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Abstract Personalized medicine is a reliable way of treating patients with
respect to their individual genome. However, these methods require the ex-
traction of functional genomics data from the patient for “offline” analysis,
which is costly and time consuming. A different approach to this problem
could be the development of “smart drugs” that are capable of identifying and
treating diseased cells on the spot. In this study we use an evolutionary algo-
rithm with self-assembly to develop possible designs of networks composed of
lipid-covered microfluidics droplets, which have been shown to be capable of
information processing and may provide a suitable model domain for the devel-
opment of smart drugs as in vivo diagnostic and treatment tools. The results
of this simulation study suggest that the droplet networks are able to perform
simple classification tasks. While the classification was not perfect targetting
only a quarter of the healthy cells is considered a valuable improvement to
reduce side-effects of medication.
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1 Introduction

Side effects of drugs are encountered every day on every patient information
leaflet and still are a serious issue in the treatment of various fatal diseases
such as cancer [14]. With the upcome of cheaper microarray techniques, the
discovery of pharmacogenomic biomarkers for the analysis of Single Nucleotide
Polymorphisms, which have shown to have significant effects on drug responses
[6,23,24], made way for the first approaches in personalized medicine [17,18].
Customized therapies and drugs that minimize the risk of harmful side effects
[7] are now on demand. However, the extraction of the relevant functional
genomics data is a timely and costly task and has still some way to go before
it can be widely avaiblable as a treatment option [3].

Taking the idea of having personalised drug therapies a step further it is de-
sirable to develop “smart drugs” that are capable of identifying and targeting
diseased cells in vivo. Recently, Douglas et al. [4] have implemented nanorobots
for intelligent drug delivery, which provide a first step towards this direction.
However, to the best of our knowledge, no approach towards developing in
vivo true smart drugs, which classify cells into diseased or healthy cells and
target only the diseased cells, has yet been reported in the literature. The
development of such smart drugs has potential implications for the severity
of side effects and treatment and could ultimately eliminate this problem en-
tirely. In this study we aim at tackling this challenge by developing designs for
smart drugs, which consist of classifier networks of lipid-covered microfluidics
droplets. Inspired by Unconventional Computing and based on these droplets,
which have been shown to be able to transmit information amongst networks
of such droplets [20], we present possible droplet network designs and design
principles, which shall be suitable for the use as in vivo disease classifiers.

Unconventional computing has brought up a range of fields that try to step
away from the classical von Neumann architecture for computing, including
DNA, bacterial and chemical computing [21]. The use of synthetic biology led
to the development of bacterial computing, as bacteria are more flexible and
robust to changes in conditions compared to DNA [2]. However, since this
approach exploits living systems, which are potentially too large to be used as
smart drugs, it may be less suitable for smart drugs. This can be overcome by
the use of chemical computing, where relatively well known sets of chemical
reactions are used to perform a computation computation. An example for
a chemical computation would be the use of enzymatic dynamics to build
chemical logical gates [25].

Here, we use the Belousov-Zhabotinsky (BZ) [26] medium as a reaction-
diffusion system and apply it to lipid-covered droplets for information process-
ing to develop a wet lab model for smart drugs (see Figure 1). Note that we
do not expect to use BZ medium within an actual drug, it is used for demon-
strative purposes only. Excitable chemical media like BZ have been used for
information processing approaches during the last decades [16,19]. One vari-
ant has recently successfully been used to create information processing lipid
covered droplets [20] and will therefore be used for the wet lab implementation
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BZ

Oil

Fig. 1: Schematic representation of Belousov-Zhabotinsky (BZ) medium cov-
ered by a lipid monolayer. The lipid molecules form a single layer membrane
around the BZ, with the hydrophile heads of the lipid molecules gathering
densely around the BZ and the hydrophobic tails pointing towards the oil
phase.

of the droplet networks that are proposed in this study. Similarly, Tinsley et
al. [22] have applied BZ medium on porous beads to mimic quorum sensing in
bacteria.

In this study we use an evolutionary algorithm and simulated BZ droplets
to find reaction rules that could guide the self-assembly of these droplets into
networks, which can classify a given dataset. This classifier represents a po-
tential smart drug that could be engineered using microfluidics.

There are various options of how to prepare the BZ medium with respect
to reactant concentrations or lipids, which all result in different characteristics
of the oscillations, e. g. different starting times or frequencies. It is important
to note that BZ medium oscillates spontaneously with a certain frequency.
A droplet is considered to be activated by another droplet if it turns blue
before it would on its normal osciallation frequency. Then different recipes,
which express different oscillation properties, can be developed for the BZ
medium and will be used to define different elements of the network. To dis-
cover these, various experiments have been carried out at the universities
in Soutampton (Agents, Interactions and Complexity Group and Nano Re-
search Group), Bristol (International Centre for Unconventional Computing)
and Warsaw (Department of Complex Systems and Chemical Processing of
Information) [20,1]. The experiments consist of small droplet networks with
various reactant concentrations and sizes. These experiments allow the analy-
sis of self-excitation times of different BZ recipes using image processing tools.
Example images of such experiments are shown in Figure 2.
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(a) (b)

Fig. 2: Screenshots of droplet experiment videos. Blue colour indicates a
droplet being in the state “active”, while red colour indicates a droplet being
in the state “inactive”. a) Activation of an inactive droplet is possible within
either the two top or the two bottom rows. It can be observed from the videos
that waves of blue colour are travelling along a row of droplets, indicating
a subsequent activation of inactive droplets via active droplets. b) Equally
distanced droplets without being in close contact with other droplets do not
allow propagation of oscillation waves and are useful to study the characteristic
frequency for a spontaneous activation for different BZ recipes. The experi-
ments have been conducted at the Centre for Hybrid Biodevices, University
of Southampton.

2 Method

2.1 Evolutionary Algorithm

Creating networks of droplets which for classification purposes by hand is in
most cases a very counter-intuitive task. Therefore we have used an evolution-
ary algorithm (EA) approach for the creation of the droplet networks. Our EA
mostly implements features of genetic algorihtms [8,11], which include a bi-
nary genome and recombination. Mutations occur with a probability of 1

l with
l being the length of the genome and recombination is a one-point crossover of
two random individuals (no selection pressure here), creating two offsprings.
The selection process is elitist between all individuals (old population plus
offspring). An evolutionary run lasts for 1000 generations with a population
size of 8 and 30 offspring that are created in each generation. As initial condi-
tions we define all individuals to only exhibit one random reaction rule, which
means the only thing it can do is assemble a network of two different types
of droplets. Note that these two droplet types can also be the same. In order
to develop a functioning droplet network the genomes of the individuals have
to be modified via mutation and recombination and selected to exhibit the
correct set of rules that will facilitate the assembly of a functional droplet
network.

Individuals in the population are stored as bit strings, which represent the
upper half of an adjacency matrix for different droplet types (reaction rules, see
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d0 d1 d2 d3

d0 0 1 0 1

d1 0 0 1

d2 1 0

d3 1

(a) Adjacency matrix
Ai

0 1 0 1 0 0 1 1 0 1

(b) Genome Gi

Fig. 3: Conversion of an adjacency matrix to a genomic bitstring of an indi-
vidual. a) The adjacency matrix defines the self-assembly rules (or reaction
rules), where the dj denote different types of droplets. A 1 in the adjacency
matrix means that droplets of types dk and dl can form a connection. b) The
adjacency matrix is translated into a linear genome simply by reading the
adjacency matrix from top to bottom and left to right.

Figure 3). Different types of droplets can for example vary in properties such
as size, refractory times or frequencies. For this study we assumed that the fol-
lowing types exist: input (at least two different), connector, and-function and
one-way. Input droplets are externally stimulated droplets, connectors carry
an oscillation wave straight through, and-function droplets only get excited
if they experience an excitation from two of their neighbours and one-way
droplets can only carry oscillations in one specific direction. A 1 in the re-
action rules matrix means that the corresponding droplets are able to form
a connection. In the experiments such different droplet types with different
binding properties can be realised via special connecting membrane proteins
that are inserted into the lipid layer.

2.2 Self-Assembly of Droplet Networks

The evaluation of an individual is carried out on droplet networks. This means
that we need a genotype-phenotype mapping that translates the set of reaction
rules into a droplet network. This is achieved via self-assembly on a 20 × 20
grid. It is seeded with a droplet of a random type and further droplets can
bind to the existing network according to the reaction rules. In each step, an
empty position x neighbouring a filled position y is randomly chosen. From
the reaction rules adjacency matrix we then randomly choose a droplet type to
place on the empty space, such that Adxdy

= 1, where dx is the droplet type at
position x and dy is the droplet type at position y. We assume a von Neumann
neighbourhood for the self-assembly process and for simplicity we assume that
every droplet type is infinitely available. An example of such a self-assembled
droplet network is shown in Figure 4. Note that our self-assembly process
differs from the typical self-assembly reported by other authors [12]. Here, we
do not restrict the self-assembly in any way to provide the system with a large
degree of freedom in order to be able to fully explore the space of possibilites.
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Fig. 4: Example of a droplet network created via self-assembly. Different
colours resemble different droplet types. The different droplet types are de-
noted by different colors and with the symbols c:connector droplet, A,B:
directed forwarding of signals only from A to B, &: less excitable droplet,
only forwarding signal if two signals arrive at the same time, i0, i1, i2: input
droplets. The arrows indicate the predominant direction of signal propagation,
where an arrow from a droplet to itself indicates a high level of self-excitation.

2.3 Objective Function

The evaluation of an individual is conducted via our simulation tool Dropsim1.
It implements event-based modelling for BZ via spatial and temporal propa-
gation of excitation waves within droplet networks [10]. Stimulation patterns
of various frequencies representing the input values for the classification are

1 http://www.chemicalneuronalnet.uni-jena.de/Results/Project+Media.html
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Fig. 5: Example of an input stimulus for a network with two different input
droplets.

applied to the network’s input droplets. An example of a stimulation pattern
for two different input droplets is shown in Figure 5. The result of droplet
network computation is the peak sequence of a particular droplet, which is
analyzed for the number of oscillations for each stimulus pattern. We then
find a threshold which best distinguishes between the two output classes. For
example, for one output class it is desired to have less oscillations than for the
other output class. We test each droplet in the network as a possible output
droplet so that at the end we can select the droplet that best classifies the
dataset.

3 Results

We have used our EA to classify different kinds of datasets. First we have cre-
ated various linearly separable artificial datasets, with four of them exhibiting
a wide separation distance and one of them being in very close range. These
datasets are used to test the EA and get an upper bound of how good it could
perform on a real dataset and to get an idea of the dynamics and behaviour of
droplet networks. Finally, we have used our EA to classify the cancer dataset
from the Proben1 [15] benchmark datasets.

3.1 Artificial Datasets

We have used five different artificial datasets to evaluate the performance of
our evolutionary algorithms. The datasets are shown in Figure 6. We have used
linear classification problems here to get an upper bound for the classification
that can be carried out by our droplet networks.

3.2 Cancer Dataset

The cancer dataset we have used is a reduced version of the cancer dataset
within the Proben1 benchmark dataset, which had been introduced by Prechelt
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Fig. 6: Artificial datasets to evaluate our evolutioary algorithm. The different
shapes represent different classes (0 and 1), which have to be recognised by the
EA. Each of these datasets is linearly separable, which makes them suitable
benchmark datasets for our EA. The classification results for these artificial
datasets are expected to be in any case better than the results for the real
cancer dataset. Datasets a) - d) should be easier to classify than dataset e) as
the class separation is much more distinct in these datasets.
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Fig. 7: Reduced cancer dataset. This is a modified version of the Wisconsin
Breast Cancer Dataset to suit the implementation of the resulting droplet
networks in the wet lab.

[15]. All datasets contained in Proben1 are not linearly separable and therefore
harder to classify than the linearly separable artificial test datasets we have
introduced in the section before.

To reduce the dataset we have conducted a Principal Component Analysis
[13] to identify the three most important variables. This reduction is necessary
as we wanted to keep the simulations simple enough to be able to implement
it in the wet lab at a later stage. The three selected variables were Uniformity
of Cell Size, Uniformity of Cell Shape and Bare Nuclei. The reduced dataset
is shown in Figure 7

3.3 Data Analysis and Classificiation

As described above we have first attempted to classify the artificial datasets
in order to obtain an evaluation of classification via droplet networks. The
results for these datasets are shown in Figure 8. The EA did not find a perfect
solution to the problem within the given time frame of 300 generations. This
may be due to the randomness that is involved in the creation of the droplet
networks from a set of reaction rules, such that the same set of rules may
lead to different droplet networks. Again, we have not restricted the network
generation to be deterministic in order to keep the simulations as realistic as
possible. Additionally, the stochasticity of Dropsim may add to the error. This
can be seen in dataset 3, which is in general very easy to solve as low values
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Fig. 8: Fitness of the droplet networks for the classification of the artificial
datasets. a) - d) Linear classification problems, e) nonlinear classification prob-
lem.
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Fig. 9: Network that was self-assembled for solving the example problem dis-
played in Figure 6 (d). The different droplet types are denoted by different
colors and with the symbols c:connector droplet, A,B: directed forwarding of
signals only from A to B, &: less excitable droplet, only forwarding signal if
two signals arrive at the same time, i0, i1, i2: input droplets. The arrows in-
dicate the predominant direction of signal propagation, where an arrow from
a droplet to itself indicates a high level of self-excitation. In this network, the
droplet that is used as an output of the computation (displayed in Figure 10)
in the lowest row was marked with a black circle.

belong to class 0 and high values to class 1. However, even here we do not get
a perfect score. A network evolved and assembled for the artificial dataset 4
from Figure 6 is shown in Figure 9. Its high fitness is further illustrated by
comparing the output spike frequencies for inputs from both output classes
over time in Figure 10.

A typical result for the classification of the cancer dataset is shown in
Figure 11. Here, the slope of the fitness curve is shallower after the initial
steep rise than the curves for the artificial datasets. This indicates that for the
real dataset it is harder to overcome local optima. The observation that the
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Fig. 10: Droplet network activity patterns for different stimuli, measured at
second droplet in the lowest row of Figure 9. 20 simulation runs of each of both
output classes 0 and 1 are ploted in red and green, respectively. Although the
separation of the spike frequency is not complete, the spike patterns for the
output class 1 generate a higher output acticity on average.
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Fig. 11: Fitness of the droplet networks for the classification of the cancer
dataset.

mean takes much longer to catch up with the highest fitness value compared
to the artificial datasets also supports this assumption.

3.4 Evolutionary Dynamics

In this section we are going to describe the dynamics of the evolution of the
droplet networks. For a set of 30 sample evolutionary runs with a population
size of 8 and 30 offspring over 1000 generations the mean best fitness value
that was reached for the cancer dataset was 0.623 with a standard deviation
of 0.137. The mean of the first appearance of the highest fitness score was
281.767 with a standard deviation of 335.530.

As according to the initial conditions each individual in generation 0 has
only one reaction rule present. Hence, most of them will not initially be able to
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CON DIR A DIR B AND IN 0 IN 1 IN 2

CON 0 1 1 1 1 1 1

DIR A 1 0 0 0 0 0

DIR B 0 0 0 0 0

AND 0 0 0 0

IN 0 0 0 0

IN 1 0 0

IN 2 0

Fig. 12: Reaction rules of the best individual of the sample evolutionary run
shown in Figure 11. The different droplet types fulfill the following functions.
CON: connector droplet, simple forwarding of signals, DIR: oneway forwarding
of signals (direction A or B), AND: forwarding of signals only if two signals
come in at the same time, IN: input droplets (types 0, 1, 2).

connect input droplets with anything else. Being able to connect at least one of
the input droplets with other droplets is essential for any kind of information
processing that is supposed to occur within the droplet networks. The data
shows that the ability of connecting input droplet types to other droplets
accounts for a rise in the fitness score of about 0.2.

The reaction rules for the best individual from the run shown in Figure 11,
is depicted in Figure 12. Here, all input droplet types can be connected in the
network. Connector droplets seem to be used as ”spacer” between other kinds
of droplets as they can be connected to any droplet type, except for other
connector droplets. The only droplet type that can connect to itself is DIR A
suggesting that there is a selection pressure for oneway signal transduction.

4 Conclusion

Our aim was to create a set of reaction rules that can guide the process of
self-assembly for the droplets, resulting in a droplet network that can classify
a given dataset. With a medical background explicitly in mind, this classifier
shall act as a smart drug that can identify diseased cells and specifically attack
these while leaving healthy cells to avoid side effects.

We have presented an evolutionary algorithm that finds reaction rules for
the self-assembly of droplets into whole networks. We have first tested this
evolutionary algorithm on linear classification problems in order to find an
upper limit for the capabilities of the droplet networks. The results show that
the networks do not reach the highest possible fitness scores, meaning that
the droplet networks cannot fully classify the dataset. But given the amount
of randomness and complexity in the self-assembly process this result is not
surprising and it shows that it may even not be possible to let droplet networks
grow on its own in a self-assembly process.

The results for the actual dataset are very similar. The EA progresses in
the search space until it reaches its optimum, which correctly classifies about



14 Alexandra Diem et al.

80 % of the samples in the dataset. In this case the complexity of the problem
is even further increased by adding nonlinearity to the dataset. Nevertheless,
we have shown that these networks can process information and that they
could potentially be a guiding structure for self-assembling smart drugs in the
future. A smart drug that self-assembles out of its components and correctly
identifies the majority of diseased cells would be a major breakthrough in
medical research.

Note that we are not proposing a smart drug based on a BZ system. But
BZ here serves as a promising model chemical and our theoretical work is
accompanied by work in the wet lab [9,10,5]. It is likely that the dynamics
of any potential medium for a smart drug will be hard to understand. For
this reason it could be beneficial to rely on approaches that do not necessarily
require a full understanding of the medium to be able to use it.
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gent Technologies Grant FP7-248992 “NEUNEU” from the European Union.
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