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Abstract

The complex dynamics of unconventional computing devices like
networks of droplets filled with the self-exciting Belousov Zhabotinsky
(BZ) reaction can be hard to track and to understand. Corresponding
to recurrent neural networks, the flow of excitations in the network is
not limited to a single direction in the droplets. Especially when
unconventional computing systems are not engineered but evolved
through genetic algorithms, the actual process of computation will of-
ten be incomprehensible. Several methods from Information Theory
like Transfer Entropy, Information Dynamics, and Information De-
composition offer approaches for observing and analyzing computing
systems on a higher level and allow for a better understanding of the
involved data transferring and manipulation operations. In this work
we show how to discretize the spike trains of BZ droplet networks and
how to apply mutual information measures on the time series data of
both physical implementations as well as on simulations. While the
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physical systems we are investigating are built from few droplets, the
simulated system under consideration in this paper comprise up to
100 droplets.

1 Introduction

Droplet Computers

In the scope of the “Artificial Wet Neuronal Networks from Compartmen-
talized Excitable Chemical Media” (NEUNEU) project, we are constructing
and characterizing droplets of the aqueous Belousov-Zhabotinsky (BZ)
medium (Zaikin and Zhabotinsky, 1970; Noyes et al., 1972; Adamatzky,
2001) coated with a lipid layer and swimming in hydrophobic phase (Agh-
daei et al., 2008; Szymanski et al., 2011a). In the oscillatory regime, waves
of chemical activity spontaneously appear in droplets with a period depend-
ing mainly on the concentrations of reagents. In a single BZ droplet, only
self-excitations are possible, yet for the system composed of two or more
coupled droplets, the waves can propagate from one droplet to another.
Such external wave triggering can occur only under certain conditions.

Just after excitation, the concentration of the activator of BZ reaction
drops (Gorecki et al., 2011), leaving a slowly decaying repressor concentra-
tion, constituting the refractory state of the medium. Due to the high
level of repressor, a chemical wave from neighboring droplet cannot excite
the medium and thus no further wave propagation occurs. However, if the
time from the last oscillation is sufficiently long, then excitable state be-
gins i.e. the concentration of the repressor crosses a threshold level below
which an incoming, external wave propagates onwards in form of a direc-
tional wave, starting at the connection point of two droplets. Even without
external triggering, after the characteristic self-excitation time, the amount
of the repressor can fall so low that the droplet self-excites spontaneously.

Using these interactions between droplets, classical boolean gate logic
can be constructed in experiment and simulation (Adamatzky, 2002; Holley
et al., 2011a,b), but also non-boolean, e.g. graph-theory based (Adamatzky
et al., 2011) applications are being researched into under the general context
of unconventional computing (Adamatzky, 2001; Stepney, 2012; Banda et al.,
2013).

While the analogy of the excitation waves to neural spikes inspired the
project, we will also try to resort to established techniques of analysis known
from the neurosciences (Borst and Theunissen, 1999; Brown et al., 2004;
Quiroga and Panzeri, 2009; Wibral et al., 2011) and other sciences involving
complex networks, e.g. atmosphere chemistry (Solé and Munteanu, 2004),
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ecosystems Sugihara et al. (2012) or biological signaling networks (Pahle
et al., 2008) to understand the reason for their computational efficiency and
their modes of operation. From another perspective, any innovation on un-
derstanding either of these systems might also be applied in the other complex
networks related domains.

Challenges

Typically the dynamics of such a possibly recurrent network with a vast
amount of interconnected components will be quite rich and complex (Maass
et al., 2002; Dittrich, 2005). This typically means, that our common, intu-
itive, modular, engineering perspective of the system will not be successful
any more (Zauner, 2005; Stepney, 2012).

For engineered or evolved systems’ or liquid state machines, their func-
tions are usually specified from the outside. In biological systems, a net-
work’s function is not necessarily known although we assume it has some
function. But for both types of systems we are interested in how the systems
perform this function, which elements interact in which way to perform the
task. Hence we require a set of perspectives, of filters to view these com-
plex systems with that show and highlight different aspects of the systems.
Dynamical Systems Theory (Jetschke, 1989; Williams and Beer, 2010a) is
one of these filters. Another filter might be information theory and informa-
tion dynamics (Shannon, 1948; Schreiber, 2000; Pereda et al., 2005; Lizier
et al., 2008; Williams and Beer, 2010a,b), for identifying the key components
of information processing: information transmission, modification and stor-
age. While finding the places in the network where information storage is
exploited to produce results is certainly of key importance, this concept is
not in the scope of this paper. Instead, we focus on information transmission
and information modification here.

One further problem of unknown dynamic systems is to fix the symbol en-
coding when the systems should be used for computation: Different kinds of
symbol encodings might be more or less useful for information modification,
storage and transmission operations in a particular system (Escuela et al.,
2013; Gorecki et al., 2013). For example in case of boolean operations in
networks of BZ droplets, it sounds natural to assign a high spike frequency
to the symbol ’1’ and a low spike frequency to the symbol ’0’. But a dif-
ferent encoding that might exploit more subtle differences in spike timing,
e.g. the time delay between two neighboring droplets, or the activity pat-
terns of a whole set of droplets might prove more useful in certain systems.
Nonetheless information theory offers such an approach by abstracting away
the particular encoding.
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Operational Modes of Droplet Systems

To monitor the flow of information in a droplet network, different techniques
can be applied. But first of all, it seems useful to study different opera-
tional modes of how the complex system might be used for computation.
We consider the operational mode from the point of view of interfacing
here: Typically for any computing device, some input can be specified and
then the output is retrieved in a specified manner. This input can either
be hard-coded in the design, in the initial state of the network or it has to
be supplied to the droplets during their lifetime. In the latter case, a num-
ber of inputs for a single calculation might be specified by a time-variant or
constant stimulation pattern that corresponds for example to boolean values
or to real-valued sensor data. Alternatively, a series of calculations might
be carried out by varying the input signal, e.g. like a continuous stream of
sensory inputs for a robot that has to adapt to its environment all the time.
The input droplets are being stimulated from outside the droplet system, as
explained in Section 2.1.

Analogously to the inputs, the output of a single computation can either
be interpreted in a time-variant or constant manner. When different
computations are carried out with varying inputs, an additional difficulty
arises how to relate which input to the output at what time interval. For
example, when an input is communicated to the network in the interval
[t1, t2], in which interval [t3, t4] can the result of the computation be read
out? Here, some further mechanism, for example an external clock signal,
would be required.

In the simplest case, the simulation or experiment is just observed undis-
turbed, so that only some droplets self-excite and drive the activity of the
system. This might be useful, when some parts of the network should be
working independent from the input, e.g. as independent signal generators,
or as a memory from earlier stimulation.

In this paper nonetheless, we will consider only a single computation per
experiment with either (i) a constant stimulation pattern as input for the
functional analysis, or (ii) a random spike pattern for the connectivity
analysis, such that we can follow this pattern through the network and study
which droplets influence which others.

Overview on this Work

In this work, we show how to analyze an experimental five droplet system as
well as simulated droplet systems in the order of magnitude of 100 droplets by
following the information flow. That is, on the one hand the information that
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is directly transmitted from one droplet to droplet by looking at the time
delayed mutual information between spike patters in both droplets. On
the other hand, we can investigate the mutual information between spike pat-
terns in particular droplets and external values like specific input classes,
their combinations as well as expected outputs of a computation.

In particular with the latter approach, we show how to highlight the syn-
ergy between different inputs with the mutual information to the expected
output of a computation. Typically some positions in the droplet network
start showing more information about the output than all their neighbors
that supply this droplet with signals. In this case, information is combined
and the synergy of the sources is exploited for computation.

2 Methods

In the following, we will show how the video data from experimental observa-
tions as well as simulation records can be analyzed with the same information
theory based analysis method. Our basic assumption here is, that all the use-
ful information of the droplet activity is found in their spike times, i.e. the
amplitude of the spike and the behavior of the chemical medium between
the spikes is irrelevant and abstracted away. Thus we extract the spike times
from the video data of chemical experiments and, analogously, remove all
extra information that is available from simulation experiments except for
the spike times.

To begin with we will describe our chemical experimentation setup in
the next Section, then our simulation of droplets and then the information
theory based analysis method.

2.1 Experimental Droplet System

In the experiments with BZ droplets we used commercially available analyt-
ical grade reagents without further purification. The solution of BZ reagents
contained the following concentrations of BZ components: 0.3 M sulfuric
acid (H2SO4), 0.375 M sodium bromate (NaBrO3), 0.125 M malonic acid
(CH2(COOH)2) and 0.04 M potassium bromide (KBr). In the experiment
we used a mixture of catalysts. The bathoferroin ([Fe(batho)3]

2+), which con-
centration was 0.0015M played the major role. In order to make the medium
photosensitive a small amount of ruthenium (Ru(bpy)3Cl2) (0.00021M ) was
added.

Bathoferroin tris(1,10-bathophenanthrolinedisulfonic acid) is a redox in-
dicator, red in the reduced state and green when oxidized. The waves of oxi-

5



dized form, spreading in the system correspond to high concentration of the
activator and can be traced optically. Moreover the catalyst interacts with
lipids on the droplet boundary (Szymanski et al., 2013) and changes the in-
terfacial tension that can enhance the communication between droplets. The
other catalyst (Tris(bipyridine)ruthenium(II) dichloride) makes the reaction
sensitive to blue light (λ ∼ 460nm). Illumination of the medium leads to
production of bromide ions that inhibit the reaction and thus we observe no
oscillations in the strongly illuminated area (Jinguji et al., 1992). Illumina-
tion with low light intensity increases the period of oscillations.

The experiments were carried out in a Petri dish (50 mm diameter),
inclined at a small angle to the horizontal. Solution of a phospholipid L-α-
phosphatidylcholine (Soy-20%,Avanti Polar Lipids, Inc.) in decane, prepared
by dissolving 0.25 g of lipids in 50 ml of decane, constituted environment for
compartmentalised BZ medium.

In all experiments we considered a linear chain of five droplets surrounded
by the organic phase. All droplets were identical and they contained (1.4 µl)
of the solution. We pipetted the droplets into the dish, where driven by the
gravity force they arranged into a linear array in a lower positioned part of
the dish. In such a configuration stable connections between them can be
maintained on the time span of the experiment, allowing for propagation of
pulses via the lipid bilayer. All experiments were performed at 25 ◦C and the
medium was not directly thermostatted.

We controlled oscillations in the droplets by means of high power, blue
LEDs (HUEY JANN ELECTRONIC, HPE8B-48K5BF, 5W) connected to a
PC through an electronic circuit. Plastic optical fibers (1.5 mm diameter)
attached to the diodes allowed to illuminate each droplet individually. The
light intensity was adapted during the experiments to obtain required fre-
quency of oscillations for the droplets. The exposure time of each droplet
was controlled with 1 ms time resolution.

Light emitting fiber tips were positioned centrally below corresponding
droplets to limit amount of light transferred to the surrounding. The exper-
imental system is drawn schematically in Figure 1.

We recorded the time evolution of the system using a digital video cam-
era (Sony HDR-XR550VE) with attached magnifying lens Raynox-505. The
video was captured with the resolution of 1440 × 1080 pixels and frequency
of 50 frames per second (fps) and cut into a series of frames. ImageJ software
was applied to acquire and process the obtained sequences of images.
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Figure 1: The experimental Setup. PC controlled diodes emit blue light
(λ=462 nm), transferred to each droplets separately through optical fibers.
The illumination is used to slow down the BZ oscillation in the droplets up
to the point where no oscillation occurs. Furthermore, the illumination can
be used to set the oscillation phase of droplets and thus also to synchronize
multiple droplets.
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2.2 Simulated Droplet System

For the in silico studies of droplet systems, we used the stochastic, continuous
time, discrete event simulation system described in (Gruenert et al., 2013).
In this approach, the behavior of the chemical droplets is structured into the
three phases denoted the excited, the refractory and the responsive phase.
Only in the very short excited phase, a droplet can influence its neighbor if
that is in the responsive phase. A signal propagation delay is included to
account for the speed of the BZ wave expansion.

The normal droplets dNorm in our simulation stayed excited for one
second, were refractory for five seconds and then self-excited after 10 seconds
if not externally triggered. The signal propagation delay from one droplet
to the next was one second. For each of these values, a normal distributed
noise term of the standard deviation 0.05 s is added for each event, such that
the simulation becomes non-deterministic. Apart from the normal droplets
as described above, we used a slightly faster oscillating droplet dFast with 0.8
times the original period, a slightly slower oscillating droplet dSlow with 1.25
times the original period and a less excitable droplet dLowEx that requires two
concurrent excitations at its neighbors to be triggered into an excitation.

When considering not only a single droplet but a complex and interact-
ing system of droplets, we will refer to individual droplets as di, and to
the whole droplet system D = (d1, d2, ..., dw). Because a two-dimensional
structure is more probably to be reproduced in laboratory experimental
setups, we will typically use planar graph structures for the droplets net-
works here. In this paper, we will typically use u by v droplet arrays N with
u · v = w fields: Each field of the array can then either be left empty or
contain a different droplet type of a different chemical composition - result-
ing in slower or faster oscillation behavior or in less excitability. Also, we
facilitate inputs to the system by stimulating some of the droplets dIn0, dIn1,
etc. externally via the inhibitive LED illumination, mentioned in Section 2.1.

N =




d1,1 d1,2 · · · d1,v
d2,1 d2,2 · · · d2,v

...
...

. . .
...

du,1 du,2 · · · du,v




di,j ∈ {∅, dNorm, dLowEx, dSlow, dFast, dIn0, dIn1, dOut0}
Then typically, vertically and horizontally adjacent droplets will be able to
interact with one another while diagonally or more distant droplets are
considered to be unconnected (even though they might interact via other
droplets). In simulation, nonetheless, other non-planar connectivities can be
explored.
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Figure 2: Discretization and extraction of discrete spike patterns from an
exemplary spike train using the frame size ∆t = 40s and pattern length
l = 4.

2.3 Information Theoretic Approach

Symbol Representation

Our basic assumption for measuring the droplet network information trans-
mission is that all information on the dynamics of the droplet system D is
present in the sequence of spike times. It does not matter whether con-
sidering a chemical system observed by video or a simulated droplet system
(see Sections 2.1 and 2.2). I.e. a given droplet system D’s dynamics are suf-
ficiently represented by the set of times Tsd = {t1, t2, ..., tn} for each droplet
d ∈ D in the system when it becomes excited. We assume that, in contrast,
the amplitude or the exact shape of the excitations can be neglected.

For the measurement of information, we partition the continuous-timed
spike train data into discrete symbols (Strong et al., 1998). Let us select the
discretization length ∆t and define a series of m = dtn/∆te time intervals
I1, I2, ..., Im. Here the interval Ij is defined between the times (j−1) ·∆t and
j · ∆t, where j = 0, 1, ...,m. Now we convert the continuous spike train
Tsd of droplet d into a binary sequence of either zeroes or ones, resulting in
the discretized spike train Sd ∈ S = {0, 1}m. Any time frame Ii that
contains at least one spike at time tj ∈ Ts is set to value 1 while all other
frames are set to 0. Reformulated as sequence of bits, a single spike train
Sd ∈ S is now written as Sd = (aI1 , aI2 , ..., aIm).
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Ij = [ (j − 1)∆t , j∆t [

m = dtn/∆te , aIi ∈ {0, 1}

aIi =

{
1, if ∃ tj ∈ Ts such that tj ∈ Ii
0, if otherwise

From the completely discretized spike train Sd of a single droplet d, con-
sisting of m frames for the whole experiment, we use a sliding window of
length l << m, resulting in a set of m − l + 1 discrete spike patterns
P1, P2, ..., Pm−l+1. Spike pattern Pi ∈ P = {0, 1}l is defined for the time
intervals Ii, Ii+1, ..., Ii+l−1.

So far, spike trains and patterns are defined for a single droplet d only.
But because the dynamics can be influenced not only by a single droplet but
by the interaction of many droplets as well, e.g. population coding, we
can also consider spike patterns that are built by observing many droplets at
the same time.This expands the discretized representation of patterns Pi ∈
P = {0, 1}l to become a two dimensional array instead. By adding another
dimension for the droplet, the set of all patterns becomes Pi ∈ P = {0, 1}k·l,
where k is the number of aggregated droplets and l is the length of the sliding
window. Nonetheless, in the examples shown in this paper, we will only use
spike trains and spike patterns for single droplets.

For our information theoretic approach, we consider the spike patterns
Pi to be the basic symbols. That means we will estimate the probability
distribution over all the patterns appearing in experiment or simulation as
well as the joint distributions of the patterns together with different external
inputs or expected outputs of the computations. From a recorded or simu-
lated whole spike train we estimate the probability distribution p(Pi) for all
possible spike patterns Pi ∈ P . For the pattern length l and the number
of considered droplets k, there are 2k·l different patterns. Even though this
number seems huge, only a small subset of all possible spike patterns do ac-
tually appear. Given that the time discretization ∆t is small in comparison
to the oscillation period τ of the droplets, most time frames aIi,d are zero.

Spike Train Entropy

We can now measure the entropy of a discretized spike train by using the
standard Shannon entropy formulation (Shannon, 1948) over the distri-
bution of spike patterns found in the spike train:
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H(P) = −
∑

Pi∈P
p(Pi) log2 p(Pi)

For a given discretization raster ∆t and for a pattern length l, this mea-
sures the entropy of the spike patterns. Clearly, this value does not only
depend on the complexity of the spike train, but also on the chosen (Dim-
itrov and Miller, 2000) length of the spike pattern l, on the discretization
interval ∆t and on the number of simultaneously observed droplets k. So for
example, when reducing the raster size ∆t or when increasing the pattern
length l the Entropy of the observed patterns will increase due to the higher
number of possible patterns.

As we discussed before, sometimes the information, for example from an
intermediate computation, might not be found in exactly one droplet but can
be found “de-localized” over two or more droplets. This possibility is already
captured by our definition of the spike patterns that can be built from single
as well as from multiple spike trains.

Spike Train Mutual Information

As mutual information is widely used as an indicator for correlation, it also
qualifies as a natural candidate for finding dependencies between two
droplets or between two groups of droplets in a network. The common mutual
information formulation

I(Pa : Pb) = H(Pa) +H(Pb)−H(Pa,Pb)

can directly be applied to two different spike pattern distributions Pa and
Pb, where a, b ⊆ D refer to different subsets of droplets in the network D.
Typically, a and b will be non overlapping, such that a ∩ b = ∅. Here, the
joint entropy H(Pa,Pb) refers to the probability distribution of both patterns
Pi ∈ Pa and Pj ∈ Pb happening at the same time.

H(Pa,Pb) = −
∑

Pi∈Pa

∑

Pj∈Pb

p(Pi, Pj) log2 p(Pi, Pj)

The symmetric values I(Pa : Pb) gives a the average number of bits that are
known about a spike pattern from Pa by knowing the spike pattern from Pb
or vice versa.

This measure should be independent from a particular symbol encoding
scheme. For example, a strange encoding scheme might be to store the
message in the exact delay between one spike and the third-next spike, while
the two intermediate spikes are of no importance. Given that the important
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features of a spike train are visible on the resolution ∆t of the discretization
and fit in the pattern length l ·∆t, the mutual information between the spike
trains can be used also to measure complex and non-linear dependencies.

Still, when measuring the dependency between any two droplets, the gen-
eral problem arises to distinguish between correlation that is generated
because droplets are independently swinging with a fixed phase delay but
without influencing each other, and on the other side, those droplets that are
correlated because they are actively influencing each others dynamics.
If they are unconnected, we might still measure high mutual information, e.g.
when both droplets are oscillating with the same frequency or with integer
valued multiples of the frequencies.

Transfer Entropy (Schreiber, 2000; Staniek and Lehnertz, 2008; Wibral
et al., 2011) resolves this problem by taking into account the past of a possibly
influenced variable. Hence, transfer entropy is only measured when a vari-
able’s own past does not suffice to explain its future behavior. Furthermore,
using transfer entropy, it becomes possible to determine the direction of
the influence because it is not a symmetrical value as mutual information.
While theoretically sound, this approach did not work well in the context
of droplet computers for us so far, most probably due to the problem of
sampling sufficiently long history data. More advanced sampling techniques
might help to produce better estimates of the correct pattern probability dis-
tribution, though (Panzeri and Treves, 1996; Strong et al., 1998; Roulston,
1999; Nemenman et al., 2004). Furthermore, as mentioned in (Wibral et al.,
2011), optimal auto-prediction, i.e. the prediction of a nodes state from
its past, is a prerequisite for inferring the causal relationship. This auto-
prediction is in particular difficult, when the natural oscillation frequency of
the droplets is constantly changing in chemical experiments.

Another simple approach is to combine measurements of many experi-
ments with different initial conditions, such that a fixed phase shift de-
pendency is broken. With this approach, we can distinguish droplets that
are actually influencing each other from those that are only coupled by a
particular initial phase. But especially in the case of chemical laboratory
experiments, some of them are hardly repeatable. Also, the mutual informa-
tion is still a symmetric value, such that we cannot determine the direction
of the influence. For these reasons we used time delayed mutual information
as explained in the next Section.

Time Delayed Mutual Information

Excitation waves require time to travel from one part of the droplet system
to another, so one droplet can not influence another droplet without time
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delay. In principle, excitation waves can travel in either direction if the
direction is not explicitly enforced (Szymanski et al., 2011b). Here we assume
that the signal propagation direction is mostly fixed for a specific
stimulation situation, and thus also the time delay between the spike patterns
in a pair of two droplets becomes constant. So we calculate the mutual
information between the spike patterns at droplet da for all times t and the
spike patterns of another droplet db at times t+ τ∆t for a limited range of τ
values by the formula:

IτTD(Pa : Pb) = H(Pa) +H(Pb)−H(Pa(t),Pb(t+ τ∆t))

Here, H(Pa(t),Pb(t+τ∆t)) is the entropy of the joint, but time shifted, spike
trains.

Assuming that one droplet is most influencing another droplet at a specific
time delay, we use the time delayed mutual information (Fraser and Swinney,
1986; Pereda et al., 2005; Jin et al., 2010) to estimate the mutual information
between two droplets and their time delay at the same time. At a time delay
τ ′, when the time delayed mutual information is maximal, the interaction
between the droplets should be strongest. Formally, we note this assumption
as:

I(Pa : Pb) = maxτ IτTD(Pa : Pb)
τ ′ = argmaxτ IτTD(Pa : Pb)

This measurement also reveals the effective signal speed in the network
that might differ from the chemical wave propagation speed. For example,
when starting two wave patterns at both ends of a linear chain of droplets,
it will take some time until the wave with the higher frequency can take over
the control of the whole system: But the front where both waves collide will
move slower to the end of the slower pattern generator than the individual
waves would travel.

Information Between Spike Trains and External Values

Instead of correlating the behavior of a specific droplet to another droplet’s
spike pattern, we can also compare it to external values such as the input
class or the expected output class. We use the term input/output class
here to distinguish the symbol from its representation as a specific spike pat-
tern: In this case we calculate the mutual information of a spike pattern with
the abstract input/output symbol only. For example, when considering a pat-
tern recognition task where low, average and high chemical concentrations
are sensed, there is no necessity of encoding a low chemical concentration in a
low frequency spike signal. Instead, the low concentration could be encoded
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NOR i1 i2 o1
case1 0 0 1
case2 0 1 0
case3 1 0 0
case4 1 1 0

Table 1: Input cases/output symbols for the four input cases of the NOR
function.

as high frequency or more complex spike patterns could be used, maybe even
keeping the average spike frequency constant (Escuela et al., 2013).

A problem definition for a function with a finite number of input cases
i ∈ {1, 2, .., p}, can be given in the form of a table, where the expected out-
put values are listed for each input case i. An example is shown in Table
1 for the NOR function. Here we denote each input or output row j of
the table as i/o-channel. Not distinguishing between input and expected
output symbols here, We might be interested in the mutual information
between any combination of them and the spike patterns found in partic-
ular droplets. Followingly, we use the symbol γ for a combination of rows
from the function definition table. For the function with two inputs and one
output as defined in Table 1, γ is a subset of the inputs i1,i2 and the expected
output o1: γ ⊆ {i1, i2, o1}. Not distinguishing between inputs and expected
outputs is then useful because we can use the same formalism to analyze
the mutual information of spike trains with different input channels, output
channels or combinations thereof.

For any droplet a in the network, the mutual information with the com-
bination of i/o channels γ is then calculated under the assumption that any
input case i has the same probability:

I(Pa : γ) = H(Pa) +H(γ)−H(Pa(t), γ)

This implies, that the droplet system is observed or simulated for all
the input cases i. The joint entropy between the input/output channel
combination γ and a spike pattern P ∈ Pa can for example be generated by
concatenating the input/output symbols contained in γ for each case i to the
spike pattern P that it was generated with.

Studying Table 2, we can see, that the mutual information between an in-
put channel and the output of the computation can either vanish completely,
for example in the case of the XOR function, or stay completely intact as in
the case of the NOT function. Furthermore, in the case of the OR or NOR
functions, even though there is information about the output present in each

14



H(i1) H(i1, i2) H(o1) H(i1, o1) I(i1 : o1)
IDENTITY 1 - 1 1 1

NOT 1 - 1 1 1
AND 1 2 0.81 1.5 0.31
OR 1 2 0.81 1.5 0.31

NOR 1 2 0.81 1.5 0.31
XOR 1 2 1.0 2 0

Table 2: Information theoretic properties of typical deterministic boolean
functions: Some further properties are H(i1) = H(i2) and I(i1 : i2) = 0 by
definition for two input functions with equally distributed and independent
boolean input cases. H(i1, i2) = H(i1, i2, o1), because all the information of
the output is already present in the input. This also implies I(i1, i2 : o1) =
H(o1), if the output is at all dependent of the input.

of the single inputs already, this information does not sum up to the entropy
in the output. Hence, a synergy between the input channels is exploited
for computing the output by combining both inputs. In the extreme example
of the XOR function this becomes obvious: It is not possible to make any
judgment about the output, if only either of the inputs is known.

3 Results

3.1 Information Flow in Experimental Systems

The experiment discussed below was conducted as described in Section 2.1.
From the total recorded time evolution of five droplets of length 4505 s, we
considered the data from the time interval [1585 s, 4505 s]. The initial part
of the experiment contained the setup procedure and thus early data were
neglected.

The frames from the considered interval were extracted at the rate one
frame per second. This produced a video stream of 2920 video frames. To
observe the time evolution of oscillations in the droplets d1 till d5, arranged
in a linear chain as shown in Figure 3a, we cut the series of frames along the
bright line and obtained the space-time plot presented in Figure 3b.

Bright, periodic stripes correspond to the high level of the oxidized form
of bathoferroin and they mark the moments of time at which the excita-
tions occurred. We identified 28 excitations for the droplets d1 and d4, 27
excitations for d2 and d3 and 29 excitations for d5. The minimum observed os-
cillation period was 63 seconds, ranging up to 190 seconds when the medium

15



(a) Snapshot of the experimental 5 droplet system.

(b) Space-time plot of the white axis displayed in panel (a).
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(c) Oscillation diagram.

Figure 3: (a) A snapshot from time evolution of five droplet system. (b)
Space-time plot obtained by cutting the series of frames along the bright line
drawn in Figure (a). White, slightly curved lines schematically represent
the shape of wavefront, characteristic for self-excitations. The dashed, black
line indicates the part of the experiment at which the activation sequence
of excitations 1→2→3→4→5 was observed. The black rectangle at the time
axis marks the part of experimental results corresponding to the time series
in Figure (c). (c) Intensity of green color at the geometrical centers of the
droplets as a function of time. The distance between the maxima in a se-
lected droplet determines the period of oscillations, whereas for two different
droplets indicates time shift between forced oscillations. The arrow marks
the moment of time (t=2862 s) at which we started to illuminate droplet (1).
The illumination was ceased at t=3484 s.
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Figure 4: Schematic illustration of the five droplet network from Figure 3a
and the measurement of time delayed mutual information. The three droplets
d3, d4 and d5 are slightly slowed down by blue illumination. Droplet d1 is
controlled by the LED. Droplet d2 is probably also influenced by the LED
of droplet d1. Hence droplets d1 and d2 mostly control the remaining part
of the droplet system. The arrows indicate that we measured a time delayed
mutual information with the ideal delay in frames displayed at the base of
each arrow. We measured the strongest time delayed mutual information
between droplets d3 and d4 with a time delay of 6 frames, corresponding to
6 ·∆t = 18s.

was nearly depleted.

In the initial part of the experiment the droplets (1), (3) and (5) oscillate
spontaneously as marked schematically with the white, curved lines. Initia-
tion center of the chemical wave for the self-excitations is located typically
close to the geometrical center of the droplet and then the wave travels out-
wards. When it reaches the connection with a neighboring droplet, that is
in the excitable state then the activation occurs. In that case we observe a
directional wave visible as inclined stripes on the space-time plot, with the
initiation center at the connection point.

During the time-span of the experiment we illuminated droplets d3, d4 and
d5 with a low light intensity. As the result, the non-illuminated droplets d1
and d2 oscillated fastest. Approximately at experimental time t = 2800s, the
waves originating from droplet d1 spread out through the complete droplet
chain, effectively controlling the oscillations of the remaining droplets. Then,
at time t = 2905s, we turned on the illumination of droplet d1, leading to
slower oscillations in that droplet. This illumination until time t = 3506
changed the dynamics in the investigated network: Droplet d3 started taking
over controlling the oscillations of the network till the end of the illumination
but was superseded by droplet d1 afterwards. We use this changing dynamics
as a source of entropy in the droplet chain and follow the information flow
from the illuminated droplets by means of time delayed mutual information.

For each pair of adjacent droplets, we calculated the time-delayed mutual
information, resulting in the directions and time delays displayed in Figure 4.
For the pattern length l = 30 frames and frame length ∆t = 3s we obtained
entropy values of about 4.8 bits per droplet and maximal mutual values
between 1.98 (d2 to d3) and 2.87 (d3 to d4) bits. These measures support
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the observation that information is transferred from the random source, the
illuminated droplet d1, to the droplets on the right.

Nonetheless, about 30 observed excitations do hardly suffice to build a
probability distribution of spike patterns, in particular, when the oscillation
times are constantly and continuously changing as the medium is aging in
this example. Since the medium is changing in a similar way for all droplets
in the system, a correlation between each droplet’s behavior might be mea-
sured. But because this correlation should be similar for all delay values, the
maximum of the information over the different time delay values should still
be a useful indicator for the actual interaction.

3.2 Hand-designed Linear Classifier Network

Because real droplet experiments cover a small number of oscillations from
the point of view of information theory, further experiments are carried out
in simulation. The future use of microfluidic devices will hopefully improve
the reproducibility of the experiments, though. First we will introduce and
analyze a hand-designed linear classifier network design as well as an evolved
binary NOR gate. Then we will show how the information flow measures can
support studying the function of network components’ functions my modifi-
cations.

A simple linear classifying network was hand-built in simulation for clas-
sifying samples from the Proben1 (Prechelt, 1994) data set. Each data sam-
ple from the cancer subset is a 10 elements vector where the first 9 values,
{i1, i2, ..., i9} are from the set of 9 discrete values {0.1, 0.2, ..., 0.9, 1.0} while
the last value is the binary output class, either benign or malign. Of the 699
samples, 458 are from the benign class, while 241 are for the malign case.
This results in an output class entropy of ca. 0.93 bits. For the same data
set, we already presented the evolution of a generative network description
(Diem et al., 2012). But in contrast here, we hand-designed this network
with the rationale of selecting out of the nine input signals those three with
the jointly highest mutual information to the expected output class,
i.e. the inputs i1, i2 and i6 combined, jointly having a mutual information
to the output class of ca. 0.83 bits. First we will combine the two inputs
with the highest joint mutual information, i2 and i6, and then combining the
result with the input i1. These three inputs are fed into the droplet network
as analogue, rate coded signals, where the value 0.1 corresponds to the lowest
spike frequency, very close to self-excitation, while 0.9 corresponds to a very
high spike frequency, very close to the highest possible spike rate.

Because, according to Figure 5a, most of the samples of class 1 are in one
sector of the input values, a linear classification as symbolized by the black
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(b) Droplet network design for classification
and information flow with random stimula-
tion at the input nodes i1, i2 and i6. Different
colors indicate different droplet types.

Figure 5: Test cases (a) and hand-designed droplet network (b) for clas-
sification of the Proben1, cancer data sat. Spike train discretization with
∆t = 0.5s and a window size of 45 frames. The maximum entropy per
droplet was 9.88 bits, the minimum 5.33 bits. Maximum time-delayed mu-
tual information between 1.49 and 8.78 bits. Differently colored circles rep-
resents different droplet types, where the red circles represent the standard
droplet model as described in Section 2.2. Green droplets marked with the
’&’ symbol are of lower excitability and require two synchronous excitations
in adjacent droplets to trigger an excitation.

line allows a correct classification level of 94%. The droplet network design
shown in Figure 5b performs this task when used with an ideal, external
threshold function to a similar level of typically more than 90%.

When applying random stimulation at all three input nodes, we can nicely
follow the propagation of the time delayed mutual information, droplet
by droplet, from the inputs i1, i2 and i3 to the central less excitable nodes
and towards the output node o1 in Figure 5b.

Analogously, when observing the mutual information with the external
input symbols, we can follow the input information of each channel in-
dividually in Figure 6. Also, we see that the information about the input
symbols is decaying on its way to the central rows of less excitable droplets
(green). Another aspect of these plots is, that, for example in Figure 6a,
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the information about i1 is not zero at the other input nodes i2 and i3. The
reason here is, that there is already mutual information in the input symbols
in the data set.

Surprisingly, when considering Figure 6d, the mutual information between
the spike patterns and the expected output declines when moving from
either input along the droplet network towards the output droplet. That
means, while a lot of information about the correct outcome of an experiment
is present in the inputs initially, this information seems to be lost throughout
the network. Nonetheless, the classification using a simple threshold function
at the output works relatively well. The reason for this apparent loss of the
information about the result towards the end of the computation lies in the
considered time frame of the spike patterns: The threshold function works an
the averaged spike frequency over the whole experiment of 4000 s while our
spike patterns only covered 22.5 seconds. But it is difficult to estimate the
probability distribution of all possible spike patterns for patterns larger than
50 frames in this case. For estimating an average of the spike frequency over
200 seconds, 400 frames would be necessary at a frame length of ∆t = 0.5
s. To measure the mutual information with the 200 seconds averaged spike
frequency, we discretize the spike range of appearing spike frequencies into 10
different classes and build the probability distribution on the abundance of
these classes instead. When using this average spike rate as discretization
scheme instead for the mutual information measurement as shown in Figure
7, we observe an increase of the mutual information with the expected output
class towards the output droplets.

3.3 Information Flow in an Evolved NOR Gate

After using evolution to design boolean logic gates from droplets, information
flow analysis can be used to understanding its function. In this example, a
NOR gate was evolved in simulation, forming the design shown in Figure
8a. Using trivial rate coding, the NOR function implies that for a high fre-
quency stimulation on either or both input channels, a low frequency should
be found on the output droplet, while a low frequency on both input chan-
nels should lead to a high frequency output. From the time delayed mutual
information diagram, shown in Figure 8a, the network’s mode of operation
can hardly be deduced. When observing the information flow in dependence
of the inputs and in comparison to the expected output (cf. Figures 8b,8c,
and 8d), it becomes obvious that a very good output of the computation is
accumulated at the the top left &1-droplet, very close to the input i1. Fur-
thermore, wherever the actual computation takes place, the result has to be
transferred to the output droplet o1. Along the way, some of the informa-
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(a) Mutual information with input i1.
(b) Mutual information with input
i2.

(c) Mutual information with input i6.
(d) Mutual information with ex-
pected output o1.

Figure 6: Mutual information between each droplet’s spike train and the
external input or expected output symbols. Spike train discretization with
∆t = 0.5s and a window size of 45 frames. We measured spike pattern
entropies per droplet between 5.4 and 9.7 bits. Entropy of the external inputs
i1, i2, i6 and the expected output o1 were 3.0 bits, 2.3 bits, 2.0 bits and 0.93
bits, respectively. These external entropy values were used as reference for
the per-droplet pie charts displayed. The colored fraction of the pie chart
corresponds to the mutual information between this droplet’s spike train and
the external reference symbol, such that a full pie chart would indicate the
maximal possible mutual information between the spike patterns and the
external input/output. Different colors indicate different droplet types as
explained in Figure 5b.
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Figure 7: Using a different spike train discretization, the increasing mutual
information with the expected output becomes visible. Instead of using the
distribution of all possible spike patterns, we only averaged the number of
spikes in a window of 200 s and distinguished 10 different bins here. Except
for the discretization, this plot in analogy to Figure 6d.

tion may get lost again. When directly tapping the signal from the top left
droplet instead, the noise level in the rate coded result of the computation
is actually reduced.

This leads to our assumption about the network function, that the
actual computation, the modification of information both dependently on
inputs i1 and i2 happens in droplet &1. The long trail of “full” droplets in
Figure 8c on the other hand only transfers the information from input i2 to
the “computing center” &1, but also relays the result of the computation
back to the output droplet o1. In the next section, we will further investigate
this assumption.

3.4 Effect of Manipulating the Information Flow

Mutual information analysis between spike patterns and inputs or expected
outputs can also be used to better understand the function of particular
droplets in the network by doing mutation or deletion experiments. Here
we investigate the thesis that the computation of the NOR network is hap-
pening in the top left &1-droplet as implied by the high mutual information
to the expected output, shown in Figure 8a.

To investigate this, we first exchange droplet &1 by a normal droplet.
This leads to a globally spread mutual information with the expected output,
shown in Figure 9a. But this also leads to an inversion of the spike frequency
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&1

i1 s f

s & o1

i2 d1 s

(a) Evolved droplet network as NOR
gate and its droplets’ interaction di-
agram.

(b) Mutual Information between
spike trains and external input sym-
bol i1.

(c) Mutual Information between
spike trains and external input sym-
bol i2.

(d) Mutual Information between
spike trains and expected output
symbol o1.

Figure 8: This evolutionary designed droplet network is supposed to calcu-
late the binary NOR function. Differently colored circles represents different
droplet types, where the red circles represent the standard droplet model as
described in Section 2.2. Brown droplets marked with ’s’ are slightly slower
and those marked with ’f’ are slightly faster than the red droplets. Green
droplets marked with the ’&’ symbol are of lower excitability and require two
synchronous excitations in adjacent droplets to trigger an excitation.
Spike trains are discretized with a frame size ∆t = 1s and l = 35 frames.
The displayed sizes of the droplets indicate the entropies of the spike trains
which were between 5.4 and 9.5 bits. (a) Arrows indicate the direction of
the time delayed mutual information between neighboring droplets. (b-d)
Entropies of the external inputs i1, i2 and the expexted outputs o1 were 1
bit, 1 bit and 0.81 bits, respectively. In analogy to Figure 6, these Entropy
values were used as reference for the per-droplet pie charts displayed, such
that a full pie chart would indicate the maximal possible mutual information
between the spike patterns and the external input/output.
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(a) Mutual Information between
spike trains and expected output
symbol o1 for modified droplet &1.

(b) Mutual Information between
spike trains and external input sym-
bol i2 for deleted droplet d1.

Figure 9: Effect of modificiations on the information flow of the network
design from Figure 8a.

for each input case, i.e. the whole network acts as an OR gate instead of
a NOR gate. Note that an OR gate can produce the complete 0.8 bits of
mutual information with the expected NOR output, because the inversion of
the signal encoding does not destroy information. Nonetheless, building an
OR gate from droplets is far simpler than a NOR gate (Escuela et al., 2013).
Hence the &1 droplet is necessary for the correct network function.

In another experiment, we removed droplet d1 from Figure 8a, because
it is distant from the possibly important center of computation &1. Then, the
output mutual information is reduced in almost all nodes of the networks.
In particular in the top left &1 droplet, the output mutual information is
reduced to almost half its original value. The reason here is probably the
perturbed information flow from input i2 to the computing center &1 that
becomes obvious when comparing Figures 8c and 9a. Because the information
from input i2 does not arrive at the droplet &1 where it should be combined
with input i1, the synergy of the inputs cannot be exploited in the modified
network.

4 Discussion

In this work, we presented the measurement of the propagation of information
from droplet to droplet in a system of connected, information processing
droplet computers.

The principle advantage of the information theory based approach of
understanding the droplet systems’ work is that we become independent
from a particular symbol encoding scheme (Strong et al., 1998). In
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principle it should be possible to represent any kind of encoding as a spike
pattern, given the spike patterns’ length l is sufficiently long and the time
rasterization ∆t is sufficiently small. For example in Section 3.2, we observed
a case where the practical pattern length was not sufficiently long to cap-
ture the mutual information with the computed output as seen in Figure 6d.
Only when we switched to another method of discretizing the spike trains,
by taking the average spike frequency over a long time period, we observed
the mutual information with the expected output in Figure 7. By deciding
for a particular pattern length l, we are measuring the average reduction in
uncertainty about either another droplet or external values, when looking at
a single pattern sample. Due to limited experiment length (real droplets are
depleted after 20 - 100 excitations), due to limited experiment reproducibil-
ity and due to limited computational resources, it will not be possible for
arbitrary long spike patterns to estimate their probability. When we enlarge
the spike pattern length l by one, the number of possible patterns 2l doubles
even though not all spike patterns will actually appear because of compar-
atively long refractory times. Nonetheless, there are methods (Panzeri and
Treves, 1996; Strong et al., 1998; Roulston, 1999; Nemenman et al., 2004) for
calculating correction terms for the limited sampling. In this paper though,
it was possible to reconstruct the information flow in the experiments and
simulations albeit using naive sampling of the appearing patterns.

Another problem of using time-delayed mutual information but also of
transfer entropy is the assumption that the cause and effect relationship,
and thus also the time delay between two droplets, would be constant in a
droplet network. This might not always be true, as we see for example in the
case of an XOR network (Escuela et al., 2013) that the direction of signal
propagation is changing with changing input patterns. Mutual information
between spike trains and external symbols should not be affected by this
effect so much, because it does not matter what generates the spike patterns
in a droplet or set of droplets.

Furthermore, due to the energy consumption of the BZ medium and the
non-equilibrium dynamics, its composition as well as its oscillation dy-
namics are constantly changing over the course of the experiment. On
the one hand, this complicates the sampling of all possible spike patterns
because it might be hard to repeat a particular situation, on the other hand
it might produce the “symptoms” of correlations between all the droplets in
the system, even though they are not really coupled by wave propagations.
But a droplet’s past is not sufficient to predict the varying next oscillation
pattern, which might lead to an erroneously measured transfer entropy.

Even though we considered only the spike trains of single droplets in the
presented examples, the information of an input signal or of intermediate
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computations might be spread over multiple droplets. In that case, only
the combined spike trains of many droplets would reproduce the complete
information. Our framework for spike pattern entropy and mutual informa-
tion is readily suited to capture this kind of information from aggregated
droplets, even though it becomes harder to sample the distribution of spike
patterns then.

When calculating the time delayed mutual information, as in Figures 4
or 5b, instead of only plotting the time delay implying the maximal mutual
information, it might be more useful to plot the complete diagram of mutual
information vs. time delay. This plot would show if an expressed peak in
the mutual information actually exists at a particular time delay. Generally,
when calculating the (time delayed) mutual information between spike trains,
many times a correlation between physically disconnected droplets can
be measured. One reason for this effect are similar oscillation periods found
in most droplets of the system, such that in a single experiment, once the
initial conditions are fixed, one droplet’s state can be predicted from another,
unconnected droplet. Another reason is, as seen in figure 6, that already the
supplied inputs cases might show some correlation.

Considering the Mutual Information of spike trains with external inputs
or with expected output values, we have shown that we can identify those
droplet that fulfill important functions in the network. But what might be
even more important, this measure is in principle independent of the used
symbol encoding scheme. This becomes more important when considering
the possibility of mixing different symbol encoding schemes in a single
system. When considering a complex task in a neuronal or droplet system,
some subtasks will be easier in one encoding scheme than in others. Hence,
we might want to mix different encoding types like rate coding or population
coding and also vary the assignments between the signals and symbols to op-
timally exploit the capabilities of the computing medium. Furthermore, for
more complex tasks, we might also suspect possible intermediate results
for the computation. In future works it might also be useful to observe the
mutual information between spike pattern distributions and these interme-
diate results for the desired computation. In this way we might even better
follow the course of the computations and gain more insights on how it is
achieved.

By following the information flow in unconventional computing systems
which are for example built from BZ droplets, we gain a deeper under-
standing of the processes that are actually happening while abstracting
away some physical peculiarities and properties of the system. So a very
similar kind of analysis should be possible in other non-BZ systems, given a
suitable discretization of the used signals. We hope that this kind of analysis
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will in future also allow a different concept for designing, specifying and
synthesizing blueprints of unconventional computing systems, based on in-
formation flow. For example, instead of using evolution with an unbiased
mutation operator to design droplet systems, we might use an evolution-
inspired system that has a bias on where to apply mutations, similar
to a tinkerer that does not know the effect of his actions but has an idea of
where the information flow is impeded.
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R. V. Solé and A. Munteanu. The large-scale organization of chemical reaction networks
in astrophysics. Europhysics Letters, 68(2):170, 2004.

M. Staniek and K. Lehnertz. Symbolic transfer entropy. Phys. Rev. Lett., 100:158101, Apr
2008.

S. Stepney. Programming unconventional computers: Dynamics, development, self-
reference. Entropy, 14(10):1939–1952, 2012.

S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck, and W. Bialek. Entropy and
information in neural spike trains. Phys. Rev. Lett., 80:197–200, Jan 1998.

G. Sugihara, R. May, H. Ye, C.-h. Hsieh, E. Deyle, M. Fogarty, and S. Munch. Detecting
causality in complex ecosystems. Science, 338(6106):496–500, 2012.

J. Szymanski, J. N. Gorecka, Y. Igarashi, K. Gizynski, J. Gorecki, K.-P. Zauner, and
M. D. Planque. Droplets with information processing ability. International Journal of
Unconventional Computing, 7(3):185–200, 2011a.

J. Szymanski, J. N. Gorecka, Y. Igarashi, K. Gizynski, J. Gorecki, K.-P. Zauner, and
M. D. Planque. Droplets with information processing ability. International Journal of
Unconventional Computing, 7(3):185–200, 2011b.

29



J. Szymanski, J. Gorecki, and M. J. B. Hauser. Chemo-mechanical coupling in reactive
droplets. The Journal of Physical Chemistry C, 117(25):13080–13086, 2013.

M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser. Transfer entropy in
magnetoencephalographic data: Quantifying information flow in cortical and cerebellar
networks. Progress in Biophysics and Molecular Biology, 105:80 – 97, 2011.

P. L. Williams and R. D. Beer. Information dynamics of evolved agents. In S. Doncieux,
B. Girard, A. Guillot, J. Hallam, J.-A. Meyer, and J.-B. Mouret, editors, From Ani-
mals to Animats 11, volume 6226 of Lecture Notes in Computer Science, pages 38–49.
Springer Berlin Heidelberg, 2010a.

P. L. Williams and R. D. Beer. Nonnegative decomposition of multivariate information.
arXiv preprint arXiv:1004.2515, 2010b.

A. N. Zaikin and A. M. Zhabotinsky. Concentration wave propagation in two-dimensional
liquid-phase self-oscillating system. Nature, 225(5232):535–537, Feb. 1970.

K. Zauner. Molecular information technology. Critical Reviews in Solid State and Material
Sciences, 30(1):33–69, 2005.

30


