionality of Turing-complete computer in an unconventional medium, and this could provide an 
abstraction layer (see Figure 1) upon which functional constructs and higher abstractions could be 
built. This paper presents a new technique for identifying configurations of unconventional media 
that operate as NAND-gates.

Illustration 1: A layered architecture, where some benefits 
of conventional computing are made available in 
unconventional media through the implementation of a 
logic-gate layer. 



Unconventional engineering for unconventional media

For most unconventional media, where conventional engineering methods are difficult to apply, it is 
not clear how to build even simple signal-processing units such as NAND-gates. Fortunately, 
unconventional engineering techniques can be utilised, such as evolutionary algorithms (5), where 
instead of directly engineering a system, a “fitness function” is specified which defines how 
successful or “fit” a putative solution is at performing a target behaviour. A population of solutions 
is then randomly generated, and subjected to a set of evolution-inspired processes involving 
“mutations” (small random changes), selection (removal of less fit individuals from the population) 
and procreation/recombination (highly fit individuals are duplicated and combined with one another 
to produce a new solution that is added to the population). Part of the purported advantage of 
machine learning techniques such as evolutionary algorithms is that we can avoid biases brought by 
the experience of engineering conventional systems, and identify solutions that are different from 
those that would emerge through standard engineering practices (6). For instance, Thompson et al. 
(7) used an evolutionary algorithm to configure a field-programmable gate array to operate as a 
tone-discriminator circuit. Free from the constraints of conventional electronics engineering, such 
as “divide-and-conquer” or “building-block” based design, the evolutionary algorithm exploited 
unconventional features of the medium, such as “cross-talk” between neighbouring hardware, to 
accomplish the tone-discrimination task (8). The work by Thompson et al. resulted in an 
unconventional circuit design that takes advantage of unknown or poorly understood material 
properties, and the method presented in this paper has a similar goal – to use evolutionary 
algorithms to identify, in an unprejudiced way, configurations of an unconventional medium that 
operate NAND-gates. 

A naïve evolutionary algorithm approach to designing NAND gates in an unconventional medium 
would involve the pre-specification of how bits are represented in the medium, and the use of these 
values as inputs for testing putative solutions to evaluate how they respond to inputs (0,0), (0,1), 
(1,0) and (1,1). If the NAND gates are to be assemble-able, the signals used for input must be the 
same as those produced by the output of the gate, so the output of these networks would be 
compared to the pre-specified representations, and the more similar the output to the target NAND 
output, the higher the fitness. 

A fault with this approach lies in pre-specification of the representation of ones and zeros. In 
conventional computers, data such as images, programs, text, etc. are represented as sequences of 
“ones and zeros” which are represented by high and low voltages at different physical locations 
within the computer. In an unconventional medium, such as a protocell-based computer, it may or 
may not be possible to similarly represent bits using low or high concentrations of chemicals. Even 
if it is possible to do so, there also may be other, less conventional bit-representations, such as 
different oscillation rates, the relative concentration of chemicals, etc, and some of these bit-
representations will be more amenable to NAND-based computation in the unconventional medium. 
That is to say, they will be more easily transmitted and manipulated by configurations of the 
unconventional medium to accomplish NAND operations, requiring less intricate or fragile 
configurations of the medium. In some cases, perhaps, the engineer will be clever or lucky, and the 
unconventional medium will be compatible with her pre-specified bit representations. However, in 
many cases, the unconventional medium would either be incapable of acting as a NAND gate for 
the particular pre-specified bit-representations, or the configuration for doing so would be difficult 
or impossible to find. How can we identify these representations in an unbiased way?

An improvement might be to utilise co-evolution (9): simultaneously evolving two populations, one 
that specifies the representation, and one that tries to optimise system configurations that 
manipulate those representations like NAND gates. This would avoid the pre-specification of the 
zero and one representations, but would have the disadvantage of increasing the total search space. 



In the next section we propose a new, alternative approach that allows for the automated 
identification of NAND-gate functionality in unconventional media, without requiring a pre-
specification of bit-representations and without increasing the size of the search-space.

Re-Entrant Repeated Unit Networks
Our new technique employs feedback-networks, in which putative solutions are coupled to copies 
of themselves, so that the output of a putative solution eventually returns as its input. By comparing 
the state of the system at different points within these Re-Entrant Repeated UNit (RERUN) 
networks, it is possible to evaluate how well the solutions are acting as certain kind of signal-
processing units (e.g. as a NAND-gate) without pre-specifying the how the signal is represented. 

NOT-Gate RERUN Network

We shall describe the 
technique by presenting the 
simplest possible example: 
the NOT-Gate RERUN 
network depicted on the right 
of Figure 2. This figure 
depicts an unconventional 
computing unit and its 
identical copy (gray 
pentagons), connected such 
that the output of one is the 
input of the other and vice 
versa. In this circuit, if the 
output of each of these identical gates (indicated by 'A' and 'B' in the figure) is different and 
unchanging, then the units can be interpreted as acting as NOT gates, and the state of the system at 
points A and B can be interpreted as representing '0' and '1', respectively (or vice versa). This 
observation provides us with all we need to formulate a fitness function that selects for NOT-gate 
functionality in the repeated unconventional units without pre-specifying how the zeros and ones 
are represented in the system. Simply by comparing the degree to which the output of the two 
identical units differ, we can evaluate the quality of the repeated unit in terms of acting as a NOT-
gate. If the output of one is often similar to the output of the other, then the system is functioning 
poorly as a NOT-gate, but if it is always measurably different, in a statistically predictable way, then 
the unit is operating effectively as a NOT-gate, and the representation of zeros and ones is indicated 
by the output of the units in the circuit. This approach is less restrictive on the domain of possible 
solutions because it does not require the pre-specification of how signals are represented, but only a 
measurement for detecting how the system can vary.

NAND-Gate RERUN Network

Figure 3 depicts a RERUN network that can be used 
to imply NAND-gate functionality. To create this 
network, we enumerate four identical putative 
NAND-gate units, associating each one with each of 
the four possible inputs, (0,0), (0,1), (1,0) and (1,1) 
and the target output (NAND) – see Table 1. We then 
connect the units in a way that satisfies the following 
constraints:

Figure 2: Three approaches to evolving logic gates in unconventional media.

Figure 3: NAND-gate RERUN network. Output of 
identical putative NAND gates (pentagons G0-G3) 
are labelled according to target output symbol 
(symbol in dark squares).



• The inputs for each unit (as specified in Table 1) must come from outputs of the matching 
target value. So, for example, the inputs for G0 could not come from G2 and G3, because 
the input of G0 is (1,0) and both G2 and G3 have a target output of 1.  The inputs for G2 
must both come from G1, because it is the only unit with a target output of 0, etc.

• The input of every unit is the combination of the output of one or two other units.

• The output of every unit is used by at least one other unit.

UNIT Input 0 Input 1 Target Output (NAND)

G0 1 0 1

G1 1 1 0

G2 0 0 1

G3 0 1 1

Table 1: Inputs and target outputs for NAND-implying closed-circuit.

There are a variety of other possible NAND RERUN networks (e.g. other ways to write the units 
together to satisfy the conditions above, or a simpler, three-unit RERUN network that considers the 
inputs (0,1) and (1,0) to be equivalent). We focus on the RERUN network depicted in Figure 3 for 
the remainder of the paper. 

The fitness of the repeated unit in terms of acting as a NAND-gate can be evaluated, similarly to the 
NOT-gate RERUN network, by comparing the network dynamics at different locations. 
Specifically, the output of G0,G2, and G3 should all be similar (as all of these gates should output 
1), and each of these should be different from the output of G1 (which should output 0). If, that is 
the case, then the repeated units must either be acting effectively as a NAND gate (or, equivalently, 
as a NOR gate, if we reverse our interpretation of which state represents 0 and which represents 1). 

In the next section, we use this NAND RERUN network, in conjunction with an evolutionary 
algorithm and a fitness function that compares the state of the RERUN network as described above, 
to identify configurations of an unconventional media that operate as NAND gate.

Application and Results

Continuous-time Recurrent Neural Network

In this section, we demonstrate use a NAND RERUN network in conjunction with an evolutionary 
algorithm to identify a configuration of continuous-time recurrent neural network (CTRNN) nodes 
(10) that operates effectively as a NAND-gate. 

CTRNN are universal dynamical approximators (10) that have been widely used in conjunction 
with evolutionary algorithms to produce a broad variety of dynamical systems. A CTRNN consists 
of a set of interconnected nodes, where the state or “activation” of each node changes continuously 
in time as a function of its current state and the state of its neighbours, according to the following 
differential equation.

(Equation 1)

In this equation,  is the state of the ith node,  is the ith node's time constant,  is the weight 
from the jth to the ith node,  is the sigmoidal function , and  is a bias term 
associated with the jth node.



A network of these nodes was generated by replacing each 
unit in the NAND RERUN network (Figure 3) with a two 
CTRNN nodes in a linear chain, resulting in the network 
depicted in Figure 4, where nodes (ovals) and labelled target 
outputs (dark squares) are indicated. Each two-node unit is 
identical; therefore, there are only six tunable parameters for 
this network: the  and  parameters for each node, and two 
weight parameters: one specifying the weights of the inputs 
to the cluster (e.g. from CTRNN node N1 to N2), and one 
specifying the weight of connection from the first node to the 
second node in each unit (e.g. from N7 to N0). 

These parameters were optimised using the Evolutionary 
Strategie (ES) provided by the inspyred Python package (11) 
to maximise the difference between network locations with 
different labels, and to minimise difference between 
locations marked with similar labels. 

Each fitness evaluation consisted of four trials. At the start of 
each trial every node in the network is initialised with a state 
selected from a Gaussian distribution near zero (  = 0.01, 
mean = 0) and the differential equations were integrated 
using the ode.integrate method of SciPy (12) for a trial 
duration of 10 time units. Note that because of the repetition 
of identical units in the network, the system must be 
initialised asymmetrically. If the system is initialised in a 
uniform manner, every unit (G0 – G3) would initially 
produce exactly the same output. They would then therefore 
all receive exactly the same input, and this would continue indefinitely with no way for the system 
to break symmetry. Without breaking symmetry there is no way for any of the gates to produce 
different outputs and there will be no success in identifying configurations of units that perform as 
desired.

In the CTRNN NAND RERUN network (Figure 4), there are three locations labelled '1' and one 
location (the output of N3) labelled '0'. Fitness is evaluated by making pairwise evaluations of the 
similarity between all of these locations. This is evaluated by the following function c(i,j) which 
takes the mean difference between the state nodes i and j during the last 2.5 time units of a trial, and 
normalises this values to be between 0 (similar) and 1 (dissimilar).

(Equation 2)

For comparisons between locations with the same label, similarity is rewarded (first two terms in 
the fitness function below) and when the labels are different, dissimilarity is rewarded (third term). 

(Equation 3)

Results

We succeeded at evolving 2-Node CTRNN with NAND-gate functionality. The evolutionary 
strategie quickly identified parameters that resulted in a relatively high-fitness network. Figure 5 

Illustration 4: CTRNN NAND RERUN 
network. Repeated identical putative 
NAND gates (G0-G3), each composed of 
two CTRNN nodes (n0-n7) connected 
according to the NAND RERUN topology, 
with target outputs labelled (dark squares).



shows an example of the dynamics of each of the four units (CTRNN nodes N1,N3,N5, and N7) 
during a trial of the  evolved network. N3 (indicated with the dashed line) is the only node that is 
associated with a '0' output, and it is apparent here that as desired, the artificial evolution has 
identified parameters that successfully cause the state of the RERUN network to be similar in areas 
with the same label, and to differ where the labels are different. Locations in the network labelled '1' 
all approach a value near 0, and the location marked '0' approaches 10 – these are the CTRNN states 
that have emerged via the RERUN-based evolution as suitable representations of ones and zeros in 
the unconventional medium.

Evolved Parameter Value

0.321

4.069

0.487

-5.3

trans-unit -8.731

Intra-unit 9.915

Table 2: Evolved parameter values.

Figure 5: CTRNN node states during a trial of the evolved, high-fitness CTRNN RERUN network. The output 
of nodes N1, N5, and N7, associated with bit-values of '1' (see Figure 4), approach a state near 0.0, while Node 3,  
associated with an output of '0' converges to a state near 10.



To confirm the success of the evolution, we assembled a NAND-based half-adder network out of 
the evolved CTRNN units (Figure 6). In this network, nodes 0 – 7 operate as four of the evolved 
CTRNN-based NAND gates assembled into an XOR gate, used to calculate the SUM output of the 
half-adder. Gates 8 – 11 are two evolved CTRNN-based NAND gates assembled into an AND gate, 
used to calculate the CARRY output of the half-adder. The output of the network thus are the state 
of nodes 7 (SUM) and 11 (CARRY) and the input of the half-adder is determined by setting the 
state of the nodes “Input 0” and “Input 1” to the values determined during evolution to represent '0' 
and '1' (see Table 1). We used only approximations of these values, considering '0' to be represented 
by a node excitation of 10.0, and '1' to be represented by a node excitation of 0.0.

INPUT OUTPUT (SUM) OUTPUT (CARRY)

Symbol 
Input 0

Symbol 
Input 1

N13 
State

N15 
State

Correct 
Symbol

N7 Target 
State

N7 Final 
State

Correct 
Symbol

N11 Target 
State

N11 Final 
State

'0' '0' 10 10 '0' 10 9.732 '0' 10 9.733

'0' '1' 10 0 '1' 0 0.098 '0' 10 9.732

'1' '0' 0 10 '1' 0 0.098 '0' 10 9.732

'1' '1' 0 0 '0' 10 9.732 '1' 0 0.000

Table 3: Half-adder input and output.

We performed two tests with the half-adder network. First, to confirm that the network can produce 
the correct output for a given input, we simulated the network with fixed, unchanging inputs for 
each of the four possible input sets. Table 3 shows the input, target output, and actual output for the 
four test cases after the network has been simulated for 10 time units. Comparing the target output 
and the final state of nodes 7 and 11, it is clear that the network has successfully produced output 
expected from a half-adder.

We then tested if the network was capable of dynamically changing in response to changes in the 
network input. To make this test, we simulated the half-adder network for 130 time units, changing 
the input every 10 time units, to test each of the 12 possible input transitions. Figure 7 shows the 
input and output nodes of this simulation, along with the error (distance from correct target value). 

Illustration 6: CTRNN half-adder network. Each circle represents a CTRNN node. These are configured in pairs 
(highlighted by grey-rounded rectangles) that putatively act as NAND-gates, thanks to the RERUN-Network 
based evolution. The network should act as a half-adder, such that inputs 0 and 1 produce SUM and CARRY 
outputs as specified in Table 3.



For every possible transition, this error term rapidly decreases to near 0. We conclude that the 
network is capable of correctly transitioning from any input state to any other input state, in each 
case, rapidly converging on the correct output values.

Discussion
We have proposed a new techniques for identifying configurations of unconventional media that act 
as NAND-gates. The method involves the construction of feedback-circuits, where a potential 
configuration of the unconventional medium is connected to copies of itself. By comparing states at 
different locations in these feedback-circuits, it is possible to evaluate how well the configuration is 
operating as a NAND-gate. This evaluation can be accomplished without pre-specifying how the 
bit-values are represented in the network, requiring only way(s) of measuring how system dynamics 
can be different or similar at different locations within the network. By avoiding the pre-
specification of the representation of bit-values in the system, we let artificial evolution or other 
search algorithms/techniques identify bit-value representations that are more natural to the 
unconventional medium in the sense that they are easier for the medium to transmit and manipulate 
in NAND-operations than arbitrarily pre-specified representations.

We successfully demonstrated the potential of the technique, using an evolutionary algorithm to 
optimise the parameters of a 2-Node CTRNN network to operate as a NAND-gate. The technique 
identified bit-representations associated with low and high state values of the CTRNN nodes and 
parameters that allowed the CTRNN networks to perform successfully as NAND-gates. Tests were 
conducted to show that these CTRNN-based NAND-gates could be coupled to produce a half-adder 
system that produces the correct output for all possible inputs and for all possible transitions 
between inputs.

During our investigations we noticed two interesting details that are worthy of further comment. 
When simulated in the feedback-circuit, the evolved CTRNN network, did not always succeed at 
producing high-fitness outputs. Depending upon the initial conditions, the network would 
sometimes fail, for instance, to produce different output for the output of units G1 and G3, (CTRNN 
nodes N7 and N3) (see Figure Fehler: Referenz nicht gefunden). In fact, in 100 trials of the evolved 

Figure 7: CTRNN half-adder transition test. Inputs (top two rows) are varied to simulate all of the possible 
transitions between inputs and the SUM and CARRY outputs (bottom two rows) of the network respond correctly. 
In the bottom two rows, the state of outputs nodes are plotted as curves and the error (distance from target output)  
is shaded in gray. For each transition, the network rapidly approaches the correct target values.



CTRNN feedback-circuit, only 52 simulations succeeded in producing high-fitness scores. But, 
when simulated as part of a half-adder, we never once noticed an incorrect output. This has 
prompted us to consider the possibility that the tight feedback in the feedback-circuits can produce 
dynamics or attractors that are unstable in the absence of feedback. In the case of the CTRNN 
network, this had no deleterious effects upon the evolved NAND gate, which worked flawlessly in 
the half-adder tests. It is however, conceivable, that this feedback could cause problems in other 
systems, producing high-fitness solutions that do not effectively function in non-re-entrant (or less 
tightly re-entrant) logic circuits.

In this report, we have described and demonstrated the potential utility of a new method that may be 
broadly applicable for creating new computational devices out of unconventional media. Although 
we have demonstrated that the technique can be used successfully for some systems, it remains 
future research to determine how generally applicable the idea is, and for what systems it can work 
and cannot. It is also will be interesting to investigate how this technique could be used on its own, 
i.e. without a genetic algorithm.  If a sufficiently complex system is wired up in a RERUN network 
such as those presented above, and the output of the repeated units is measured in a variety of ways, 
it may be possible to identify an existing dynamic in the system that naturally operates as a NAND 
gate.
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Supplementory material for “Using Re-Entrant Networks of Repeated 
Units to Facilitate the Automated Design of Logic Gates in 

Unconventional Media: A New Method”

Simulation of Computing Belousov-Zhabotinsky Droplet Networks

To demonstrate that the RERUN-method can be used to design NAND-
gates in more complex non-linear systems, we used the method to 
identify configurations of simulated protocell-computers that can 
operate as NAND-gates. 

We investigated a chemical computing substrate for artificial chemical 
neurons: Droplets of the aqueous Belousov-Zhabotinsky (BZ) medium 
[Zaikin1970,Zhabotinsky1973], coated in a Lipid Monolayer and 
swimming in organic phase are considered for computation by 
propagation of pulses of chemical excitation 
[Adamatzky2001,Adamatzky2012]. The BZ medium in the droplet 
either self-excites after a period of inactivity or it can be triggered into a 
new excitation by adjacent droplets. This propagation of excitation from 
one droplet to the next is bounded by a refractory period after each 
excitation. There are complex and highly accurate ODE descriptions of 
the BZ medium [Szymanski2011], but they are computationally 
extensive. Instead we use an event-based simulation system 'DropSim', that abstracts complex 
chemical processes to only the three states 'excited', 'refractory' and 'responsive' and allows for very 
fast simulations of large droplet systems [Gruenert2013]. Nonetheless, evolution of particular 
boolean gates, especially the NAND gate is not trivial in this system [Escuela2013].

For the evolution of a NAND gate from simulated BZ droplets, we used planar designs in a 5x5 grid 
where each horizontally and vertically adjacent droplet is connected. The normal droplets in 
simulation stayed excited for one second, were refractory for five seconds and then self-excited 
after 10 seconds if not externally triggered. The signal propagation delay from one droplet to the 
next was one second. For each of these values, a normal distributed noise term of the standard 
deviation 0.05 s is added for each event, such that 
the simulation becomes non-deterministic.

The mutation function can exchange each of the 
25 positions in the grid with 5 different droplet 
types, including no droplet. The remaining four 
droplet types were a normal droplet as described 
above, a slightly faster oscillating droplet with 0.8 
times the original period, a slightly slower 
oscillating droplet with 1.25 times the original 
period and a less excitable droplet that requires 
two concurrent excitation at its neighbours to be 
triggered into an excitation. The probability for 
exchanging a droplet position in the grid was 0.05 
per position.

Abbildung 1: Evolved droplet 
network realizing the NOR 
function. Blue droplets are the 
inputs (left) and outputs (right), 
red droplets are normal 
droplets, brown droplets are 
faster (f) and slower (s) 
oscillating droplets, green 
droplets (&) are less excitable.

Abbildung 2: Best and average fitness per generation 
over the best evolution run.



Evolutionary studies were conducted in a 50 x multi-start approach, where over 500 generations, a 
population of 10 parents was selected by truncation selection from 37 children and 3 random 
immigrants. Single point cross over was used in recombination.

To evaluate the fitness of an individual, we connected the evolutionary designed droplet network in 
a RERUN network as proposed in Figure 3 of the main article. Additionally to the evolved part of 
the network, we added 'diode droplets' [Szymanski2011] that allow the signal propagation only in 
the direction that is symbolized by the arrows in Figure 3. We used the fitness formulation from 
Equation 3 (main paper) and averaged the three lowest of 24 simulation runs of 3000 seconds for 
each droplet network, where c(i,j) is the difference in spike numbers, counted at the output droplets.

Results

The droplet network shown in Figure 1 is the final individual of the evolution run with the highest 
maximum fitness. The evolution dynamics of this run are shown in Figure 2, where it becomes 
obvious that even with the averaging, there is a strong deviation in the quality of each simulation 
run.

Even though the RERUN network was designed to fulfil the NAND-gate function, a NOR-gate was 
actually evolved, when 
assuming that a high 
spike rate is interpreted 
as a logical one and a 
low spike rate as a 
logical zero. 
Obviously, when 
inverting this 
assignment, a NAND 
gate becomes a NOR 
gate for the same 
operation on high and 
low signals. Averaged 
over 100 simulation 
runs, we plotted the 

Abbildung 3: Ouput frequency of the evolved NOR network for all four input configurations, averaged over 
100 runs. Each stimulation pattern is applied for 2000 seconds. We interpret a high oscillation frequency 
(more than 0.05 spikes/second) as a logical one and a low oscillation frequency (less than 0.05 spikes/second) 
as a logical zero. The blue, dashed line in the NOR plot indicates an externally applied threshold function that 
can be used to distinguish a high from a low frequency. The gray peaks in the lowest plot indicate the error of 
the NOR output: It indicates the distance of the output frequency from the blue threshold line, if the signal is on  
its wrong side.

Abbildung 4: Half Adder functionality: both outputs of a typical run for 10000 seconds  
of stimulation and 10000 seconds of rest.



droplet network behaviour in Figure 3 for all switching processes between different input 
combinations.

When connecting the evolved NOR gates to a half-adder, it mostly implements the half-adder 
functionality, even though the influence of noise increases (cf. Figure 4). 

This becomes more obvious when observing the different switching processes between input 
combinations in Figure 5. In the simulated 2000 s per input configuration, it took the half-adder 
network a lot longer to move the output spike frequency towards the desired region. This implies 
that it will not trivially be possible to build arbitrarily large logical systems from this NOR gate. 
Nonetheless, the gate was functional, even under noisy conditions.

Summing up, we used an evolutionary algorithm here to evolve an instance of a NAND gate that 
turned out to be rather a NOR gate by using an inverted encoding of high and low spike 
frequencies. In analogy to our experiments with the CTRNN networks, we also tested the NOR 
gates by coupling them to form a functional half-adder.
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