Consider addition of the following numbers:

\[
\begin{align*}
\cdots & a_{k+2} a_{k+1} a_k 010101 \ a_{l+2} a_{l+1} a_l \cdots \\
\cdots & b_{k+2} b_{k+1} b_k 101010 \ b_{l+2} b_{l+1} b_l \cdots
\end{align*}
\]

- If \(a_{k+3} = 1 \) \(\rightarrow \) carry will propagate to position \(k \)
- To speed-up operation, propagation is skipped to position \(i \) without waiting for rippling.
- Operation time varies according to operands as in carry-complete addition.
- To implement carry-skip adder, stages are divided into blocks.

The carry-skip adder diagram shows the flow of propagation and skipping. Carry-skip logic is added to each block to detect when carry-in the block can be passed directly to the next block.

Define the carry transfer:

\[
T_i = a_i + b_i
\]

Carry skipping can be detected for a block size of \(m \) as follows (carry propagates through all stages):

\[
T_j \cdot T_{j+1} \cdots T_{j+m-1} = 1 \quad (= (a_j + b_j) \cdot (a_{j+1} + b_{j+1}) \cdots)
\]

- Note: This takes into account both propagated and generated carries.
- Carry out from the block (\(m \)-bits in a block) is:

\[
\frac{T_j \cdot T_{j+1} \cdots T_{j+m-1} \cdot c_j + c_{j+m}}{skipped \quad generated}
\]
• block size in carry-skip adder is very important

• worst case operation time takes place when
 – carry is generated in the first block
 – carry skips intermediate stages
 – carry is killed in the last block

• worst case addition time is \(\left(\frac{2n}{m} + 4m - 4 \right) \tau \) (\(n=\)adder width, \(m=\)block size)

• for optimal block size, minimize delay:
 \[
 \frac{d}{dm} \left(\frac{2n}{m} + 4m - 4 \right) = -2 \left(\frac{n}{m^2} - 2 \right) \\
 \Rightarrow m = \sqrt{\frac{n}{2}}
 \]

• in practise, non-uniform block sizes gives the best performance

• in general, outer blocks should be smaller than middle blocks