The Monge-Ampère equation

D. Gallistl

Some accompanying problems for the lecture in Winter 2022/23 at U Jena

Problem 1. Let $u \in C\left(\mathbb{R}^{n}\right)$ be convex and let $\varphi \in C^{2}\left(\mathbb{R}^{n}\right)$ such that $u-\varphi$ has a local maximum at $x_{0} \in \mathbb{R}^{n}$. Prove that $D^{2} \varphi\left(x_{0}\right) \geq 0$.
Hint: Let $p \in \mathbb{R}^{n}$ define a supporting hyperplane to u at x_{0}. Use the second-order Taylor expansion of φ to conclude that $p=\nabla \varphi\left(x_{0}\right)$. Then conclude with the expansion that $D^{2} \varphi\left(x_{0}\right) \geq 0$.

Problem 2. Prove that the definition of viscosity subsolutions from the lecture remains the same if we replace the assumption that $u-\varphi$ has a maximum at x_{0} by the stronger condition that $u-\varphi$ has a strict maximum at x_{0}.
Hint: Given φ, add $r\left|x-x_{0}\right|^{2}$ to φ, use the assumed "stronger" solution property and let $r \rightarrow 0$ at the end.

Problem 3. Let $\Omega \subseteq \mathbb{R}^{n}$ be open and bounded, let $f \in C(\Omega)$ with $f \geq 0$ be given, and let $u \in C(\bar{\Omega})$ be a viscosity subsolution to $\operatorname{det} D^{2} u=f$ in Ω. Suppose $v \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is convex and satisfies $\operatorname{det} D^{2} v \leq g$ in Ω for some $g \in C(\Omega)$ with $g<f$ in Ω. Prove that

$$
\max _{\bar{\Omega}}(u-v)=\max _{\partial \Omega}(u-v) .
$$

Formulate an analogous (symmetric) property for viscosity supersolutions.
Hint: Assume for contradiction that the max is assumed inside Ω.
Problem 4 (jets). The second-order super-jet of a continuous function u at $x \in \mathbb{R}^{n}$ is defined as
$J^{2,+} u(x):=\left\{(p, X) \in \mathbb{R}^{n} \times \mathbb{S}^{n}: u(x+z) \leq u(x)+p \cdot z+\frac{1}{2} z^{T} X z+o\left(|z|^{2}\right)\right.$ as $\left.z \rightarrow 0\right\}$.
(1) Prove that

$$
J^{2,+} u(x)=\left\{\left(\nabla \varphi(x), D^{2} \varphi(x)\right): \varphi \in C^{2}\left(\mathbb{R}^{n}\right) \text { and } u-\varphi \text { has a local max at } x\right\} .
$$

(2) Prove that $u \in C(\Omega)$ is a subsolution to the Monge-Ampère equation if and only if

$$
\inf _{(p, A) \in J^{2},+u(x)} \operatorname{det} D^{2} A-f(x) \geq 0 \quad \text { for all } x \in \Omega
$$

Problem 5 (geometric-arithmetic mean inequality). Prove that any real numbers $x_{1}, \ldots, x_{n} \geq 0$ satisfy $\prod_{j} x_{j}^{1 / n} \leq n^{-1} \sum_{j} x_{j}$. Prove that equality holds if and only if all x_{j} coincide. Hint: Concavity of \log and Jensen's inequality.

Problem 6 (elementary). Let $A, B \in \mathbb{S}$. (1) Prove that $A=\sum_{j} \lambda_{j} v_{j} \otimes v_{j}$ for the eigenvalues λ_{j} and unit eigenvectors v_{j}. (2) Prove that $A: B=\operatorname{tr}(A B)$.

Problem 7. Decide which of the following functions $u: \mathbb{B}_{1}(0) \rightarrow \mathbb{R}$ over the unit ball $B_{1}(0) \subseteq \mathbb{R}^{n}$ are viscosity sub/supersolution to $\operatorname{det} D^{2} u=0$:

- $u(x)=1$
- $u(x)=|x|^{2} \quad$ (squared Euclidean norm)
- $u(x)=\left|x_{1}\right| \quad$ (absolute value of the first component)
- $u(x)=|x| \quad$ (Euclidean norm)
- $u(x)=-\cos \left(x_{1}\right)$
- $u(x)=-\cos \left(50 x_{1}\right)$

Problem 8. Let \mathcal{A} be a family of affine functions over \mathbb{R}^{n}. Prove that $\sup \mathcal{A}$ is a convex.

Problem 9. Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Prove that u is locally Lipschitz continuous. Instruction (if needed): To show Lipschitz continuity near $x_{0} \in \Omega$, let $B_{2 r}\left(x_{0}\right) \subseteq \Omega$ be an open ball with $x, y \in B_{r}\left(x_{0}\right)$ and define $z:=x+\alpha(x-y)$ with $\alpha=r /(2|x-y|)$. Show $x=(1+\alpha)^{-1} z+\alpha(1+\alpha)^{-1} y$ and use this result to first estimate $f(x)-f(y) \leq$ $(\alpha+1)^{-1}(f(z)-f(y))$ and then establish the Lipschitz bound. Prove the estimate for $|f(x)-f(y)|$ by interchanging the roles of x, y.

Problem 10. Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ have the property that for any $x \in \mathbb{R}^{n}$ and any $\varphi \in C^{2}\left(\mathbb{R}^{n}\right)$ such that $u-\varphi$ has a local maximum at x, there holds $D^{2} \varphi(x) \geq 0$. Prove that u must be convex.
Hint: You may restrict your attention to $n=1$. Assume for contradiction that u is not convex and construct a non-convex φ touching from above at x.

