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Abstract. We investigate several evolutionary computation approaches
as a mechanism to “program” networks of excitable chemical droplets.
For this kind of systems, we assigned a specific task and concentrated on
the characteristics of signals representing symbols. Given a Boolean func-
tion as target functionality, 2D networks composed of 10 × 10 droplets
were considered in our simulations. Three different set-ups were tested:
Evolving network structures with fixed on/off rate coding signals, co-
evolution of networks and signals, and network evolution with fixed but
pre-evolved signals. Evolutionary computation served in this work not
only for designing droplet networks and input signals but also to esti-
mate the quality of a symbol representation: we assume that a signal
leading to faster evolution of a successful network for a given task is bet-
ter suited for the droplet computing infrastructure. Results show that
complicated functions like XOR can evolve using only rate coding and
simple droplet types, while other functions involving negations like the
NAND or the XNOR function evolved slower using rate coding. Further-
more we discovered symbol representations that performed better than
the straight forward on/off rate coding signals for the XNOR and AND
Boolean functions. We conclude that our approach is suitable for the
exploration of signal encoding in networks of excitable droplets.

Keywords: chemical computer, droplet network, evolutionary algorithm,
excitable system, logic gate, signal encoding, symbol representation

Introduction

In an excitable medium the propagations and collisions of waves of chemical
activity can be used for computation (Adamatzky, 2001; Adamatzky et al, 2005;
Szymanski and Gorecki, 2010; Igarashi and Gorecki, 2011; Bull et al, 2013). Such
a medium could for example be accomodating the Belousov-Zhabotinsky (BZ)
reaction (Zaikin and Zhabotinsky, 1970; Noyes et al, 1972; Field et al, 1972;
Gyorgyi et al, 1990). We refer to droplets as small amounts of excitable medium
floating in oil that are covered with a layer of lipid molecules. The lipids stabilise
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the droplets against merging but still allow two adjacent droplets to communi-
cate when the lipid molecules form a bilayer similar to that of biological cells
(Aghdaei et al, 2008). Excitation waves can be transmitted through droplets but
can also interfere with one another, dependent on their timing and on the chem-
ical properties of the droplets and the medium within. Hence, droplets arranged
in a network form a potential chemical computer (Gorecki et al, 2003; Szyman-
ski et al, 2011; Adamatzky et al, 2011b,a; Holley et al, 2011). An experimental
implementation of such a droplet system is shown in Figure 1.

Here comes Figure1
While it is clearly possible to rebuild basic and combined logical gates in

excitable chemical media (Holley et al, 2011), this might not necessarily use the
capabilities of unconventional computers to their greatest extent (Gentili et al,
2012; Stepney, 2012). Nonetheless, in this work, we will evolve droplet networks
fulfilling basic logical functions because of their simplicity while exploring the
impact of different input symbol encodings. So the focus is not mainly on the
evolved functionality but rather on the varying difficulty of the evolution process.

In a droplet based computer, the spatiotemporal dynamics of the excitation
waves determine the computation, therefore the topology of the coupled droplets
plays a decisive role when “programming” such devices. Additionally we can also
look at the symbol representation in order to discover an adequate and efficient
interpretation for them. Here we refer to “programming” in the broadest sense of
specifying the desired functionality of a computing device in contrast to the typi-
cally understood exact algorithmic specification of data manipulation. Examples
for this unconventional sense of programming could be evolutionary algorithms,
functional programming languages, amorphous computing, spatial computing,
collision computing, chemical computing, membrane computing, natural com-
puting, neural computing (Banâtre et al, 2005) and liquid state machines (Maass
et al, 2002).

In this study, we consider evolutionary algorithms (Koza, 1989; Weicker,
2002; Eiben and Smith, 2008) as a mechanism to infer adequate symbol represen-
tations when building logic gates with droplet networks. Given an optimisation
problem, an evolutionary algorithm selects good individuals in a population of
solutions that changes over time via genetic operators. Starting with a randomly
generated population and guided by the fitness function, the evolutionary algo-
rithm gives us after several generations an approximating solution to the prob-
lem. The use of evolutionary algorithms to design logic gates and circuits has
been studied specially in the context of genetic programming (Koza, 1989) and
evolvable hardware (Miller et al, 2000). Also in the context of excitable media,
2D cellular automata have been evolved to fulfil binary logic fitness functions
(Stone et al, 2008).

We are not aiming at building a single droplet network design that could act
as a universal computer, solving any kind of computable problem. But it appears
feasible and useful to build droplet devices that compute results for different
instances of a problem. Therefore, given a problem instance, input data needs
to be specified in some way. This could either happen through the initial state
of the droplet system or during the runtime, most probably through external
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stimulation of certain droplets. In either way it is an important design decision
which encoding is used to feed inputs into the droplet network. Most probably
the optimal encoding will depend on a number of factors like the type of task,
the number of used symbols, parameters of the computing substrate, the applied
quality measure, and how much computation can be done outside the droplet
network to generate the encoding.

Since we cannot influence the amplitude of the excitation spikes, a list of times
at which we excite particular droplets should contain all the information that is
available to the computing droplet system. Nonetheless, different features of this
list of excitations might be of more or less importance. From the neurosciences
we know for example the coding techniques rate coding, population coding and
temporal coding (Brown et al, 2004). In the case of rate coding, the (averaged)
oscillation frequency is used to distinguish different meanings while the exact
timing of the spikes would be ignored. Population coding on the other hand
would mean that the activity of different sub-populations of droplets denoted
different meanings. For temporal coding, the precise timing differences between
excitation spikes are utilised as information carrier. These coding schemes might
be candidates for excitable droplets as well.

To find adequate symbol representations for droplet computers, we start by
considering rate coding and evolution of droplet networks that fulfil a function-
ality, given by simple Boolean functions. Similar to evolutionary algorithms or
to genetic programming the evolved droplet network topology can be seen as
the definition for a program that can be executed on the droplet computing ar-
chitecture. Then we explore the co-evolution of the droplet network topologies
with different symbol encoding options for two symbols and basic Boolean logic
functions.

Methods

Self-Exciting Droplets For the simulation studies, we are using a stochastic,
discrete state, continuous time simulation model for self-exciting droplets that
was described in (Gruenert et al, 2012b). It allows fast simulations while retain-
ing the possibility for fine-tuning of the droplet timing parameters and noise
levels. Coarsely, each droplet is simulated as being in one of three states: excited,
refractory or responsive. After being excited, droplets always stay refractory for
some time, then become responsive for some time and then can self-excite or
be triggered into the next excited state again to begin a new oscillation. The
lengths of the three phases are drawn from a truncated normal distribution in
this case. Droplets can interact in the following sense: If a droplet in the excited
state is adjacent to a responsive droplet, the responsive droplet is triggered into
an excitation as well. This means, even though the droplet would self-excite
anyway after some time, the next oscillation cycle is triggered to happen ear-
lier. When a droplet is in the excited or refractory state, it is not influenced by
its neighbours. Additionally, also drawn from a normal distribution, there is a
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signal propagation delay between an excitation and its influence on an adjacent
responsive droplet.

We also use variations of the model for less excitable droplet types, such that
at least two concurrent excitations are necessary to trigger a droplet into an
earlier excitation. Furthermore, to allow for a richer dynamic behaviour, we de-
cided to include one more droplet type that would oscillate slower. The different
oscillation period can be achieved by differently composed BZ mixtures. In this
case, all timing mean values as well as the standard deviations are multiplied by
an arbitrary factor of 3

2 .
In this study we use the following parameters: normal droplets dNorm as

well as input and output droplets are modelled with an expected oscillation
period of 16 s, which is composed of 10 s responsive time τres, 1 s excited time
τex and 5 s refractory time τref . Signal propagation delays τprop are 1 s. The
exact timing parameters for each phase are sampled using normal distributions
with a standard deviation of 0.05 s around the mean values given before. Less
excitable droplets dLowEx use the same timing distributions but require at least
two adjacent droplets to be excited at the same time to trigger an excitation.

Droplet Networks We perform in silico experiments of droplet networks in a
10 × 10 grid of simulated droplets that are connected in a Moore neighbourhood
of radius one, such that all directly adjacent cells can excite each other. These
geometric properties of the networks were chosen based on the size of networks
that can presumably be achieved experimentally by our collaboration partners
in the near future. Up to four different kinds of cells are used, which represent
empty cells, normal droplets, droplets of lower excitability and droplets with
longer oscillation periods. Furthermore, there are two fixed input droplets and
two fixed output droplets defined on the network grid. They can be used to
dynamically feed a stream of excitations into and out of the droplet network.
The positions of the input and output droplets are fixed to arbitrary values,
coarsely in the middle of the left and right hand sides of the grid, as visualised
in Figure 2(a).

Here comes Fig.2
We represent a specific droplet network instance as an n by n array:

N =


d1,1 d1,2 · · · d1,n
d2,1 d2,2 · · · d2,n

...
...

. . .
...

dn,1 dn,2 · · · dn,n


di,j ∈ {∅, dNorm, dLowEx, dSlow, dIn0, dIn1, dOut0, dOut1}

A Moore neighbourhood around each droplet di,j defines the connectivity of the
droplets, i.e. a droplet di,j is connected to a present droplet dk,l if |i− k| ≤ 1 or
if |j − l| ≤ 1.

Signal Encoding When representing binary signals by rate coding, we stim-
ulate droplets as much as possible for a symbol ’1’ and not at all for a sym-
bol ’0’. When droplets are maximally stimulated, the oscillation time will be
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τex + τref = 6 s. Normal droplets that are left alone do not stop oscillating but
their frequencies are lower with periods of τex + τref + τres = 16 s.

To allow more complex symbol representations, we use a timing pattern that
determines which input droplet is stimulated from the outside at which times
as visualized in Figure 2(b). We divide the length T of the stimulation pattern
up into m small intervals {I1...Im}, each of the length 4t = T

m . Hence, interval
Ij is defined between the times (j − 1) · ∆t and j · ∆t. Considering a single
droplet only, we define a pattern S(1) as a Boolean vector, which states if the
droplet is stimulated in the interval Ij or not. To describe meaningful symbols,
∆t should be small in comparison to a droplet’s oscillation period, resulting in
a fine temporal resolution. Meanwhile, the total length T of the symbol should
probably be long in comparison to the droplet’s oscillation to allow symbols to
consist of more than a single excitation.

S(1) = (aI1 , aI2 , ..., aIm)

ai ∈ {0, 1}, S(1) ∈ {0, 1}m, m ·∆t = T

Because typically more than one input will be used, multiple droplets will
have to be stimulated, e.g., both inputs for an XOR gate. Furthermore, thinking
about population coding, a single symbol like a logical ’1’ could affect multiple
droplets with individual stimulation patterns. In contrast, for the sake of redun-
dancy, a common stimulation pattern might be supplied to multiple droplets.
Here we use the notion of the droplet channel ci to signify a set of droplets that
receives the same stimulation pattern Sci

(1). Two droplet channels ci and cj could

now either be used as components of a single symbol or as independent inputs.
Nonetheless, in the experiments shown in this work, a symbol will only consist
of a single droplet channel.

For stimulation patterns that are composed of many channels C = {c1, c2, ..., c|C|},
we can extend the pattern definition S(1) to an array S(|C|) that stores the acti-
vation state aci,Ij of each channel ci ∈ C for each interval Ij :

S(|C|) =


ac1,I1 ac1,I2 · · · ac1,Im
ac2,I1 ac2,I2 · · · ac2,Im

...
...

. . .
...

ac|C|,I1 ac|C|,I2 · · · ac|C|,Im


Task Definition To evaluate the quality of a droplet network and of different
symbol encodings, we define Boolean functions that should be fulfilled in terms
of their truth tables. As displayed in Table 1, we tested seven different functions
with up to two input and output channels.

Here comes Table 1

Fitness Evaluation Ultimately, the aim of these experiments is to find symbols
that can be used by the network internally as input as well as for output. But
to evaluate the fitness of a droplet network for binary operations using arbitrary
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symbols, a metric that determines the similarity between an input symbol and
a recorded output excitation stream would be necessary. As discussed in Section
1, choosing an appropriate metric is not trivial. Consequently, we are evolving
complex symbol representations to feed into the network but we do not yet
expect the network to reproduce these complicated symbols as outputs. Instead
we use simple rate coding for the outputs: high activity is interpreted as symbol
’1’ and low activity as symbol ’0’. Here again, as for the rate coding input, high
activity means droplets are entering the next oscillation cycle very shortly after
leaving the refractory phase, resulting in a high spike frequency. Low activity, in
contrast, means that droplets are rarely triggered into early excitations by their
neighbours and mostly self-excite, resulting in a low spike frequency.

The evaluation is divided into distinct phases p by assigning each combination
of input symbols to one phase, resulting in four phases for two binary inputs.
Then, for each phase, we analyse the output droplet channels, i.e., the activity
on the designated output droplets, for their similarity to an expected output:
for each phase p, the system is simulated with the appropriate input signals for
a fixed time and the number of received excitations at the droplets of output
channel c are stored in ocp. We denote the maximal and minimal counted peak
numbers as omax and omin. The symbol that is expected at the output droplets
for the channel-phase pair (c, p) is referenced as õcp ∈ {0, 1} instead.

The final fitness F is influenced by two different aspects, F1 and F2, of the
output behaviour. First, the normed difference between highly activated and
less activated channel-phase pairs should be maximised to allow some kind of
discrimination. We define the difference between the maximum and minimum
peak numbers divided by the maximum peak number as F1. F1 is zero if all
peak numbers are equal and at most one when the minimum value is zero.
Second, the truth table should be fulfilled, leading to a function F2. Here, the
worst case channel-phase pair defines the overall fitness. Each channel-phase
pair peak number should lie as close as possible to the minimum or maximum
peak number, dependent on the expected output õcp. Finally, if a minimum
discriminability is exceeded and also the Boolean function is fulfilled, the distance
between minimum and maximum rates should further be expanded.

F =


F1 if F1 < 0.2

F2 + 1.0 if F1 ≥ 0.2 and F2 < 0.9

F1 + 2.0 if F1 ≥ 0.2 and F2 ≥ 0.9

(1)

F1 =
omax − omin

omax
(2)

F2 = min
c,p

{
1− ocp−omin

omax−omin
if õcp = 0

ocp−omin

omax−omin
if õcp = 1

(3)

Here comes Figure 3 Experimental Set-Up We employed an evolution strategy of the type (8/2, 30)−
ES, meaning a comma strategy with 8 parents and 30 children, running for 250
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generations where the parents of each generation are discarded. Two parents
are recombined to produce each child. The best symbol representation of each
generation of a single experiment is displayed in Figure 3. For each experiment,
we ran a batch of 50 evolutionary optimisations to build mean values. In total,
we conducted 35 experiments for all the combinations of the seven target func-
tions from Table 1 and the five experimental variations: Network only evolution
with three or four droplet types, network and signal co-evolution with three or
four droplet types and network only evolution with pre-evolved symbol represen-
tations. The symbol representation for the pre-evolved signals was taken from
the co-evolution experiment that achieved the best fitness. Using four droplet
types means using empty droplets, normal droplets, less excitable droplets and
long period droplets, while the latter is discarded for the three droplet type
experiments.

For mutating the droplet network, the probability of switching an arbitrary
position is 0.05. When using four droplet types, the probabilities for changing to
an empty cell, to a normal droplet, to a low-excitability droplet and to a long-
period droplet are 0.4, 0.4, 0.1 and 0.1 respectively. For the runs without the long
period droplet type, the remaining probabilities read 4

9 , 4
9 and 1

9 . Single point
crossover recombination is applied with an uniformly chosen position in the row-
by-row linearised representation of the droplet network. For the input signal, the
probability of switching an arbitrary position is 0.025. When a mutation occurs,
the probability for generating a ’1’ is 0.1 while a ’0’ is generated with probability
0.9. Single point crossover recombination is applied with an uniformly chosen
position.

Results

Small droplet systems of up to 100 droplets were arranged by means of evolu-
tionary algorithms to satisfy the Boolean functions Identity, OR, AND, NAND,
XOR, XNOR and half-adder. Based on differentially fast fitness increase, some
target functions are easier to evolve than others (cf. Figure 4). As observed in
(Adamatzky and Bull, 2009), the reason for this is partially the different problem
complexity and partially the properties of the computing substrate that favor
and disfavor certain kinds of tasks. In the case of our droplet computing, using

Here comes Figure 4
rate coding only, the OR and AND functions evolve fastest, followed by Identity,
XOR, the half-adder, the XNOR, and the NAND function. Nonetheless, there
is a strong qualitative transition between the XOR and the half-adder function.
The mediocre fitness of the XOR network is based on the some few evolution
runs that produced high fitness XOR networks and many non-functional ones.
The XNOR and NAND evolutions using rate coding as well as the half-adder
with any coding on the other side did not lead to a single evolution run producing
a functional network.

Despite these difficulties, even a complicated function like XOR was evolved,
even for single channel rate coding signal inputs, albeit not as fast as a simple OR
or AND function (cf. Figure 5). Interestingly, the identity function, meaning a

Here comes Figure 5
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mere connection between both inputs and outputs, is not a simple task compared
to AND or XOR when co-evolving input signals (cf. Figure 4). Apparently co-
evolving networks and symbol representations for the identity function is almost
as hard as evolving the half-adder. While using rate coding, in contrast, the
identity function evolved faster than the XOR function. Evolution with and
without the third droplet type with long oscillation periods did not significantly
change the speed or final quality of the evolution process.

A network successfully implementing the half-adder functionality did not
evolve in our experiments so far. The reason for this is most probably the diffi-
culty of crossing over two connections in the two dimensional lattice of droplets.
A half-adder network could be implemented by an XOR gate together with an
AND gate, each of which evolved comparatively easy. But to construct the half-
adder from the two gates, both inputs would have to be available to each of the
gates. Thus at least one of the input signals would need to cross over another
one. While we do not exclude the possibility of a signal crossing over another
one given a suitable construction of a droplet system and a fitting symbol en-
coding, we did not observe such a system in our experiments. At least when
trying to evolve a rate coding identity function with two inputs and two outputs
while crossing over the outputs, the fitness dropped dramatically, such that no
satisfying solution has evolved.

Here comes Figure 6
Shown in Figure 6, at least in the case of the AND and XNOR functions, pre-

evolved signals exist (cf. Figure 7) that are clearly leading to a faster evolution
of droplet networks than simple rate coding. Here droplet networks and signals
were originally co-evolved. Then, one of the best evolved symbol representations
was used consistently through a full network-only evolution run.

Here comes Figure 7
The evolved symbols look similar (cf. Figure 7(a)) to rate coding signals but

most probably allow for a better synchronization of arriving spikes. While a sin-
gle activation peak remained for the ’0’ symbol, it had no obvious influence on
the fitness of the symbol. The synchronization of spikes seems to be important
considering that a low excitability droplet is only activated by other droplets,
when two spikes arrive in a narrow time window. The length of the window used
in our experiments was one second. So while a constant activation, using rate
coding symbols, leads to the highest frequency of spikes in the input droplets,
the phase of both input droplet oscillations can randomly drift and is dependent
on the initial conditions. When using a slightly lower activation rate instead,
the phases of both input droplets are controlled by the stimulation, leading to
a higher number of concurrent spikes arriving at low excitability droplets. This,
in turn, leads to a higher influence of the low excitability droplets on further
droplets in the network. We tested an evolved droplet network and stimulated it
with a rate coding symbol, a co-evolved symbol and with an additionally engi-
neered symbol. The engineered symbol includes no stimulated at all for symbol
’0’ and regular spike every seven seconds for symbol ’1’. With this spike pattern,
the engineered symbol reaches very similar input and output average spike rates
compared to the evolved symbol. The measured spike frequencies are summa-
rized in Table 2.

Here comes Table 2



Symbol Representations and Signal Dynamics in Evolving ... 9

A further extreme rise in evolution efficiency was observed for the NAND
function. However, this is most probably only due to a crosswise substitution of
the signals for symbols ’0’ and ’1’, such that the problem is reduced to a rate
coded OR function. Functions that involve a mapping from symbol ’0’ to low
activity like the XNOR, and NAND functions seemed more difficult with pure
rate coding. This problem of inverting signals should easily be resolved when
using multi-channel symbol representations that would supply a high and a low
activity channel for each symbol. Problems that did not benefit significantly
from pre-evolved symbol representations were the OR, the XOR, the Identity
function and the half-adder. Nonetheless, the pre-evolved symbols never led to
worse evolution trajectories in our experiments.

Discussion and Future Work

Besides designing droplet network structures and symbol encodings, evolutionary
algorithms also served another purpose in this work: To some extent, evolution-
ary algorithms also offer a measure of complexity, telling us whether a problem
is simple or hard to solve (Adamatzky and Bull, 2009). Or, given two distinct
symbol encodings, which of them makes searching for a solving network structure
easier.

A straight forward construction of two adequate symbols, representing ’0’
and ’1’, might be to maximise the distance between them. The problem here is
to define the distance metric that would heavily influence the result of the max-
imisation. Ideally these experiments would only depend on the properties of the
computing substrate itself and not on arbitrary definitions that are put in from
the outside. But any kind of metric like the Hamming distance or the spike train
similarity measures from the neurosciences (Dauwels et al, 2008) seem sensible
but artificial with respect to the computing droplet substrate. A meaningful al-
ternative would be to run a nested evolution of a droplet network simulation
as distance metric - the easier it is to evolve a network that discriminates both
signals, the larger the distance between both symbols. Still, the computational
efforts for a single evaluation of the fitness function appear immense. This led us
to the different approach of co-evolving signals and droplet networks for simple
binary problems at first.

Even though simple logic functions were evolved here, the automatic con-
struction of larger, more complex systems might be hard, especially when fitness
functions cannot provide enough gradient for the optimisation algorithm to fol-
low. The “multi-step” fitness functions that we used in Equation 1 tries to focus
different aspects of generating the network functions at different times, depen-
dent on how close to perfect the solution is. But since it is generally impossible
to find all non-dominated solution candidates by mapping multiple fitness crite-
ria onto a single scalar value, we will move on to using Pareto optimisation for
future experiments (Schaffer, 1985; Zitzler et al, 2004).

Generally the influence of the droplet network dimensions should be interest-
ing - especially how few droplets can generate the sought-after behaviour, what
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number of droplet species are essential, is there a preferential length for droplet
signal patterns and how many input channels should be used per symbol? For
this purpose, we will also consider population coding (Pouget et al, 2000; Aver-
beck et al, 2006) in forthcoming experiments. Also the aspect of robustness has
not yet been in the focus of this work. Nonetheless it appears important if a
droplet network and symbol representation led to a high score accidentally or
if the performance can be sustained under different initial conditions and with
noise.
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Figure Legends

Fig. 1. Experimental droplet system made from manually aligned droplets of a
Belousov-Zhabotinsky medium, taken from Gruenert et al (2011). In the bright red
state, the medium is resting and transparent/white excitation waves propagating be-
tween droplets can be observed. Even though droplets remained relatively stable, a
merger between the central two droplets is shown in the third frame.
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Fig. 2. Individuals for the Evolutionary Algorithm, taken from Gruenert et al (2012a):
(a) Rendering of an evolved 10 × 10 droplet network instance. Each square represents
a droplet on a two dimensional array. Not all positions of the array are filled with
droplets. Horizontally, diagonally and chequered striped circles represent normal, less
excitable and long period droplets respectively. The input droplets (di1, di2) and output
droplets (do1, do2) on arbitrarily fixed positions are indicated by arrows. Touching
droplets can excite each other, defining the connectivity for the droplet simulation.
(b) Example of two symbols that evolved together with a network instance to realise
the XOR function. The lower row of the image represents symbol ’0’ while the upper
row represents symbol ’1’. Time advances left to right over 100 frames with a time
step of 0.5 s, leading to a total length of 50 s per symbol. The input droplets are
stimulated only in the intervals that are represented by white vertical bars and are left
alone where the black vertical bars are rendered. The symbols are fed into the droplet
network repeatedly, recapitulating the stimulation pattern every 50 s. At least three
oscillation cycles are completed per symbol repetition because the simulated droplets’
self-excitation periods are around 16 s. Since droplets are modelled with refractory
times, not every white stimulation bar will actually lead to an excitation in the droplet
but can as well be disregarded in the droplets refractory phases, especially when two
excitations follow each other closely.
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(a) Symbol ’0’

(b) Symbol ’1’

Fig. 3. Evolutionary trajectory of two symbol representations over 250 generations
co-evolution with a droplet network (Gruenert et al, 2012a). The y-axis denotes the
evolutionary generation while the x-axis represents the stimulation interval for each
fitness evaluation similar to the signal plot in Figure 2(b). The regularities that can be
observed along the x-axis in both graphics are not evolved regularities but result from
the repetition of the pattern: As the pattern of 100 intervals is fed into the simulator
during fitness evaluation in a repeated manner, three repetitions of the input signal
are plotted over 300 time frames.
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(a) Network only Evolution
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(b) Network and Signal Coevolution

Fig. 4. Average fitness of population’s best individual over 50 experiments for evolving
different target functions from Table 1, taken from Gruenert et al (2012a). Error bars
indicate the standard error of the mean. Generally, all fitness values are lower for
the signal and network co-evolution because of the higher dimensional search space.
Exceptions are those functions that benefit from a simple swapping of rate coding
signals, i.e. the NAND and XNOR functions.
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Fig. 5. Activity plot of an evolved XOR network using different stimulations at the
red input droplets on the left side of the network. The nodes in the network represent
input droplets (red), output droplets (blue), normal droplets (gray) and less excitable
droplets (green). The arrows in the picture describe the impact of other droplets for
the excitations of each droplet. While a strong loop arrow on top of a droplet means
that the droplet mostly self-excited, an arrow from a neighbouring droplet means that
it was excited by this neighbour many times. While an input of (0,1) or (1,0) leads
to a cyclic propagation of pulses through the network in either clockwise or counter-
clockwise direction, no excitation at all (0,0) or full stimulation (1,1) results in pulses
that propagate from the left to the right. The cyclic propagation results in a higher
total spike rate arriving at the blue output droplet as thinner self-excitation loop on top
of the output droplet can be observed. Hence, the droplet network fulfils the function
of an XOR gate when used with rate coding inputs.
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Fig. 6. Average fitness of populations’ best individual over 50 experiments for evolving
the AND function using rate coding, co-evolution and pre-evolved symbol representa-
tion Gruenert et al (2012a). Error bars indicate the standard error of the mean. For
the rate coding and co-evolution experiments, two curves are plotted: The correspond-
ing simulations ran with and without the long period droplet types, but no significant
difference was observed.
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Fig. 7. Evolved symbol representations for the AND and the XNOR functions that
performed better than rate coding, taken from Gruenert et al (2012a). (a) While the
AND symbol looks very similar to rate coding symbols, there is one peak included for
symbol ’0’ that might serve as a helper for synchronisation. (b) For the XNOR signals,
both symbols are represented by a series of about 30 seconds activation followed by ca.
20 s rest. The difference between both symbol representations could be either in the
shift of the active phases of about 10-20 s or in the exact pattern of each signal.
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Tables

Input
Task 0 0 0 1 1 0 1 1

Expected
Output
õcp

Identity 0 0 0 1 1 0 1 1
OR 0 1 1 1
AND 0 0 0 1
NAND 1 1 1 0
XOR 0 1 1 0
XNOR 1 0 0 1
Half-adder 0 0 1 0 1 0 0 1

Table 1. Boolean functions that were used as fitness criteria in evolution. Two input
and up to two output channels were used.

Average Spike Frequency [spikes/second]
Rate Coding Evolved Symbol Engineered Symbol

Symbol ’0’ Input
Droplet

0.067 0.067 0.067

Symbol ’1’ Input
Droplet

0.167 0.140 0.143

Supposedly Active
Output Droplet

0.086 0.139 0.138

Supposedly In-
active Output
Droplet

0.064 - 0.067 0.64 0.064 - 0.066

Table 2. Summary of the spike frequencies measured in an evolved AND network when
stimulated with rate coding, evolved and an engineered symbol input. The engineered
symbol did not produce any stimulation for symbol ’0’ and a regular spike pattern of
a spike every seven seconds for symbol ’1’.
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