Pseudoklausur 1

Dieser Selbsttest enthält realistische Klausuraufgaben, allerdings mehr Material, als in einer 90-minütigen Klausur Platz findet. Richtwert wären etwa 4 Aufgaben.

Erlaubte Hilfsmittel: Alles in Papierform (Bücher, Skript, Notizen, ...)

Aufgabe 1 (6 Punkte). Beweisen Sie, dass die Iteration

$$x_{k+1} = x_k - \frac{x^2 - 2}{10}$$

für jeden Startwert $x_0 \in (0,5)$ gegen den Grenzwert $x_* = \sqrt{2}$ konvergiert. Beweisen Sie, dass für beliebiges $\delta \in (0,\frac{1}{10})$ die asymptotische lineare Konvergenzrate mindestens $1 - \sqrt{2}/(5+\delta)$ beträgt.

Aufgabe 2 (6 Punkte). Gegeben sei das lineare Gleichungssystem Ax = b mit $A = \begin{bmatrix} 5 & 0 & 1 \\ 2 & 4 & 0 \\ 0 & 1 & 4 \end{bmatrix}$ und $b \in \mathbb{R}^3$.

- (i) Zeigen Sie: $A 5I_{3\times 3} = M$ mit $M = \begin{bmatrix} 0 & 0 & 1 \\ 2 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$.
- (ii) Beweisen Sie, dass die Iteration $x_{k+1} = \frac{1}{5}b \frac{1}{5}Mx_k$ für jeden Startwert x_0 gegen die Lösung x konvergiert.

Aufgabe 3 (6 Punkte). Gegeben sei das Intervall [a, b] mit a = 0 und b = 3 mit den Punkten $x_0 = 0$, $x_1 = 1$, $x_2 = 3$.

- (i) Geben Sie die Lagrange-Basis von P_2 bezüglich dieser Punkte an.
- (ii) Geben Sie die Gewichte $\alpha_0, \alpha_1, \alpha_2$ für eine Quadraturformel $\tilde{I}(f) = \sum_{j=0}^{2} \alpha_j f(x_j)$ an, die alle quadratischen Polynome $f \in P_2$ exakt integriert.

Aufgabe 4 (6 Punkte). (i) Geben Sie eine Orthonormalbasis des Raumes der $P_1([0,1])$ der Polynome ersten Grades über [0,1] bezüglich des Skalarprodukts $(f,g) := \int_0^1 f(t)g(t) dt$ an.

(ii) Gegeben sei f durch $f(x) = 24x^2 - 24x + 6$. Berechnen Sie die beste Approximation von f in $p \in P_1([0,1])$ bezüglich der Norm $||g|| := \sqrt{(g,g)}$.

Aufgabe 5 (6 Punkte). Gegeben jeweils eine kurze Antwort mit Beweis oder Gegenbeispiel.

- 1. Wahr oder falsch? Das Newton-Verfahren konvergiert für beliebige Startwerte.
- 2. Wie viele Quadraturpunkte reichen aus, um alle Polynome des Grades 6 exakt zu integrieren?
- 3. Ist die Polynominterpolation durch Polynome des Grades n eine stetige Operation von C([-1,1]) nach C([-1,1]) unter der Maximumnorm? Wenn ja: Hängt die Stetigkeit von quantitativ n ab? Wenn nein: Welche andere Norm garantiert Stetigkeit?
- 4. Wahr oder falsch? Ist der Spektralradius $\rho(M)$ einer symmetrischen Matrix M gleich 1, so konvergiert $\|M^k\|$ für $k \to \infty$ unter keinen Umständen gegen 0.
- 5. Wir betrachten die beiden linearen Funktionale F, G über dem Raum C([0,1]) der stetigen Funktionen auf [0,1]:

$$F: f \mapsto \int_0^1 f(t) dt$$
 und $G: f \mapsto \frac{1}{6}f(0) + \frac{2}{3}f(\frac{1}{2}) + \frac{1}{6}f(1)$.

Sind F, G

- als lineare Funktionale über C([0,1]) linear unabhängig?
- als lineare Funktionale über dem Raum der quadratischen Funktionen über [0, 1] linear unabhängig?