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1. Galerkin method

§1. Closed range theorem and Banach–Babuška–Nečas lemma

We want to characterize isomorphisms between certain Banach spaces. We start by recalling a
version of the Hahn–Banach theorem from linear functional analysis.

Theorem 1.1 (Hahn–Banach). Let M ⊆ X be a subspace of the normed linear space (X, ‖ · ‖X)
and let f ∈M∗. Then there exists F ∈ X∗ such that F |M = f and ‖F‖X∗ = ‖f‖M∗.

Proof. This is taught in any class on linear functional analysis.

As a consequence, we note the following fundamental separation property.

Theorem 1.2 (separation). Let M ⊆ X be a closed subspace of the Banach space X and let
z ∈ X \ M be a point outside M . Then there exists F ∈ X∗ with ‖F‖X∗ = 1 that satisfies
F |M = 0 and F (z) = dist(z,M).

Proof. We construct the linear functional f on M̃ = M + span{z} by

f(y + αz) = α dist(z,M) for any y ∈M,α ∈ R.

We compute
|f(y + αz)| ≤ |α| dist(z,M) ≤ |α| ‖z + α−1y‖X = ‖αz + y‖X

which shows continuity of f , that is, f ∈ M̃∗ and ‖f‖M̃∗ ≤ 1. By the definition of the distance
and the closedness ofM , we have that, given any ε > 0, there exists yε ∈M such that ‖z−yε‖X ≤
(1 + ε) dist(z,M) such that f(z− yε) ≥ (1 + ε)−1‖z− yε‖X . Thus, ‖f‖M̃∗ ≥ 1. We now apply the
Hahn–Banach theorem to M̃ and f , which shows the existence of the claimed extension F .

We use the notation 〈f, v〉 = f(v).

Definition 1.3 (annihilator, polar set). Let X be a Banach space with a subspace V ⊆ X and
let U ⊆ X∗ be a subspace of its dual. We define the annihilator of V by

V ◦ := {f ∈ X∗ : 〈f, v〉 = 0 for all v ∈ V } ⊆ X∗

and the polar set of U by

◦U := {x ∈ X : 〈u, x〉 = 0 for all u ∈ U} ⊆ X.

�

We have the following elementary property.

Lemma 1.4 (characterization of the closure). Let V ⊆ X be a subspace of a Banach space X.
Then ◦(V ◦) = V .
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Proof. The space ◦(V ◦) is the intersection of kernels of continuous linear operators and is therefore
closed. The definitions imply that any x ∈ V satisfies x ∈ ◦(V ◦). Since ◦(V ◦) is closed we therefore
have V ⊆ ◦(V ◦). By the separation theorem, any z /∈ V can be separated from ◦(V ◦), i.e., there
exists F ∈ V ◦ with F (z) 6= 0, whence z /∈ ◦(V ◦). This shows the claimed equality of spaces.

We recall that for Banach spaces X and Y and a continuous linear map L : X → Y the dual
L∗ : Y ∗ → X∗ is defined by

L∗(F ) = 〈F,L ·〉 ∈ X∗.

We recall the closed range theorem. We denote by L(X,Y ) the space of bounded and continuous
maps from X to Y .

Theorem 1.5 (closed range theorem). Let L ∈ L(X,Y ) be a continuous linear map between
Banach spaces X and Y . The range L(X) is closed in Y if and only if L(X) = ◦(kerL∗).

Proof. We have f ∈ kerL∗ if and only if 〈f, Lx〉 = 0 for all x ∈ X, which means f ∈ L(X)◦. We
apply the foregoing lemma to the space kerL∗ = L(X)◦ and conclude the proof.

The main application of the closed range theorem for our purposes is the characterization of
solvability of operator equations. Recall that a Banach space Y is called reflexive if the map

J : Y → Y ∗∗, Y 3 y 7→ 〈·, y〉

from Y to its bidual Y ∗∗ is an isomorphism.

Lemma 1.6 (Banach–Babuška–Nečas lemma). Let X be a Banach space and let Y be a reflexive
Banach space. A linear map L : X → Y ∗ is an isomorphism if and only if the following three
conditions are satisfied:

(1) Continuity: ‖Lx‖Y ∗ ≤ C‖x‖X for a constant C > 0 and all x ∈ X.

(2) There exists γ > 0 such that for all x ∈ X

γ‖x‖X ≤ ‖Lx‖Y ∗ .

(3) For every nonzero y ∈ Y \ {0} there exists some x ∈ X such that 〈Lx, y〉 6= 0.

Proof. Let conditions (1)–(3) be satisfied. Then, by (1), L is continuous and, by (2), it is injective
because Lx = 0 implies x = 0. Hence, L is bijective as a map from X to its range L(X). The
inverse L−1 : L(X)→ X is continuous because, by (2),

‖L−1z‖X ≤ γ−1‖LL−1z‖Y ∗ = γ−1‖z‖Y ∗ .

The continuity of L and L−1 implies that L(X) is closed. The closed range theorem then teaches

L(X) = ◦(kerL∗) ⊆ Y ∗. (1.1)

Let us write down the polar set of kerL∗ ⊆ Y ∗∗ explicitly:

◦(kerL∗) := {v ∈ Y ∗ : 〈u, v〉 = 0 for all u ∈ kerL∗}.

We furthermore observe from the definition of L∗ that

u ∈ kerL∗ ⇐⇒ 〈L∗u, x〉 = 0 for all x ∈ X ⇐⇒ 〈u, Lx〉 = 0 for all x ∈ X.
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Since Y is reflexive, we see that

u ∈ kerL∗ ⇐⇒ 〈Lx, J−1u〉 = 0 for all x ∈ X

for J−1u ∈ Y and the isomorphism J . Property (3) therefore implies that J−1u = 0 and so
kerL∗ = {0}. By (1.1), we then have that L(X) = Y ∗. Thus, L is an isomorphism.
The proof of the converse direction is immediate and left as an exercise to the readers.

Condition (2) of Lemma 1.6 is often called the inf-sup condition because γ can be represented
as

γ = inf
x∈X\{0}

sup
y∈Y \{0}

〈Lx, y〉
‖x‖X‖y‖Y

.

§2. Quasi-optimality of the Galerkin method

We consider the situation of a Banach spaceX and reflexive Banach space Y ∗. Suppose and x ∈ X
and f ∈ Y ∗ satisfy Lx = f . In any practical simulation we need to approximate the infinite-
dimensional spaces X and Y . Suppose we are given closed subspaces Xh ⊆ X and Yh ⊆ Y with
the inclusion mappings ιX and ιY . Then the Galerkin method is to find xh ∈ Xh such that Lxh
equals f when restricted to test functions of Yh.

Theorem 1.7 (Galerkin method). Consider a Banach space X and reflexive Banach Y with
closed subspaces Xh ⊆ X and Yh ⊆ Y with L ∈ L(X,Y ∗) and let x ∈ X solve Lx = f for some
f ∈ Y ∗. Assume that there exists γh > 0 such that

γh ≤ inf
ξh∈Xh\{0}

‖Lξh‖Y ∗h
‖ξh‖X

and that for any yh ∈ Yh \{0} there exists ξh ∈ Xh with 〈Lξh, yh〉 6= 0. Then there exists a unique
solution xh ∈ Xh to ι∗Y Lxh = ι∗Y f . It satisfies the error bound

‖x− xh‖X ≤ (1 +
‖ι∗Y L‖L(X,Y ∗)

γh
) inf
zh∈Xh

‖x− zh‖X .

Proof. The existence and uniqueness of xh follow from the Banach–Babuška–Nečas lemma. For
any zh ∈ Xh we have that

γh‖zh − xh‖X ≤ ‖L(zh − xh)‖Y ∗h = sup
yh∈Yh\{0}

〈L(zh − xh), yh〉
‖yh‖Y

. (1.2)

Since 〈Lxh, yh〉 = 〈f, yh〉 from the solution property of xh, we deduce from the continuity of L
that

γh‖zh − xh‖X ≤ ‖ι∗Y L‖L(X,Y ∗)‖〈L(zh − x), yh〉‖.

The asserted bound follows from the triangle inequality ‖x − xh‖X ≤ ‖x − zh‖X + ‖zh − xh‖X
and the infimum over zh.

The main application is that Xh and Yh are finite-dimensional. Condition (1.2) is then called
the discrete inf-sup condition. The nondegeneracy assumption means that the spaces have the
same dimension. In practice, we think of h being a mesh parameter that increases the resolution
by being decreased. The error bound for the Galerkin method is proportional to γ−1

h and, therefor,
it is important to have the inf-sup condition uniformly in h.
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Example 1.8. In variationally formulated and coercive PDEs over a Hilbert space X we choose
X = Y and a bilinear form a : X × X → R. It induces a linear operator L : X → X∗ by
x 7→ a(x, ·). Given f ∈ X∗, the equation Lx = f then means

a(x, y) = 〈f, y〉 for all y ∈ X.

For Xh ⊆ X as above, the discrete equation ι∗Y Lxh = ι∗Xf means

a(xh, yh) = 〈f, yh〉 for all yh ∈ Xh

and should be familiar to the reader from previous elementary courses. As the most important
example we mention X = H1

0 (Ω) as the usual Sobolev space over a suitable domain Ω and the
form a related to an elliptic second-order operator. The above theorem then resembles Céa’s
lemma.

§3. Saddle-point problems in reflexive spaces

Minimization of functionals subject to linear constraints can be re-formulated with Lagrange
multipliers. The usual (formal) derivation of a necessary condition of

minimize
1

2
〈Au, u〉 − 〈f, v〉 over V subject to Bu = 0

is to introduce a Lagrange multiplier p ∈M such that

Au+B′u = f

with an adjoint operator B′ := B∗JM . We want to study the well-posedness of such formulations.
In this situation, we are given a product spaces X = V ×M where the operator L has block
structure. Given F ∈ V ∗ and G ∈M∗, a so-called saddle-point problem has the format

L

[
u
p

]
:=

[
A B′

B 0

] [
u
p

]
=

[
F
G

]
. (1.3)

The conditions of the Banach–Babuška–Nečas lemma can equivalently formulated as conditions
on A and B. We are given a bounded linear B operator that is not surjective but has a bounded
inverse on its range. In finite dimensions, these are the full rank rectangular matrices. We want
to study analogous mapping properties in reflexive Banach spaces.

Lemma 1.9. Let V and M be reflexive Banach spaces and B ∈ L(V,M∗), with Z := kerB,
satisfy

0 < β = inf
µ∈M\{0}

‖B∗JMµ‖V ∗
‖µ‖M

. (1.4)

Then, B∗JM : M → Z◦ is an isomorphism with ‖(B∗JM )−1‖L(Z◦,M) ≤ β−1.

Proof. We observe that the range of B∗JM is indeed a subset of Z◦ because 〈B∗JMµ, z〉 =
〈Jµ,Az〉 = 0 for any µ ∈ M and any z ∈ Z. By the above assumptions, B∗JM is continuous
(property (1) of Lemma 1.6) and (1.4) implies that property (2) of Lemma 1.6 is satisfied. As in
the proof of Lemma 1.6 we therefore see that B∗JM and its inverse are continuous. The closed
range theorem then shows

B∗JM (M) = ◦(ker((B∗JM )∗)).
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It is direct to verify
u ∈ ker((B∗JM )∗) ⇐⇒ J−1

V u ∈ Z.

Thus the range equals Z◦ and we have established the isomorphism. The bound on the norm is
left as an exercise.

Brezzi’s splitting theorem performs block elimination in the above system. It is our main
criterion for saddle-point problems.

Theorem 1.10 (Brezzi splitting). Let V and M be reflexive Banach spaces and B ∈ L(V,M∗),
with Z := kerB. The operator

L : X → X∗ with X = V ×M

from (1.3) is an isomorphism if and only if A is an isomorphism from Z to Z∗ with

0 < α = inf
z∈Z\{0}

‖Az‖Z∗
‖z‖X

and B satisfies the inf-sup condition (1.4). Given F ∈ V ∗ and G ∈ M∗, the unique solution
(u, p) ∈ V ×M to (1.3) block satisfies

‖u‖V ≤ α−1‖F‖V ∗ + β−1(1 +
CA
α

)‖G‖M∗ ,

‖p‖M ≤ β−1(1 +
CA
α

)‖F‖V ∗ + β−1(1 +
CA
α

)
CA
β
‖G‖M∗ .

Here, CA = ‖A‖L(V,V ∗).

Proof. We have seen in the previous lemma that B∗JM : M → Z◦ is an isomorphism, and so is
(B∗JM )∗ : (Z◦)∗ → M∗ with the same continuity constant for the inverse. Hence, for the given
G ∈ M∗ there exists η ∈ (Z◦)∗ with (B∗JM )∗η = G with ‖η‖(Z◦)∗ ≤ β−1‖G‖M∗ . We denote by
η̂ ∈ V ∗∗ the Hahn–Banach extension of η that coincides with η on Z◦ and has the same norm.
Then, the element u0 := J−1

V η̂ satisfies for any µ ∈M that

〈Bu0, µ〉 = 〈JMµ,Bu0〉 = 〈B∗JMµ, u0〉 = 〈B∗JMµ, J−1
V η̂〉 = 〈η̂, B∗JMµ〉 = 〈(B∗JM )∗η, µ〉 = 〈G,µ〉.

Hence, Bu0 = G with ‖u0‖V ≤ β−1‖G‖M∗ . Upon defining w := u − u0, we reformulate the
original problem into

Aw +B′p = F −Au0

Bw = 0.

We restrict the first equation to Z and obtain from the assumed isomorphism property of A that
there exists a unique w ∈ Z satisfying

ι∗ZAw = ι∗Z(F −Au0)

with ‖w‖V ≤ α−1(‖F‖V ∗ +Ca‖u0‖V ). Here, ιZ is the inclusion of Z to V (this notation is short,
but not consistent with the above one).
Since F −A(u0 + w) ∈ Z◦, the foregoing lemma yields the existence of p ∈M with

B′p = F −A(u0 + w)

7



and
‖p‖M ≤ β−1(‖F‖V ∗ + Ca‖u0 + w‖V ).

Hence, u := u0 +w and p solve the saddle-point problem. The asserted norm bounds follow from
directly tracing the constants in the above estimates. The proof of the converse statement is left
as an exercise.

Remark 1.11. The saddle-point problem is encountered more often in a variational form in the
literature and reads as

a(u, v) + b(v, p) = F (v) for all v ∈ V
b(u, q) = G(q) for all q ∈M

for bounded bilinear forms a : V × V → R and b : V ×M → R. This is of course equivalent to
the above formulation. Indeed, we see that Au := a(u, ·) ∈ V ∗ and Bu := b(u, ·) ∈M∗. It is easy
to check that B′µ then equals b(·, µ) ∈ V ∗ and that the kernel can be written as

Z = {v ∈ V : ∀µ ∈Mb(v, µ) = 0}.

�

If we want to discretize the saddle-point problem with closed subspaces Vh ⊆ V andMh ∈⊆M ,
we can derive well-posedness and an error bound by applying Theorem 1.7 to Xh = Vh×Mh. We
apply Theorem 1.10 to the discrete setting and see that the (global) discrete inf-sup condition
follows from the conditions

0 < αh = inf
zh∈Zh\{0}

‖Azh‖Z∗h
‖zh‖X

and 0 < βh = inf
µh∈Mh\{0}

‖B′µh‖V ∗h
‖µ‖Mh

. (1.5)

Here, Zh := ker(ι∗MBιV ), equivalently written as

Zh = {vh ∈ Vh : ∀µh ∈Mh 〈Bvh, µh〉 = 0}

is the discrete kernel. It is very important to note that in general we must expect Zh 6⊆ Z.
Usually, the condition on αh is not very critical, for example when A is coercive. The condition
on βh is very delicate and is linked to the compatibility of the two discrete spaces. We note the
following consequence.

Corollary 1.12. Let the conditions of Theorem 1.10 hold and let the closed subspaces Vh ⊆ V
and Mh ⊆ M satisfy (1.5). Let (u, p) ∈ V ×M solve the saddle-point problem with right-hand
side (F,G). Then, there exists a unique pair (uh, ph) ∈ Vh ×Mh solving

ι∗VAuh + ι∗VB
′ph = ι∗V F

ι∗MBph = ι∗MG.

It satisfies
‖u− uh‖V + ‖p− ph‖M ≤ C( inf

vh∈Vh
‖u− vh‖V + inf

qh∈Mh

‖p− qh‖M )

with a constant C that only depends on αh, βh, CA.
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2. Variational problems in H(div)

§1. Duality in Hilbert spaces

For a Hilbert space Y , the Riesz representation theorem establishes an isometry between Y and
its dual. That is, we can identify any y ∈ Y with the linear functional 〈y, ·〉Y . For example, any
element of L2(Ω)∗ can be represented by

´
Ω g · dx for some f ∈ L2(Ω). Such identifications are

very common and culminate in statements like “Y is its own dual”, but some care is necessary
when working with them. In particular, when working with more than one Hilbert space, it must
be clear with respect to which space we take this identification.

Definition 2.1 (Gelfand triplet). Let X,Y be Hilbert spaces where X is densely embedded in
Y . We know (Exercise A.5) that Y ∗ is then densely embedded in X∗. After identifying Y with
Y ∗ we therefore have the chain of embeddings

X → Y → X∗.

This is called a Gelfand triplet and Y is called the pivot space. �

We proceed with the most prominent example in our lecture, which is related to Sobolev spaces.

Example 2.2 (embedding in negative Sobolev spaces). Given a bounded polyhedral Lipschitz
domain Ω, recall the spaces H1(Ω) H1

0 (Ω). As usual, we write H1
0 (Ω)∗ = H−1(Ω). We know that

the embedding H1(Ω) ⊆ L2(Ω) is dense and, after identifying L2(Ω) with its dual, we arrive at
the inclusions

H1(Ω) ⊆ L2(Ω) ⊆ H1(Ω)∗ and H1
0 (Ω) ⊆ L2(Ω) ⊆ H−1(Ω).

Warning 2.3 (pivot space). In stating such inclusions, it is of paramount importance to specify
the pivot space. Anything else will be prone to heavy mistakes.

Example 2.4 (Dirichlet Laplacian). We know the well-posedness of the weak Poisson equation
−∆u = f in Ω subject to the boundary condition u|∂Ω = 0. The solution u ∈ H1

0 (Ω) is the Riesz
representative of the functional f ∈ H−1(Ω). If there exists Tf ∈ L2(Ω) with f =

´
Ω Tf · dx,

we use the identification of L2(Ω) with itself to interpret the inclusion f ∈ H−1(Ω) and say that
“f is an L2 function”. Without specifying the underlying identification, the statement obviously
makes no sense because the elements H−1(Ω) are not functions. Note that not every element of
H−1(Ω) may have an L2 representation.

Example 2.5 (Neumann Laplacian). The Neumann Laplacian problem is to find u ∈ H1(Ω)
with

´
Ω u dx = 0 and

−∆u = f in Ω and ∂u/∂ν = 0 on ∂Ω

for the outer unit normal ν. A necessary compatibility condition of f comes from the divergence
theorem and reads as ˆ

Ω
f dx = −

ˆ
Ω

∆u dx = −
ˆ
∂Ω
∂u/∂ν ds = 0.
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We denote Z := H1(Ω)/R := {v ∈ H1(Ω) :
´

Ω v dx = 0} and recall the weak formulation of the
problem, namely: find u ∈ Z such that

ˆ
Ω
∇u · ∇v dx =

ˆ
Ω
fv dx.

This weak problem is, of course, well posed for any f ∈ L2(Ω). The constraint on the average
of f is not needed. The point is that any constant function f will result in

´
Ω fv dx = 0 for any

v ∈ Z and therefore represents the zero element of Z∗. Indeed, the inclusion Z ⊆ L2(Ω) is not
dense. The correct pivot space in the Gelfand triple is therefore the space L2

0(Ω) of L2 functions
with vanishing average. This resembles the above compatibility condition.

Example 2.6 (Neumann Laplacian as a saddle-point problem). The Neumann Laplacian problem
can be posed as a variational problem over V := H1(Ω). We denote by M h R the space of
constant functions and introduce the operator B : V → M , v 7→

´
Ω v · dx. Denoting by A the

gradient inner product, we see that A is coercive on Z (Poincaré’s inequality) and that B trivially
satisfies the inf-sup condition. Therefore, there exists a constant p ∈M such that

ˆ
Ω
∇u · ∇v dx+

ˆ
Ω
pv, dx =

ˆ
Ω
fv dx for all v ∈ V

ˆ
Ω
uq dx =0 for all q ∈M.

It is easy to see that p =
ffl

Ω f dx equals the average of f , which conforms to the fact that only
the projection of f to Z has an effect on u.

Given a bounded polyhedral Lipschitz domain Ω, we already know the spacesH1(Ω) andH1
0 (Ω).

The trace theorem teaches us that a function v ∈ H1(Ω) admits boundary values v|∂Ω ∈ L2(∂Ω)
in the sense of traces. That is, there exists a linear and continuous operator T : H1(Ω) →
L2(∂Ω) that coincides with the usual restriction to the boundary when applied to continuously
differentiable functions. We recall that H1

0 (Ω) is the closure of C∞c (Ω) unter the H1(Ω) norm and
can be characterized as the subspace of H1(Ω) of functions with vanishing trace. The range of
the trace operator is customarily denoted by

H1/2(∂Ω) := T (H1(Ω)).

(The reason for this notation will become clear later in this lecture.) It is equipped with the
minimal extension norm

‖g‖H1/2(∂Ω) := inf
v∈H1(Ω):Tv=g

‖v‖H1(Ω).

The minimal extension is the solution to an elliptic boundary value problem (see Exercise A.8 for
a similar computation). We denote by H−1/2(∂Ω) the dual space of H1/2(∂Ω). The norm in that
space is, as usual, defined as

‖q‖H−1/2(∂Ω) = sup
v∈H1/2(∂Ω)

〈q, v〉
‖v‖H1/2(∂Ω)

.

We have the Gelfand triplet

H1/2(∂Ω) ⊆ L2(∂Ω) ⊆ H−1/2(∂Ω),

for which we will later verify that the embedding is indeed dense.
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If we now define by H1/2(Γ) for some Γ ⊆ ∂Ω the range of the trace operator restricted to Γ
we are not working on a closed manifold anymore. Formal integration by parts with a function
v ∈ H1/2(Γ) will cause boundary terms unless it admits an extension by zero to a function ṽ in
H1/2(∂Ω). The space of such functions is defined as

H̃1/2(Γ) := {v ∈ H1/2(Γ) : ṽ ∈ H1/2(∂Ω)}.

We observe that in general H−1/2(Γ) and (H̃1/2(Γ))∗ are different spaces. This is a delicate issue
that we will discuss in more detail.

§2. The space H(div)

If we consider the Dirichlet problem −∆u = f for the Laplacian with f ∈ L2(Ω), we notice that
σ := ∇u is an element of [L2(Ω)]n. But we know more, namely

ˆ
Ω
σ · ∇v dx = −

ˆ
Ω
fv dx for all v ∈ C∞c (Ω).

That is, σ is in L2 and possesses a weak divergence in L2. The space of such vector fields is
denoted by

H(div,Ω) :=

{
σ ∈ [L2(Ω)]n : ∃f ∈ L2(Ω) ∀v ∈ C∞c (Ω)

ˆ
Ω
σ · ∇v dx = −

ˆ
Ω
fv dx

}
.

The weak divergence is then denoted by div σ = f . The space is endowed with the norm

‖v‖H(div,Ω) :=
√
‖v‖2

L2(Ω)
+ ‖ div v‖2

L2(Ω)
.

One can show that H(div,Ω) is the closure of the smooth vector fields (up to the boundary) with
respect to the norm ‖ · ‖H(div,Ω).
Of course, any vector field whose components all belong to H1(Ω) automatically belong to

H(div,Ω). But H(div) fields are more general. For example (see Exercise A.11), a piecewise
polynomial vector field with respect to a triangulation need not be globally continuous to belong
to that space. It suffices that it does not jump across any face in the direction normal to that
face.
Functions fromH(div) have traces in a certain sense. Integration by parts shows (for sufficiently

smooth functions) that
ˆ
∂Ω
ϕτ · ν dx =

ˆ
Ω
ϕdiv τ dx+

ˆ
Ω
τ · ∇ϕdx ≤ ‖τ‖H(div,Ω)‖ϕ‖H1(Ω).

This means that the normal trace, assigning τ · ν|∂Ω to any τ , is a bounded linear functional on
H1/2(∂Ω).

Example 2.7 (inhomogeneous Neumann problem). Given g ∈ H−1/2(∂Ω), the weak form of the
Neumann problem −∆u+ u = f , ∂u/∂ν = g seeks u ∈ H1(Ω) such that

ˆ
Ω
∇u · ∇v dx+

ˆ
Ω
uv dx =

ˆ
Ω
fv dx+

ˆ
∂Ω
gv ds for all v ∈ H1(Ω).

It is well posed and its unique solution u satisfies ∇u · ν = g on ∂Ω as an identity of elements in
H−1/2(∂Ω). We therefore see that the normal trace is surjective onto that space.
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Previously, we could easily restrict H1/2 functions from ∂Ω to a subset Γ ⊆ ∂Ω. This is not
possible for elements from H−1/2(∂Ω). Indeed, by our above interpretation of the normal trace
through integration by parts, we think of an identity

ˆ
Γ
ϕτ · ν dx =

ˆ
∂Ω
ϕ̂τ · ν dx

where ϕ̂ is the zero extension of ϕ. But that extension need not belong to H1/2(∂Ω). All
subsequent computations from above then will make no sense any more.

Example 2.8. For g ∈ H−1/2(∂Ω) and a (generic) subset Γ ⊆ ∂Ω, the integral
´

Γ g ds is not well
defined because the constant 1 over Γ is not in H1/2(∂Ω) when continued by 0. We will study
this in more detail later, but for the moment we consider another example.

Example 2.9 (taken from §2.5.1 of [BBF13]). We know that in two dimensions the function
u(x) = log(| log(|x|)|) belongs to H1(Ω) and so its trace belongs to H1/2(∂Ω). For simpler
computations, we take Ω to be the quarter segment Ω = {x1 > 0, x2 > 0, |x| ≤ 1/ exp(1)}. The
tangential derivative of u along ∂Ω then belongs to H−1/2(∂Ω) (this will be proven later in the
lecture) and is denoted by g. By direct computation, we see that

´
∂Ω g ds is finite, but

´
Γ g ds for

Γ = {x2 = 0} ∩ ∂Ω is not.

§3. Mixed finite elements for Poisson’s equation

In Poisson’s equation we introduce an additional vector variable σ and set

σ = ∇u, −div σ = f.

For the variable σ above we require σ ∈ H(div,Ω) and
ˆ

Ω
div σ v dx = −

ˆ
Ω
fv dx for all v ∈ L2(Ω).

The relation σ = ∇u and integration by parts reveal for any τ ∈ H(div,Ω) that
ˆ

Ω
σ · τ dx = −

ˆ
Ω

div τu dx+

ˆ
∂Ω
uτ · ν ds.

Assuming a homogeneous Dirichlet boundary condition for u we σ ∈ H(div,Ω) and u ∈ L2(Ω)
such that ˆ

Ω
σ · τ dx+

ˆ
Ω

div τu dx = 0 for all τ ∈ H(div,Ω),

ˆ
Ω

div σ v dx = −
ˆ

Ω
fv dx for all v ∈ L2(Ω).

In this way we have formulated Poisson’s equation as a saddle-point problem. This formulation is
referred to as mixed formulation. As an exercise it is shown that the system satisfies the properties
from Brezzi’s splitting theorem and is therefore well-posed. We remark that we have explicitly
imposed the H(div,Ω) regularity for the vector variable but now merely ask u to belong to L2(Ω).
The property that σ is the weak gradient of u is implicitly contained in the first row of the system.
We want to identify appropriate finite element spaces leading to a stable discretization of the

mixed Laplacian. Since L2(Ω) functions do not require any continuity, a reasonable choice is

12



to discretize it by the subspace P0(T) of piecewise constant (possibly discontinuous) functions
with respect to a regular simplicial triangulation T. For piecewise polynomial discretizations of
H(div,Ω) we have seen in Problem A.11 that for each face of the triangulation the component
of the piecewise polynomial vector field must be continuous in the normal direction with respect
to the face. We thus will use the normal directions at the faces as the degrees of freedom. For
simplicity, we restrict ourselves to two space dimensions but remark that an analogous reasoning
works in any dimension. We begin with the construction on a single triangle. We set

RT0(T ) := {v ∈ [L2(T )]2 : v(x) =

(
a
b

)
+ cx for a, b, c ∈ R}.

The vector fields ofRT0(T ) belong to a subset of the vector fields that are affine in each component.
Obviously dimRT0(T ) = 3. For the standard P1 finite element, the degrees of freedom were the
point evaluations at the vertices and we worked with the nodal basis of hat functions. Since here
we want to enforce continuity of the normal component across edges we seek a basis (ψE)E∈E(T ),
where E(T ) is the set of edges of T , such that

 
F
ψE · νF dx =

{
1 if E = F

0 else.
(2.1)

Here, νF is the outer normal vector of T restricted to the edge F . This property is achieved by
the following definition

ψT,E(x) :=
|E|
2|T |

(x− PE)

where PE is the vertex of T opposite to E. The proof of (2.1) is left as an exercise.
Remark 2.10 (finite element in the sense of Ciarlet). In the foregoing discussion, we have seen
that we can uniquely determine functions from a finite-dimensional space of functions over T
by linear functionals that need not be point evaluations (as it would be the case for the usual
Lagrange basis of polynomials). Following the reasoning of Ciarlet [Cia78], one can abstractly
define a finite element as a triplet (T,P,L) consisting of a bounded Lipschitz domain T of Rn (the
element domain), a finite-dimensional space P of functions over T (the shape functions), and a
set L of linear functionals over P that forms a basis of P ∗ (the node functionals). It is an exercise
to verify that (T,RT 0(T ), {

ffl
E • · νT ds : E ∈ E(T )}) is a finite element. �

Globally, we then define

RT0(T) := {v ∈ H(div,Ω) : ∀T ∈ T v|T ∈ RT0(T )}.

This space is called the Raviart–Thomas finite element space. We have seen that it consists of all
vector fields that are in RT0(T ) for every triangle T and that are normal-continuous across each
edge. Given any interior edge E, we fix a normal vector. For the two neighbouring triangles T+

and T− this vector then points inwards to one of them and outwards to the other one. We use
the convention that

νE = νT+ and νE = −νT−
that is, νE is the outward pointing normal to T+. This is graphically illustrated in Figure 2.1. If
E is a boundary edge, we define T− = ∅.
The functions

ψE(x) =


ψT+,E(x) if x ∈ T+

−ψT−,E(x) if x ∈ T−
0 else

13



T+ T−
νE

E

Figure 2.1.: Convention for the edge normal.

then form a global basis of RT0(T).

Lemma 2.11. The functions (ψE)E∈E form a basis of RT0(T). They satisfy
ffl
F ψE ·νF dx = δEF .

Proof. Exercise.

The Raviart–Thomas space has a canonical interpolation operator, which reads for any suffi-
ciently smooth vector field τ

IRT τ =
∑
E∈E

 
E
τ · νE dsψE .

By construction, it satisfies the conservation property
ˆ
E
IRT τ · νE ds =

ˆ
E
τ · νE ds for any E ∈ E.

We will see that this operator is not well defined for functions in H(div,Ω) but requires further
regularity of τ . A sufficient criterion for IRT τ to exist is for instance τ ∈ [H1(Ω)]2 because traces
along edges are well defined due to the trace theorem. The following result shows H1 stability of
IRT .

Theorem 2.12. The Raviart–Thomas interpolation is stable with respect to the H1 norm in the
following sense. There exists a constant CIRT only dependent on the shape regularity of T such
that

‖IRT v‖H1(Ω) ≤ CIRT ‖v‖H1(Ω) for all v ∈ [H1(Ω)]2.

Proof. The restriction of IRT v to a triangle K can be written in terms of the basis expansion as
follows

IRT v|K =
∑

E∈E(K)

 
E
v · νE dsψE .

A direct computation with the shape regularity shows for the basis function that ‖ψE‖L2(K) . hK .
Similarly, ‖DψE‖L2(K) . 1. We recall the trace inequality and compute for the coefficient in front
of ψE that

|
 
E
v · νE | ≤ |E|−1/2‖v‖L2(E) . h

−1
K ‖v‖L2(K) + ‖Dv‖L2(K).

We use the triangle inequality and compute

‖IRT v‖L2(K) ≤
∑

E∈E(K)

|
 
E
v · νE ds|‖ψE‖L2(Ω) . ‖v‖H1(K).
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In order to bound the gradient, we observe that DIRT v = DIRT (v −
ffl
K v dx) for the constantffl

K v dx (component-wise integral mean) because IRT conserves constants (exercise). We then
compute with trace and Poincaré inequalities that

‖DIRT v‖L2(K) = ‖DIRT (v −
 
K
v dx)‖L2(Ω)

≤
∑

E∈E(K)

|
 
E

(v −
 
K
v dx) · νE ds|‖DψE‖L2(Ω)

. h−1
K ‖(v −

 
K
v dx)‖L2(K) + ‖∇v‖L2(K) . ‖v‖H1(K).

Note that the constant in the Poincaré inequality scales like hK . The claimed bound on the
H1(Ω) norm follows from using this local argument on each element domain.

The following so-called commuting diagram property is of particular importance. We denote by
Π0 : L2(Ω)→ P0(T) the L2 projection on piecewise constants. It has the following representation
(exercise)

(Π0q)|T =

 
T
q dx for all q ∈ L2(Ω) and all T ∈ T.

For vector variables, we use the same symbol Π0 to denote the component-wise L2 projection on
[P0(T)]2.

Lemma 2.13 (commuting diagram property). The Raviart–Thomas interpolation IRT : [H1(Ω)]2 →
RT0(T) satisfies

div IRT v = Π0 div v.

In other words, the diagram

[H1(Ω)]2

RT0(T)

L2(Ω)

P0(T)

div

IRT

div

Π0

commutes.

Proof. Let v ∈ [H1(Ω)]2. The divergence theorem shows for any T ∈ T with outer unit normal ν
that ˆ

T
div IRT v dx =

ˆ
∂T
IRT v · νT ds =

∑
E∈E(T )

ˆ
E
IRT v · ν|E ds.

For any edge E ∈ E(T ), the operator IRT conserves the integral of v · ν|E . Thus∑
E∈E(T )

ˆ
E
IRT v · ν|E ds =

∑
E∈E(T )

ˆ
E
v · ν|E ds =

ˆ
∂T
v · ν ds =

ˆ
T

div v ds

where we used again the divergence theorem. We combine the above two chains of identities and
divide by the area of T to obtain  

T
div IRT v dx =

 
T

div v ds.

The left integrals simply equals div IRT v because the integrand is constant on T . The assertion
follows with the above representation of Π0 as the piecewise integral mean.
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Let us now turn to the discretization of the mixed Laplacian. The mixed finite element approx-
imation seeks (σh, uh) ∈ RT0(T)× P0(T) such thatˆ

Ω
σh · τh dx−

ˆ
Ω

div τhuh dx = 0 for all τh ∈ RT0(T),

ˆ
Ω

div σh vh dx = −
ˆ

Ω
fvh dx for all vh ∈ P0(T).

Theorem 2.14. Given any f ∈ L2(Ω), there is a unique solution (σh, uh) ∈ RT0(T) × P0(T) to
the discrete mixed system. We have the error estimate

‖σ − σh‖H(div,Ω) + ‖u− uh‖L2(Ω) ≤ C( inf
τh∈RT0(T)

‖σ − τh‖H(div,Ω) + inf
vh∈P0(T)

‖u− vh‖L2(Ω))

for some constant C.

Proof. It suffices to prove the requirements from Brezzi’s splitting theorem. The error estimate
then follows from the abstract error estimate for the Galerkin method. For the proof of coercivity
of the form

a(σh, τh)

on the kernel Zh, we first note that any τh ∈ Zh satisfies by definitionˆ
Ω

div τhvh dx = 0 for all vh ∈ P0(T).

But since div τh ∈ P0(T), we see that div τh = 0 pointwise in Ω. Therefore

a(τh, τh) = ‖τh‖2L2(Ω) = ‖τh‖2L2(Ω) + ‖ div τh‖2L2(Ω) = ‖τh‖2H(div,Ω),

which implies coercivity of a in RT0(T) ⊆ H(div,Ω).
Let us prove the inf-sup condition for the form

b(τh, vh) :=

ˆ
Ω

div τh vh dx.

Let any vh ∈ P0(T) be given. In case that Ω is not convex, we increase the domain to a larger
convex domain Ω̂ by adding suitable triangles, and we extend vh by zero to a function f̂ ∈ L2(Ω̂).
On Ω̂ we then solve the weak form of the Dirichlet problem ∆ŵ = f̂ for some ŵ ∈ H1

0 (Ω̂). From
the H2 regularity on convex domains (Part I of this lecture) we deduce that ŵ ∈ H2(Ω̂) with

‖ŵ‖H2(Ω) ≤ Creg‖vh‖L2(Ω), ∇ŵ|Ω ∈ [H1(Ω)]2, and div∇ŵ = vh in Ω.

Since ∇ŵ in H1, its Raviart–Thomas interpolation is well defined and satisfies, due to the com-
muting diagram property,

div IRT∇ŵ = Π0 div∇ŵ = Π0(vh) = vh.

We furthermore have a bound on the H(div,Ω) norm

‖IRT∇ŵ‖2H(div,Ω) = ‖IRT∇ŵ‖2L2(Ω) + ‖vh‖L2(Ω) . ‖∇ŵ‖2H1(Ω) + ‖vh‖2L2(Ω) . ‖vh‖
2
L2(Ω).

We then compute

sup
τh∈RT0(T)\{0}

b(τ, vh)

‖τ‖H(div)‖vh‖L2(Ω)
≥ b(IRT∇ŵ, vh)

‖IRT∇ŵ‖H(div)‖vh‖L2(Ω)
=

‖vh‖2L2(Ω)

‖IRT∇ŵ‖H(div)‖vh‖L2(Ω)
& 1.

This proves the inf-sup condition with a constant that only depends on the shape regularity.
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Corollary 2.15. If the solution to the Poisson equation satisfies u ∈ H1
0 (Ω) ∩H2(Ω), then

‖σ − σh‖H(div,Ω) + ‖u− uh‖L2(Ω) ≤ h‖D2u‖L2(Ω) + ‖f −Π0f‖L2(Ω).

Proof. This follows from the interpolation error estimate and the piecewise Poincaré inequality.

§4. Selected aspects

Example 2.16 (mixed BVP). Given a disjoint partition ∂Ω = ΓD ∪ ΓN into a Dirichlet and
a Neumann boundary, we consider the mixed boundary value problem −∆u = f subject to
u|ΓD = uD and u|ΓN = 0 for some given uD ∈ H1/2(ΓD). For simplicity we assume ΓD to have
positive surface measure. We introduce the space

HN (div,Ω) := {τ ∈ H(div,Ω) : τ · ν|ΓN = 0}

and obtain the mixed formulation of the boundary value problem: Find σ ∈ HN (div,Ω) and
u ∈ L2(Ω) such thatˆ

Ω
σ · τ dx+

ˆ
Ω

div τu dx = 〈τ · ν, uD〉 for all τ ∈ HN (div,Ω),

ˆ
Ω

div σ v dx = −
ˆ

Ω
fv dx for all v ∈ L2(Ω).

Note that the Neumann condition enters as an essential boundary condition, while the Dirichlet
condition is imposed weakly and appears on the right-hand side. This situation is “dual” to
the usual formulation of the boundary value problem studied earlier. Inhomogeneous Neumann
conditions have to be imposed in an essential way.

Transformation properties. When working with the Sobolev space H1(Ω), for the usual
Lagrange elements we know the affine equivalence to a reference element. We can parametrize T
via an affine diffeomorphism Φ : T̂ → T and know that the nodal functionals (point evaluations)
are conserved under this transform. We also know the important relation ∇v = (DΦ)−>∇v̂◦Φ−1.
In H(div) problems, the situation is different because Φ does not map normal vectors to normal
vectors and, thus, does not conserve the degrees of freedom. It turns out (and is well known
from the theory of differential forms) that the right transform is the pullback, also known as
contravariant transform or Piola transform. For an element x̂ ∈ T̂ it acts on a vector field q̂ as
follows

x := Φ(x̂) and q(x) := | detDΦ(x̂)|−1DΦ(x̂)q̂(x̂).

For affine Φ, the object DΦ can be thought of as a constant matrix, henceforth denoted by B. It
is possible to verify that the normal vector ν to ∂T and the normal ν̂ to ∂T̂ transform as

ν(x) =
1

|B−>ν̂(x̂)|
B−>ν̂(x̂),

see Exercise A.21. We furthermore have:

Lemma 2.17. Let q ∈ H(div, T ) be the Piola transform of q̂ and v ∈ H1(T ) be the affine
transform of v̂. Thenˆ

T
div qv dx =

ˆ
T̂

div q̂v̂ dx,

ˆ
T
q · ∇v dx =

ˆ
T̂
q̂ · ∇v̂ dx,

ˆ
∂T
q · νv ds =

ˆ
∂T̂
q̂ · ν̂v̂ ds.

Proof. Exercise A.22.
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§5. Error estimate in the H−1 norm

For the standard FEM, the Aubin–Nitsche trick can be used to establish an improved convergence
rate for the L2 norm of the error compared to the energy norm (the H1 seminorm). For the mixed
FEM, this is obviously impossible because it approximates u in L2 with piecewise constants. This
approximation will be of order h in case of full regularity, but not better. We first study the
projected error Πh(uh−u) and see that it exhibits a superconvergence phenomenon. For simplicity
we state it on a convex domain where we know that the Poisson problem is H2 regular.

Lemma 2.18. Let Ω ⊆ Rn be an open, bounded, convex polytope. Let (σ, u) ∈ H(div,Ω)×L2(Ω)
solve the mixed system for the Poisson problem with right-hand side in L2(Ω) and homogeneous
Dirichlet boundary conditions. Let (σh, uh) denote approximation from the discrete mixed system.
Then the projected error satisfies

‖Πh(uh − u)‖L2(Ω) . h‖σ − σh‖H(div,Ω).

Proof. Let (η, w) ∈ H(div,Ω) × L2(Ω) denote the solution to the mixed system with right-hand
side Πh(uh − u),ˆ

Ω
η · τ dx+

ˆ
Ω

div τw dx = 0 for all τ ∈ H(div,Ω),

ˆ
Ω

div η v dx = −
ˆ

Ω
Πh(uh − u)v dx for all v ∈ L2(Ω).

We recall that η ∈ H1[(Ω)]n thanks to elliptic regularity. Thus, the interpolation IRT is well
defined. We test the second equation with −(uh−Πhu) and obtain from the commuting diagram
property of the interpolation IRT and the solution properties of u and uh that that

‖Πh(uh− u)‖2L2(Ω) = −
ˆ

Ω
div ηΠh(uh− u) dx = −

ˆ
Ω

div IRTη (uh− u) dx =

ˆ
Ω

(σh− σ)IRTη dx.

We add and subtract η and use the first equation for η, which leads toˆ
Ω

(σh − σ)IRTη dx =

ˆ
Ω

(σh − σ)(IRTη − η) dx−
ˆ

Ω
div(σh − σ)w dx.

The Galerkin equations for σh show that div(σh − σ) is L2 orthogonal to the piecewise constant
functions, so that we can subtract Πhw from w in the last integral. Thus, combining the previous
two chains of identities with the Cauchy inequality yields

‖Πh(uh − u)‖2L2(Ω) ≤ ‖σ − σh‖L2(Ω)‖η − IRTη‖L2(Ω) + ‖ div(σ − σh)‖L2(Ω)‖w −Πhw‖L2(Ω).

Due to the H2 regularity and η = ∇w, we can use the error estimate for IRT and the piecewise
Poincaré inequality for w −Πhw and the elliptic regularity estimate to obtain

‖η − IRTη‖L2(Ω) + ‖w −Πhw‖L2(Ω) . h‖w‖H2(Ω) . h‖Π(u− uh)‖L2(Ω).

The assertion follows from combining the foregoing two estimates.

Corollary 2.19. We have

‖u− uh‖H−1(Ω) . h(‖σ − σh‖H(div,Ω) + ‖u− uh‖L2(Ω)).

Proof. This follows from adding and subtracting Πhu, the triangle inequality, direct computations
with the H−1 norm and the projection Πh, and the Poincaré inequality.
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§6. Estimates based on the hypercircle identity

The following result can be found in the literature under the name Prager–Synge theorem or
hypercircle identity.

Lemma 2.20. Let Ω ⊆ Rn be an open and bounded Lipschitz domain and let u ∈ H1
0 (Ω) solve

Poisson’s problem with right-hand side f ∈ L2(Ω). Then, any σ ∈ H(div,Ω) with −div σ = f
and any v ∈ H1

0 (Ω) satisfy the hypercircle identity

‖∇(u− v)‖2L2(Ω) + ‖∇u− σ‖2L2(Ω) = ‖∇v − σ‖2L2(Ω).

Proof. In the norm on the right-hand side we add and subtract ∇u and apply the binomial
theorem to the squared norm. The result is the left-hand side plus the mixed expression

−2

ˆ
Ω
∇(u− v) · (∇u− σ) dx,

which equals zero as can be seen by integration by parts because div(∇u− σ) = 0.

The fact that the right-hand side in the the hypercircle identity is independent of the unknown
function u makes the result very useful for a posteriori error estimation. If we choose v =
uh ∈ S1

0(T) to be the Galerkin approximation to u with the standard finite element method, the
hypercircle identity implies the error bound

‖∇(u− uh)‖L2(Ω) ≤ ‖∇uh − σ‖L2(Ω) for any σ ∈ H(div,Ω) with − div σ = f.

Once we make a choice for σ, the right-hand side is fully computable and is a guaranteed bound
(there are no constants is the estimate) to the Galerkin error. Vice versa, if f is piecewise constant
and σh ∈ RT 0(T) is the discrete solution by the Raviart–Thomas method, we have the estimate

‖∇u− σh‖L2(Ω) ≤ ‖∇v − σ‖L2(Ω) for any v ∈ H1
0 (Ω).

Such bounds are called a posteriori error estimates because they involve information of the discrete
solution and thus are evaluated after the computation.
A direct consequence is:

Corollary 2.21. Let Ω ⊆ Rn be an open and bounded Lipschitz polytope triangulated by T, let
f ∈ P0(T) and let uh ∈ S1

0(T) and σh ∈ RT 0(T) be the approximations to u ∈ H1
0 (Ω) resp. ∇u by

the standard resp. Raviart–Thomas FEM, where u solves Poisson’s equation −∆u = f . We have
the guaranteed a posteriori error bound

‖∇(u− uh)‖2L2(Ω) + ‖∇u− σh‖2L2(Ω) = ‖∇uh − σh‖2L2(Ω).

The following result states that the standard FEM and the Raviart–Thomas FEM are in some
sense the optimal choice. We denote

Qh(f) = {τh ∈ RT 0(T) : −div τh = f}.

Lemma 2.22. Under the conditions of Corollary 2.21 we have

‖∇uh − σh‖L2(Ω) = min
vh∈S1

0(T)
min

τh∈Qh(f)
‖∇vh − τh‖L2(Ω).
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Proof. For any τh ∈ Qh(f) and any vh ∈ S1
0(T), the hypercircle reads

‖∇(u− vh)‖2L2(Ω) + ‖∇u− τh‖2L2(Ω) = ‖∇vh − τh‖L2(Ω).

Since uh is the best approximation in the energy norm, the left-hand side is minimal for vh = uh,
and therefore we have shown

‖∇uh − τh‖L2(Ω) = min
vh∈S1

0(T)
‖∇vh − τh‖L2(Ω).

It remains to show that this expression is minimal for τh = σh. To this end, we minimize the
left-hand side over Qh(f), which is equivalent to

1

2
‖τh‖2L2(Ω) −

ˆ
Ω
∇uh · τh dx→ min .

The Euler–Lagrange equation for the minimizer ξh ∈ Qh(f) of this quadratic minimization prob-
lem is (after integration by parts)

ˆ
Ω
ξh · τh dx =

ˆ
Ω
∇uh · τh dx = 0 for all τh ∈ Qh(0).

The inf-sup condition for the Raviart–Thomas method shows that there exists a Lagrange multi-
plier wh ∈ P0(T) such that

ˆ
Ω
ξh · τh dx+

ˆ
Ω
wh div τh dx = 0 for all τh ∈ RT 0(T)

ˆ
Ω

div ξhvh dx = −
ˆ

Ω
fvh dx for all vh ∈ P0(T).

This shows that ξh = σh is the solution to the Raviart–Thomas system. This establishes the
asserted identity.

The foregoing result has shown that for bounding the error in the standard FEM, the optimal
choice from RT 0(T) for the upper bound is the result of the Raviart–Thomas FEM; and that the
best choice from S1

0(T) for bounding the Raviart–Thomas error is the solution to the standard
FEM. The lemma has shown that this choice is sharp in the sense that the upper bound is bounded
by the errors of the two methods. The disadvantage is that, for example, for bounding the error
of the standard FEM, an additional mixed linear system of more or less the same size needs to
be solved, which is considered too expensive. Instead, a suitable τh ∈ Qh(f) can be designed by
a local construction. We restrict our attention to n = 2 for simplicity. We observe that ∇uh is
piecewise divergence-free but not globally in H(div,Ω). The jump of a (possibly vector-valued)
function v across an edge E is denoted by [v]E := v|T+ − v|T− for the two elements T± sharing E.
For boundary faces there is only one element T+ and we set [v]E := v|T+ . In every element we
have ∇uh|T ∈ RT 0(T ). Once we have designed a piecewise RT 0 function τpw

h (not in H(div,Ω) in
general) with the property that −div τpw

h |T = f |T on every T ∈ T and [τpw
h ]E ·νE = −[∇uh]E ·νE

for every interior edge E, we have that τpw
h = τh −∇uh for an element τh ∈ Q(f). It remains to

evaluate the norm of τpw
h .

A possible construction is as follows. For a vertex z of the triangulation T, we recall the vertex
patch ωz, which is the interior of the union of all triangles containing z. We define the set E(z)
of edges containing z and denote by ϕz the corresponding S1(T) nodal basis function. We design
a piecewise RT 0 function τ zh supported on ωz as follows. For every edge E /∈ E(z) we set the
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degree of freedom
´
E τz · νE ds = 0. The remaining degrees of freedom are related to two faces

per triangle. They are fixed by the conditions
ˆ
∂T
τ zh · νT ds = −

ˆ
T
fϕz dx for every T ⊆ ωz

[τ zh ]E · νE = −1

2
[∇uh]E · νE for every E ∈ E(z).

If z is an interior vertex, a simple degree-of-freedom count reveals that such choice can be achieved.
If z is a boundary vertex, we enforce the jump condition only on the interior edges. Recall that
for boundary faces there is no condition on the normal trace for a piecewise polynomial field to
belong to H(div,Ω). We then obtain as many conditions as degrees of freedom if we consider the
connectivity components of ∂Ω. A practical implementation is outlined in [Bra07, III§9].

Lemma 2.23. The function τpw
h :=

∑
z∈N τ

z
h satisfies −div τpw

h |T = f |T on every T ∈ T and
[τpw
h νE ]E · = −[∇uh]E · νE for every interior edge E.

Proof. Since the nodal basis functions ϕz form a partition of unity, the design of the functions τ zh
implies that ∑

z∈N(T )

ˆ
T

div τ zh dx =
∑

z∈N(T )

ˆ
∂T
τ zh · νT ds =

ˆ
T
f dx

and therefore −div τpw
h |T = f |T on every T ∈ T. Furthermore, any edge E is shared by two

vertices z1, z2, such that

[τpw
h ]E · νE = [τ z1h ]E · νE + [τ z2h ]E · νE = −[∇uh]E · νE .

We conclude the following reliability estimate:

Theorem 2.24. Under the above assumptions (in particular f piecewise constant) we have the
a posteriori error bound

‖∇(u− uh)‖L2(Ω) ≤ ‖τ
pw
h ‖L2(Ω).

Algorithmic details on the implementation can be found in [Bra07, Chapter III §9].

Remark 2.25. One can prove that the bound is also efficient, that is the converse estimate holds
up to a constant,

‖τpw
h ‖L2(Ω) . ‖∇(u− uh)‖L2(Ω).

�

Remark 2.26. If f ∈ L2(Ω) is not piecewise constant, we have

‖∇(u− uh)‖L2(Ω) ≤ ‖τ
pw
h ‖L2(Ω) +

√√√√∑
T∈T

h2
T

π2
‖f −

 
T
f dx‖2

L2(T )
,

see Exercise A.39. The additional term is referred to as data oscillation. �
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3. Some details on Sobolev spaces and traces

We want to understand the origin of the notation H1/2(∂Ω) for the range of the trace operator
and the connection to Sobolev scales.

§1. Sobolev spaces of non-integer order

We begin by defining the spaces Hs for non-integer values of s.

Definition 3.1 (Sobolev–Slobodeckij norm). Let Ω ⊆ Rn. For and 0 < s < 1 and v ∈ L2(Ω) we
define

|v|Hs(Ω) :=

(ˆ
Ω

ˆ
Ω

|v(x)− v(y)|2

|x− y|n+2s
dxdy

)1/2

∈ R ∪ {∞}.

For a nonnegative integer k ≥ 0 we define the space

Hk+s(Ω) := {v ∈ Hk(Ω) : |∂αv|Hs(Ω) <∞ for all multiindices with |α| = k}

endowed with the Sobolev–Slobodeckij norm

‖v‖Hk+s(Ω) =

√
‖v‖2

Hk(Ω)
+
∑
|α|=k

|∂αv|2Hs(Ω).

�

With this definition, we have a definition of the fractional-order space H1/2(Ω). Since the
boundary ∂Ω of our Lipschitz polytope Ω is a manifold, this does not directly give a definition
of H1/2(∂Ω). In prior sections the latter space was already defined as the range of the trace
operator, but for the moment we cancel that definition. The idea for defining H1/2(∂Ω) is to
locally represent the boundary as the graph of a Lipschitz function, to flatten the boundary
after localization with a suitable partition of unity, and to sum up the local H1/2 norms of the
transformed function. We recall the definition of a Lipschitz domain (first part of this lecture),
where the open sets U1, . . . , UN cover a neighbourhood of ∂Ω and, after rotating and shifting the
coordinate system, U j ∩ ∂Ω = {(z, γj(z)) : z ∈ Ũ j} is the graph of a Lipschitz function γj with
the domain on one side of the graph. Here, Ũ j ⊆ Rn−1 is the domain of γj . We also consider a
corresponding functions ηj ∈ C∞c (U j) that form a partition of unity on the boundary,

∑
j ηj = 1

on ∂Ω.

Definition 3.2 (Hs on the boundary). Let Ω ⊆ Rn be an open bounded Lipschitz domain. We
say that u : ∂Ω → R belongs to Hs(∂Ω) if each function uj = (ηju)(·, γj(·)) belongs to Hs(Ũ j).
We define the (square of the) seminorm

|u|2Hs(∂Ω) :=
∑
j

ˆ
Ũj

ˆ
Ũj

|uj(x)− uj(y)|2

|x− y|n−1+2s
dxdy.

(Note that x, y belong to Rn−1). We define the norm ‖u‖Hs(∂Ω) := (‖u‖2L2(∂Ω) + |u|2Hs(∂Ω)])
1/2. �
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Remark 3.3. The value of the norm (but not its finiteness) in the above definition depends on the
choice of the U j and ηj . �

What we shall prove in this section is that the space H1/2(∂Ω) equals the range of the trace
operator, i.e., every g ∈ H1/2(∂Ω) is the trace of some u ∈ H1(Ω) with ‖u‖H1(Ω) ≤ C‖g‖H1/2(∂Ω).
Hence this alternative definition is equivalent to the one given above using the minimal extension
norm.
We will not discuss traces of Hs(Ω) in detail, but what is important to observe is that functions

from that space cannot have discontinuities on (n− 1)-dimensional submanifolds if s > 1/2, but
they can if s < 1/2, see Exercise A.24. The case s = 1/2 is critical and it turns out that such
functions can only have certain discontinuities.

Example 3.4. A piecewise constant and discontinuous function u satisfies u /∈ H1/2(∂Ω). But,
for example, u(t) = log(| log(|t|)|) belongs to H1/2(−1/ exp(1), 1/ exp(1)). This will be proven
later, cf. Exercise A.29.

Generally for v ∈ L2(Ω), we denote by ṽ ∈ L2(Rn) the extension by 0.

Definition 3.5. Let Ω ⊆ Rn. We define

H̃1/2(Ω) := {v ∈ H1/2(Ω) : ṽ ∈ H1/2(Rn)}

with the norm
‖v‖

H̃1/2(Ω)
:= ‖ṽ‖H1/2(Rn).

�

We have ‖v‖H1/2(Ω) ≤ ‖v‖H̃1/2(Ω)
for any v ∈ H̃1/2(Ω), see Exercise A.28.

Definition 3.6. We denote by Hs
0(Ω) the closure of C∞c (Ω) with respect to the Hs norm. We

denote by H−s(Ω) the dual of Hs
0(Ω). �

Theorem 3.7 (density). Let Ω ⊆ Rn be an open and bounded Lipschitz domain and let 0 < s < 1.
Then, Hs(Ω) is a Banach space and we have H1(Ω) ⊆ Hs(Ω). The space C∞(Ω) is dense in
Hs(Ω). We have

Hs
0(Ω) =

{
Hs(Ω) if 0 < s ≤ 1/2

H̃s(Ω) if 1/2 < s < 1.

Proof. See for example [Gri85] or [Dob10].

Remark 3.8. We stress the very important fact that H1/2(Ω) is the closure of functions with
compact support, but, at the same time, the elements in that space do not necessarily admit an
H1/2-regular extension by zero to the full space. �

§2. The range of the trace operator

Lemma 3.9 (trace). Let Ω ⊆ Rn be an open and bounded Lipschitz domain. The trace operator
is continuous as a map from H1(Ω) to H1/2(∂Ω).
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Proof. For simplicity we assume n = 2. Let u ∈ C1(Ω̄). We localize the boundary with the
sets U j and the cutoff functions ηj and use Exercise A.27. We can then assume without loss of
generality that the support of u intersects the boundary such that u|∂Ω vanishes outside some
Γ ⊆ ∂Ω which is the graph of a function γj over a subset of Rn−1 = R, and Ω ⊆ R× R+. We fix
x, y ∈ R and define ξ = (x− y)/2 and z = (1

2(x+ y), |ξ|). We use the triangle inequality

|u(x, 0)− u(y, 0)| ≤ |u(z)− u(x, 0)|+ |u(z)− u(y, 0)|

and focus on the first term on the right-hand side. We use the fundamental theorem of calculus
and obtain

|u(z)− u(x, 0)| = |
ˆ 1

0
∇u(x− tξ, t|ξ|) ·

(
−ξ
|ξ|

)
dt| ≤

√
2|ξ|

ˆ 1

0
|∇u(x− tξ, t|ξ|)| dt.

We square, divide by |ξ| and integrate with respect to x and y. From symmetry in x and y we
then obtain

|u(·, 0)|H1/2(Γ) .
ˆ 1

0

(ˆ
Γ

ˆ
Γ
|∇u(x− tξ, t|ξ|)|2 dx dy

)1/2

dt.

Here we have used Jensen’s inequality
´
|f | . (

´
f2)1/2. Since u is compactly supported, we can

replace the Γ in the integrals on the right-hand side by R. We substitute with ξ
ˆ
R

ˆ
R
|∇u(x− tξ, t|ξ|)|2 dx dy = 2

ˆ
R

ˆ
R
|∇u(x− tξ, t|ξ|)|2 dx dξ = 2

ˆ
R

ˆ
R
|∇u(x, t|ξ|)|2 dx dξ.

After changing coordinates ξ 7→ ξ/t, we thus obtain

|u(·, 0)|H1/2(Γ) .
ˆ 1

0
t−1/2‖∇u‖L2(Ω) dt . ‖∇u‖L2(Ω).

This and density from Theorem 3.7 prove the continuity.

Conversely, any v ∈ H1/2(∂Ω) admits a bounded extension to v̂ ∈ H1(Ω).

Lemma 3.10. Let Ω ⊆ Rn be an open and bounded Lipschitz domain. For every v ∈ H1/2(∂Ω)
there exists an extension v̂ ∈ H1(Ω) with ‖v̂‖H1(Ω) ≤ C‖v‖H1/2(∂Ω) and v = v̂|∂Ω

Proof. Again, we will prove this in the simplified situation of two dimensions to keep the tech-
nicalities to a minimum. The principal mathematical argument, however, is the same in higher
dimensions. As in the previous proof we may assume that v ∈ H̃1/2(Γ) for a bounded interval
Γ ⊆ R, and in view of Exercise A.25 we can assume that Γ = R. We denote the coordinates of
R2 by (x, y). We denote by φ the standard mollifier in R2 with support in the unit ball and unit
integral, and set

v̂(x, y) :=
1

y

ˆ
R
φ

(
z − x
y

)
v(z) dz, y > 0.

We compute (note that φ′ has zero integral) the derivative and change coordinates,

∂xv̂(x, y) = − 1

y2

ˆ
R
φ′
(
z − x
y

)
(v(z)− v(x)) dz =

1

y

ˆ
|z|<1

φ′(z)(v(x)− v(x+ yz)) dz.

24



After squaring and integrating and observing that φ′ is bounded, we compute
ˆ
R

ˆ
R+

|∂xv̂(x, y)|2 dx dy .
ˆ
R

ˆ
R+

y−2

ˆ
|z|<1

|v(x)− v(x+ yz)|2 dz dx dy

.
ˆ
R

ˆ
R+

y−3

ˆ
|x−w|<y

|v(x)− v(w)|2 dw dx dy

.
ˆ
R

ˆ
R
|v(x)− v(w)|2

ˆ ∞
|x−w|

y−3 dy dx dw.

The y-integral equals 2−1|x− w|−2, and therefore we have shown ‖∂xv̂‖L2(Ω) . |v|H1/2(Γ).
We next bound the derivative ∂yv̂. We observe that integration by parts implies

ˆ
R
φ

(
z − x
y

)
dz +

ˆ
R
φ′
(
z − x
y

)
z − x
y

dz = 0.

We can therefore compute

∂yv̂(x, y) = −y−2

ˆ
R
φ

(
z − x
y

)
(v(z)− v(x))dz − y−2

ˆ
R
φ′
(
z − x
y

)
z − x
y

(v(z)− v(x))dz.

The integrals are bounded in a similar fashion as before.

The preceding two results show that both definitions of H1/2(∂Ω) given in these notes are
equivalent, and so are their norms.

Lemma 3.11. Let Ω ⊆ Rn be an open bounded Lipschitz domain. The derivative ∂xj continuously
maps H1/2(Ω) to the dual space [H̃1/2(Ω)]∗.

Proof. For the ease of notation we consider n = 1 and denote with x, y the Cartesian coordinates of
R2. We consider functions v ∈ H1/2(Ω) (with some continuation to H1/2(R)). and w ∈ H̃1/2(Ω),
which admits a bounded extension by zero to an object of H1/2(R). From previous proofs we
know that these functions have bounded extensions v̂ ∈ H1(R× R+) and ŵ ∈ H1(R× R+). We
obtain from integration by parts that

ˆ
Ω
∂xv̂(x, y)ŵ(x, y) dx = −

ˆ ∞
y

ˆ
Rn

(∂xv̂(x, s)∂yŵ(x, s)− ∂yv̂(x, s)∂xŵ(x, s)) ds dx.

For y → 0 we obtain that
ˆ

Ω
∂xv(x)w(x) dx . ‖∇v̂‖H1(R×R+)‖∇ŵ‖H1(R×R+) . ‖v‖H1/2(Ω)‖w‖H̃1/2(Ω)

.

for any such pair of functions.

The previous result is sharp in the sense that the partial derivative does not map H1/2(Ω) to
H−1/2(Ω) for a bounded Lipschitz domain Ω, see Exercise A.29. But we have that the tangen-
tial derivative maps H1/2(∂Ω) to H−1/2(∂Ω), which was already used in Example 2.9, see also
Exercise A.30.
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4. Corner singularities in planar domains

§1. Setting

This section provides a brief introduction to the regularity theory of elliptic second-order boundary
value problems in Lipschitz polygons (“polygons” for short), that is, in open and bounded domains
whose boundary can locally be represented as the graph of a piecewise affine function. As a
simplification of the general situation presented in [Gri92, Chapter 2], we consider the Dirichlet
Laplacian as a model case,

−∆u = f in Ω and u = 0 on ∂Ω.

In a Hilbert space setting, this problem has a unique solution Sobolev space H1
0 (Ω) for any

f ∈ H−1(Ω). More precisely, the operator

−∆ : H1
0 (Ω)→ H−1(Ω)

is an isomorphism. If we restrict our attention to right-hand sides f from L2(Ω), the range of
the solution operator (−∆)−1|L2(Ω) is a subspace of H1

0 (Ω), and regularity theory tries to find
characterizations of this subspace. It is known that such solutions enjoy H2 regularity in the
interior that can be extended up to the boundary provided the latter is sufficiently smooth, say it
belongs to the class C2. In this case, it can be shown by local flattening and reflection techniques
[Eva10] that u ∈ H1

0 (Ω)∩H2(Ω) whenever f ∈ L2(Ω). In domains with corners (such as polygons)
this result is not generally true.

Example 4.1. Let Ω := {(r, θ) : 0 < r < 1 and 0 < θ < 3π/2} denote the sector domain (r and
θ are the usual polar coordinates). Then

u(r, θ) = r2/3 sin(2θ/3)

belongs to H1(Ω), satisfies zero boundary conditions near (0, 0), but does not belong to H2(ω)
for any open subdomain ω ⊂ Ω such that (0, 0) ∈ ω̄. On the other hand we have that ∆u = 0,
which belongs to L2(Ω).

It will turn out that functions as in this example will describe characteristic singularities near
corners. We shall prove that the operator −∆ maps H1

0 (Ω) ∩ H2(Ω) to a closed subspace of
L2(Ω), whose orthogonal complement N has a dimension related to the corners of the domain.
If Ω has finitely many corners, then N is finite-dimensional. This is the main decomposition
theorem. Moreover, this characterization makes it possible to precisely predict the regularity
of the solution using fractional Sobolev spaces. In the above example, the solution satisfies the
regularity

u ∈ H5/3−δ(Ω) for any δ > 0.

We will study how regularity in the fractional-order Sobolev spaces Hs(Ω) for 0 < s < 1 is related
to the corners of the domain.
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Figure 4.1.: Our notation for a polygon.

In what follows, Ω ⊂ R2 is a bounded and open polygon with (for simplicity) finitely many
corners. Thus, there exists a positive integer M such that the boundary consists of M many
straight line segments (Γj : j = 1, . . . ,M) meeting at corners (Sj : 1 = 1, . . . ,M) where Sj :=
Γj ∩ Γj+1, see Figure 4.1 for an illustration.
We consider the space

H(∆,Ω) := {v ∈ L2(Ω) : ∆v ∈ L2(Ω)}

with the norm
‖v‖H(∆,Ω) =

(
‖v‖2L2(Ω) + ‖∆v‖2L2(Ω)

)1/2
.

Note that first-order partial derivatives of functions from this space will in general only exist as
distributions, but not as L2 functions. Nevertheless, we can give a meaning to traces of functions
from H(∆,Ω). We note that the outward pointing unit normal vector ν to ∂Ω exists almost
everywhere on ∂Ω (namely in the interior of any of the segments Γj).

Lemma 4.2. Consider the space

W := H2(Ω) ∩H1
0 (Ω) ⊂ H2(Ω).

The trace mapping γ : H2(Ω)→W ∗ defined by

v 7→
[
w 7→

ˆ
∂Ω
v
∂w

∂ν
ds

]
=: 〈γv, ·〉 ∈W ∗

has a unique continuous extension to a linear map from H(∆,Ω) to W ∗.

Proof. Let v ∈ H2(Ω) and w ∈W . Integration by parts (applied twice) shows
ˆ

Ω
v∆w dx =

ˆ
∂Ω
v
∂w

∂ν
ds−

ˆ
∂Ω
w
∂v

∂ν
ds+

ˆ
Ω
w∆v dx.

Since w vanishes on the boundary, the second integral on the right-hand side equals zero. This
and the Cauchy inequality establish

ˆ
∂Ω
v
∂w

∂ν
ds =

ˆ
Ω
v∆w dx−

ˆ
Ω
w∆v dx

≤ ‖v‖L2(Ω)‖∆w‖L2(Ω) + ‖w‖L2(Ω)‖∆v‖L2(Ω) ≤ C‖v‖H(∆,Ω)‖w‖H2(Ω).

The result follows from density of H2(Ω) in H(∆,Ω) (see Exercise A.35).

Remark 4.3. We interpret γu as a boundary trace for u ∈ H(∆,Ω) and write u|∂Ω instead of
γu. �
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§2. The decomposition theorems

Recall the notation W := H2(Ω) ∩H1
0 (Ω). We consider the Laplacian as an operator ∆ : W →

L2(Ω). Injectivity and closed range property of ∆ follow from Exercise A.32. We are interested
in

N := {v ∈ L2(Ω) : ∀w ∈W (∆w, v)L2(Ω) = 0} = (∆W )⊥.

These are the right-hand sides leading to singular solutions to the Laplacian.

Lemma 4.4. We have v ∈ N if and only if v ∈ H(∆,Ω) and

∆v = 0 in Ω and v|∂Ω = 0 in the sense of traces of H(∆,Ω).

Proof. The proof is left to the reader as an exercise.

Lemma 4.5. Let v ∈ N and let U ⊂ Ω̄ denote any neighbourhood of the corners {Sj}. Then
v ∈ C∞(Ω̄ \ U).

Proof. This is the classical interior regularity result, see [Eva10].

Consider the corner number j with angle ωj and the operator

Λj : H2(0, ωj) ∩H1
0 (0, ωj)→ L2(0, ωj)

defined by
Λjϕ = −ϕ′′.

We know from the spectral theory of self-adjoint compact operators that Λj has a discrete spec-
trum with nonnegative eigenvalues λ2

j,m (m = 1, 2, 3, . . . ). The corresponding L2-normalized
eigenfunctions are denoted by ϕj,m. It is well known that

λj,m = mπ/ωj and ϕj,m(θ) =
√

2/ωj sin(θλj,m).

Given any corner Sj we denote the polar coordinates with origin Sj by (rj , θj). We choose
ρj > 0 small enough such that Dρj := Ω ∩ {0 < rj < ρj} does not intersect with parts of ∂Ω
other than Γj ∪ Γj+1. We will sometimes use cut-off functions ηj ∈ C∞(Ω̄), j = 1, . . . ,M with
mutually disjoint supports and the property

ηj =

{
1 in an open neighbourhood of Sj
0 outside Dρj .

.

We now fix one corner Sj ≡ S and denote the polar coordinates with origin S by (r, θ). We write
ρ = ρj as well as λm := λj,m and ϕm := ϕj,m, ω := ωj .
The representation of the Laplacian in polar coordinates shows that any v ∈ N satisfies

∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2
= 0 for 0 < θ < ω, 0 < r < ρ.

It can be shown that v has zero boundary conditions away from Sj (prove this as an exercise),
see Lemma 4.5. For any 0 < r < ρ, we have

v(r, θ) ∈ H2(0, ωj) (as a function of θ)

and thus
∂2v

∂r2
+

1

r

∂v

∂r
− 1

r2
Λjv = 0 for 0 < r < ρ. (4.1)
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Lemma 4.6. Let v ∈ C∞((0, ρ);H2(0, ωj)∩H1
0 (0, ωj)) solve (4.1) and assume v ∈ L2(Dρ). Then

there exist real numbers αm, βm with

|αm| ≤ Lm1/2ρ−(λm+1)

(L only dependent on v) such that

v(r, θ) =
∑
m≥1

αmr
λmϕm(θ) +

∑
0<λm<1

βmr
−λmϕm(θ).

Proof. The functions ϕm form a complete orthonormal system of L2(0, ω). Thus

v(r, θ) =
∑
m≥1

vm(r)ϕm(θ) with the coefficient vm(r) =

ˆ ω

0
v(r, θ)ϕm(θ)dθ.

The differential equation implies

v′′m(r) + r−1v′m(r)− λ2
mr
−2vm(r) = 0 for 0 < r < ρ.

This ODE has the following solutions (Exercise A.33)

vm(r) = αmr
λm + βmr

−λm for λm > 0 (relevant here)
vm(r) = αm + βm log(r) for λm = 0 (not relevant here).

Squaring the coefficient relation, integrating, and using Cauchy’s inequality implies
ˆ ρ

0
|vm(r)|2rdr =

ˆ ρ

0
|
ˆ ω

0
v(r, θ)ϕm(θ)dθ|2rdr ≤

ˆ ρ

0

ˆ ω

0
|v(r, θ)|2dθrdr = ‖v‖2L2(Dρ) <∞.

Thus in case λm ≥ 1, we see that βm = 0. Furthermore, if λm ≥ 1, we see that

|αm|2

2λm + 2
ρ2λm+2 = |αm|2

ˆ ρ

0
r2λm+1dr ≤ ‖v‖2L2(Dρ).

Theorem 4.7. The dimension of N equals∑
j

card{λj,m : 0 < λj,m < 1}.

Proof. Step 1. We begin by considering a fixed corner (number j) and the related eigenvalues
λm and eigenfunctions ϕm. Let m be such that λm ∈ (0, 1). Recall the localization function
η ≡ ηj and the polar coordinates (r, θ) related to this corner. We define the function

um := ηr−λmϕm(θ).

We obviously have that um ∈ H(∆,Ω) (prove this as an exercise) with (generalized) zero boundary
conditions.. We can thus solve for vm ∈ H1

0 (Ω) with ∆vm = ∆um and set σm := um−vm. We then
have by construction that σm ∈ H(∆,Ω) and σm|∂Ω = 0, furthermore ∆σm = 0. By Lemma 4.5
we thus have σm ∈ N . Therefore we have shown that there exists σm ∈ N such that

σm − ηr−λmϕm(θ) ∈ H1(Ω).
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Step 2. Let v ∈ N . We have seen in the lemma that near our corner (number j) we have

v(r, θ)−
∑
m≥1

αmr
λmϕm(θ)−

∑
0<λm<1

βmr
−λmϕm(θ) = 0.

We have seen that r−λmϕm(θ) and σm only differ by an H1(Ω) function, thus upon substituting
we obtain

v(r, θ)−
∑
m≥1

αmr
λmϕm(θ)−

∑
0<λm<1

βmσm ∈ H1(Dρ).

It is proved as an exercise that (with the help of the bounds on αm from Lemma 4.6)∑
m≥1

αmr
λmϕm(θ) ∈ H1(Dρ′) for any 0 < ρ′ < ρ.

Consequently, we infer that

v(r, θ)−
∑

0<λm<1

βmσm ∈ H1(Dρ′).

Step 3. The interior regularity from Lemma 4.5 then shows that, in global notation, we have

w := v −
∑
j

∑
0<λj,m<1

βj,mσj,m ∈ H1(Ω).

On the other hand, since w ∈ N ∩H1(Ω), we know by Lemma 4.5 that w ∈ H1(Ω) is harmonic
with zero boundary conditions. Thus, w = 0 and

v =
∑
j

∑
0<λj,m<1

βj,mσj,m.

For any corner Sj of the domain Ω we define the “singularity function” τj by

τj(rj , θj) = ηj(rj)r
λj,1
j ϕj,1(θj).

These functions have the following properties.

Lemma 4.8. The functions τj (j = 1, . . . ,M) satisfy

τj ∈ H(∆,Ω) and τj |∂Ω = 0.

The functions (∆τj : j = 1, . . . ,M) are linearly independent. If λj,1 < 1, then ∆τj is not
orthogonal to the space N .

Proof. Exercise A.37.

Theorem 4.9. Let Ω ⊂ R2 be a connected and open polygonal domain and f ∈ L2(Ω), and denote
by u ∈ H1

0 (Ω) the solution to the Poisson equation

−∆u = f in Ω and u = 0 on ∂Ω.

Then there exist real coefficients (c1, . . . , cM ) ∈ RM such that

u−
∑
j with
ωj>π

cjτj ∈ H2(Ω).
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Proof. We know that λj,m = mπ/ωj . Thus

λj,m < 1 if and only if ωj > π and m = 1.

Theorem 4.7 thus teaches us that

dimN = {j : ωj > π}.

The functions τj for ωj > π are linearly independent and thus, by a dimension argument, form a
basis of N . Consequently, the space L2(Ω) is spanned by the range of ∆((H1

0 (Ω) ∩H2(Ω)) and
the functions ∆τj . Thus, given f ∈ L2(Ω), there exists w ∈ H1

0 (Ω) ∩ H2(Ω) and coefficients cj
such that

f = ∆w +
∑
j with
ωj>π

cj∆τj .

The assertion of the theorem follows from the uniqueness of the solution to the variational problem
(i.e., apply ∆−1 on both sides).

We end this section with a quantification of regularity in Sobolev spaces of fractional order.

Theorem 4.10. Let Ω ⊂ R2 be a connected and open polygonal domain and f ∈ L2(Ω). The
solution u ∈ H1

0 (Ω) to the Poisson equation

−∆u = f in Ω and u = 0 on ∂Ω

satisfies
u ∈ H1+s(Ω) for any s < min{1, min

j=1,...,M

π

ωj
}.

Proof. Details are worked out in Exercise A.36.
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5. Nonconforming FEM

§1. The Crouzeix–Raviart element

For standard methods we assumed the conformity property Vh ⊆ V , which led to a convenient
error analysis via Céa’s lemma. The idea of nonconforming methods is to gain more flexibility (in
whatever sense) of the discretization by giving up that constraint. In general we will therefore
work with discrete space Vh 6⊆ V . We start with the Crouzeix–Raviart element as a basic example.
For simplicity we shall work in R2. As usual, P1(T) is the space of piecewise affine (but possibly
discontinuous) functions. Given a triangulation T of our usual bounded, open, polygonal Lipschitz
domain Ω, we define

CR1(T) := {v ∈ P1(T) : v is continuous is the midpoints of interior faces}.

The version with homogeneous boundary conditions reads

CR1
0(T) := {v ∈ CR1(T) : v vanishes in the midpoints of boundary faces}.

We want to use this space to approximate the Dirichlet problem for the Laplacian, but we have
the obvious difficulty that CR1

0(T) is not a subspace of H1
0 (Ω). For piecewise regular objects such

as vh ∈ CR1(T), we can evaluate a piecewise gradient

∇hvh ∈ L2(Ω) defined by (∇hvh)|T = ∇(vh|T ) for any T ∈ T

and define
|||v|||h := ‖∇hv‖L2(Ω) for any piecewise H1-regular function.

We can show:

Lemma 5.1. The seminorm |||v|||h is a norm on the sum space H1
0 (Ω) + CR1

0(T).

Proof. Exercise A.43.

The seminorm is induced by the bilinear form

ah(v, w) :=

ˆ
Ω
∇hv · ∇hw dx for any v, w ∈ H1(Ω) + CR1(T).

We have shown that ah is an inner product on CR1
0(T), from which it is clear that, given f ∈ L2(Ω),

there exists a unique solution uh ∈ CR1
0(T) to

ah(uh, vh) =

ˆ
Ω
fvh dx for all vh ∈ CR1

0(T).

This is the the Crouzeix–Raviart (or nonconforming P1) method for the Dirichlet problem of the
Laplacian. For the implementation, we use the face-oriented basis functions with the property

 
F
ψE ds = δE,F
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for interior faces E, F . We note that for piecewise affine functions stating that a function is
continuous in a face midpoint is equivalent with the property that the average

ffl
E · ds coincides on

both neighbouring elements T+ and T−. On an element T with barycentric coordinates φ1, φ2, φ3,
and faces E1, E2, E3 we use the convention that φj |Ej = 0, that is Ej is opposite to the vertex
zj . The local basis function ψEj then reads

ψEj = 1− 2ϕj .

It is direct to verify that therefore the local stiffness matrix equals four times the local stiffness
matrix of the standard FEM.
The nonconforming interpolation operator is defined via

Ihv :=
∑
E∈E

 
E
v dsψE for any v ∈ H1(Ω) + CR1(T).

It has the following important property.

Lemma 5.2 (projection property). The nonconforming interpolation satisfies for any v ∈ H1(Ω)

∇hIhv = Π0∇v.

That is, the piecewise gradient of the interpolated function equals the best approximation of the
gradient by piecewise constants.

Proof. Exercise A.42.

We proceed with a basic error estimate.

Theorem 5.3. Let Ω be an open and connected polygonal Lipschitz domain and assume that the
solution u to the Poisson problem with f ∈ L2(Ω) satisfies u ∈ H1

0 (Ω) ∩H2(Ω). Then

|||u− uh|||h . h‖D2u‖L2(Ω).

Proof. We write wh := Ihu− uh and use the triangle inequality

|||u− uh|||h ≤ |||u− Ihu|||h + |||wh|||h

and observe that the square of the second term on the right-hand side satisfies

|||Ihu− uh|||2h = ah(Ihu− uh, wh) = ah(Ihu,wh)−
ˆ

Ω
fwh dx

because wh belongs to the finite element space. We use the projection property of Ih and integ-
ration by parts for the term including Ihu and compute

ah(Ihu,wh) = ah(u,wh) =

ˆ
Ω
fwh dx−

∑
E∈E

ˆ
E
∇u · νE [wh]E ds

where [·]E denotes as usual the jump across E (for boundary faces, we define it as the usual trace)
and where we have used that ∇u · νE does not jump; indeed ∇u is H1 regular. On any interior
face E, the jump [wh]E has vanishing average and is thus orthogonal to any constant function.
We compute
ˆ
E
∇u ·νE [wh]E ds =

ˆ
E
∇h(u− Ihu) ·νE [wh]E ds ≤ ‖∇h(u− Ihu)|T ‖L2(E)‖[wh−

 
E
wh ds]‖L2(E).
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With triangle, trace, and Poincaré inequalities as well as Exercise A.44, we deduceˆ
E
∇u · νE [wh]E ds . h‖D2u‖L2(T+∪T−)‖∇hwh‖L2(T+∪T−).

Altogether, we conclude the stated result from the finite overlap of face patches and the combin-
ation with the above arguments.

Remark 5.4. In the previous proof we could not use Céa’s lemma. Instead, we directly worked
with the H2 regularity of the solution. This assumption can be relaxed with a more elaborate
proof. �

§2. Application to the Stokes equations

We recall the Stokes equations. Given f ∈ L2(Ω), we seek u ∈ [H1
0 (Ω)]2 and p ∈ L2

0(Ω) such that

−∆u+∇p = f in [H−1(Ω)]2

div u = 0 in L2
0(Ω).

Here, u is a vector field and ∆ is defined component-wise. As usual, L2
0(Ω) are the L2 functions

with vanishing integral over Ω. Since
´

Ω div u dx = 0 due to integration by parts, the second
equation is indeed valid pointwise almost everywhere. The problem can be put in a saddle-point
formulation. We set V = [H1

0 (Ω)]2, M := L2
0(Ω) and

a(v, w) =

ˆ
Ω
Dv : Dwdx, b(v, q) = −

ˆ
Ω
q div v dx, F (v) =

ˆ
Ω
f · v dx, G = 0

and see that the above equation is equivalent to the usual saddle-point problem with this specific
choices. The problem admits a unique solution. The proof obviously requires an inf-sup condition
for the form b. We quote the result, which we will not prove in this lecture.

Theorem 5.5. Given an open, bounded, connected Lipschitz domain Ω, there exists β such that

0 < β = inf
q∈L2

0(Ω)\{0}
sup

v∈[H1
0 (Ω)]2\{0}

´
Ω q div v dx

‖Dv‖L2(Ω)‖q‖L2(Ω)

for some β.

We denote by Z the subspace of V of divergence-free vector fields

Z := {v ∈ V : div v = 0}.

The solution u from the Stokes equations belongs to Z satisfies

a(u, v) = F (v) for all v ∈ Z.

It is known from previous lectures that the design of Galerkin methods in Z is very difficult, see
Exercise A.48. Discretizing the saddle–point problem is easier, but the resulting approximation
will not be pointwise divergence-free in general. The advantage of a nonconforming discretization
is that the discrete velocity field uh is piecewise divergence-free, at the expense of the noncon-
formity uh /∈ V . We denote Vh = [CR1

0(T)]2, Mh := P0(T) ∩ L2
0(Ω) and

ah(v, w) =

ˆ
Ω
Dhv : Dhw dx, bh(v, q) = −

ˆ
Ω
q divh v dx.
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The nonconforming method seeks uh ∈ Vh and ph ∈Mh such that

ah(uh, vh) + bh(vh, ph) = F (vh) for all vh ∈ Vh
bh(uh, qh) = 0 for all qh ∈Mh.

Lemma 5.6. The discrete Stokes system has a unique solution (uh, ph).

Proof. It suffices to check the discrete inf-sup condition. Given qh ∈ Mh, the continuous inf-sup
condition and the projection property of Ih show that

0 < β = sup
v∈[H1

0 (Ω)]2\{0}

´
Ω qh div v dx

‖Dv‖L2(Ω)‖qh‖L2(Ω)
sup

v∈[H1
0 (Ω)]2\{0}

´
Ω qh divh Ihv dx

‖Dv‖L2(Ω)‖qh‖L2(Ω)
.

The projection property furthermore implies ‖DhIhv‖L2(Ω) ≤ ‖Dv‖L2(Ω). This implies the discrete
inf-sup condition.

It is not difficult to see that a solution uh will satisfy divh uh = 0. We consider Zh := {vh ∈
Vh : divh vh = 0}.

Lemma 5.7. The discrete solution uh to the nonconforming Stokes discretization satisfies uh ∈ Zh
and

ah(uh, vh) = F (vh) for all vh ∈ Zh.

Proof. This follows from testing with elements from Zh.

It is not difficult to obtain a basic a priori error estimate.

Theorem 5.8. Assume the solution pair (u, p) to the Stokes system with f ∈ L2(Ω) satisfies
u ∈ [H1

0 (Ω)] ∩ [H2(Ω)]2 and p ∈ L2
0(Ω) ∩ H1(Ω). Then, the error of the nonconforming FEM

discretization satisfies

|||u− uh|||h + ‖p− ph‖L2(Ω) . h(‖D2u‖L2(Ω) + ‖∇p‖L2(Ω)).

Remark 5.9. These regularity assumptions are satisfied on convex domains (PDE literature). �

Proof of Theorem 5.8. It suffices to bound the norms of the errors Ihu − uh and Π0p − ph (use
the triangle inequality and known bounds). The discrete inf-sup condition states

|||Ihu− uh|||h + ‖Π0p− ph‖L2(Ω)

. sup
|||wh|||h=1
‖qh‖L2(Ω)=1

[ah(Ihu− uh, wh) + bh(wh,Π0p− ph) + bh(Ihu− uh, qh)] .

The projection properties of Ih and Π0 and the constraint on the divergence show that the last
term on the right-hand side equals zero and that

ah(Ihu− uh, wh) + bh(wh,Π0p− ph) = ah(u,wh) + bh(wh, p)−
ˆ

Ω
f · wh dx.

We proceed in a similar fashion as in the convergence proof for the Poisson equation. From
piecewise integration by parts we obtain

ah(u,wh) + bh(wh, p) =

ˆ
Ω
fwh dx−

∑
E∈E

ˆ
E

((Du− pI2×2)νE) · [wh]E ds.

The conclusion of the proof is similar as in the Poisson case and left as an exercise.
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Figure 5.1.: Orientation of the normal vectors ν̂E around the vertex z

We have seen that the nonconforming method directly produces piecewise divergence-free solu-
tions. It is possible to design a local basis of Zh in an explicit construction:

• For each interior edge E we take a function αE ∈ CR1
0(T) such that

 
E
αE · νE ds = 0,

 
E
αE · tE ds = 1,

 
F
αE ds = 0 for F 6= E.

Here tE = (−νE,2, νE,1) is a unit tangent vector.

• For each interior vertex z with set of edges E(z) containing z we define αz ∈ CR1
0(T) as

follows. All tangential components are set to zero. Also, the normal components are set to
zero on those edges that do not touch z,

 
E
αz · tE ds = 0 for all E ∈ E(Ω) and

 
E
αz · νE ds = 0 for all E /∈ E(z).

For any edge E touching z we choose a normal vector ν̂E with counterclockwise orientation
(see Figure 5.1 and choose ˆ

E
αz · ν̂E ds = 1.

It is not difficult to check that αz and αE belong to Zh and are linear independent. By a dimension
argument (see Exercise A.45) it can then be shown that the functions form a basis of Zh if the
domain is simply connected. Details are worked out in Exercise A.49.

§3. Morley element

We consider a variational problem in the space H2
0 (Ω), the biharmonic problem. Given f ∈ L2(Ω)

for simplicity, it seeks a function u such that

∆2u = f in Ω and u = ∂u/∂ν = 0 on ∂Ω.

It is easy to calculate via integration by parts that a sufficiently smooth function u ∈ H2
0 (Ω)

satisfies ˆ
Ω

∆2uϕdx =

ˆ
Ω
D2u : D2ϕdx =

ˆ
Ω

∆u∆ϕdx for ϕ ∈ C∞c (Ω).

The corresponding variational equality
ˆ

Ω
D2u : D2v dx =

ˆ
Ω
fv dx for all v ∈ H2

0 (Ω)

has a unique solution by the Riesz representation theorem in H2
0 (Ω). If Vh is a subspace of H2

0 (Ω),
the Galerkin projection is easily defined and standard theory can be used to establish an a priori
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Figure 5.2.: Mnemonic diagrams of some finite elements for the biharmonic equation: Argyris,
HCT, BFS (definitions see [Cia78]), and Morley.

error analysis. However, it turns out that the construction of H2 conforming piecewise polynomial
finite element spaces is rather complicated. The three simplest choices are the Argyris element, the
Hsieh–Clough–Tocher (HCT) element, or the Bogner–Fox–Schmid (BFS) element from Figure 5.2.
We will use a nonconforming element that allows a much simpler local construction by giving

up certain continuity constraints. The Morley element is the following (formal) finite element for
a triangle T

(T, P2(T ), {δz,
 
E

∂•
∂νT

ds : z ∈ N(T ), E ∈ E(T )}),

that is, the shape function are the quadratic polynomials and the degrees of freedom are the point
evaluations at the three vertices and the evaluations of the averages of the normal derivative over
the three edges of the triangle. The Morley finite element space is

M0(T) :=

v ∈ P2(T) :

v continuous at the interior vertices, v = 0 at boundary vertices
∂v/∂νE continuous at the interior edges’ midpoints,
∂v/∂ν = 0 at boundary edges’ midpoints

 .

Given f ∈ L2(Ω), the discrete problem seeks uh ∈M0(T) such that
ˆ

Ω
D2
huh : D2

hvh dx =

ˆ
Ω
fvh dx for all vh ∈M0(T).

It is easy to check that the left hand side defines a positive definite bilinear form: if the piecewise
Hessian D2

hvh of vh is zero, then vh must be piecewise affine. The continuity at interior vertices
implies then that vh is continuous and thus in S1(T). The continuity of the normal derivatives
over the edge midpoints shows that vh must be globally affine and, by the boundary conditions
imposed on M0(T), therefore is the zero function. Hence, there exists a unique solution uh to
the discrete problem. The main tool in the error analysis is again a nonconforming interpolation
operator, which is defined via the degrees of freedom. Given v ∈ H2

0 (Ω), the element IMh v ∈M0(T)
is uniquely defined by the conditions

(v − IMh v)(z) = 0 for all z ∈ N and
 
E

∂(v − Ihv)

∂νE
(z) = 0 for all E ∈ E.

With arguments similar to those for the Crouzeix–Raviart element we show the projection prop-
erty for the Hessian

D2
hI
M
h v = Π0D

2v.

There is indeed a close connection between the Morley and the Crouzeix–Raviart method. First,
it is directly verified that

∇hM0(T) ⊆ CR1
0(T) and ICRh ∇v = ∇hIMh v.
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H2
0 (Ω) [H1

0 (Ω)]2 L2
0(Ω)

M0(T) [CR1
0(T)]2 P0(T) ∩ L2

0(Ω)

Curl div

Curlh divh

IMh ICR
h Π0

Figure 5.3.: Curl-div complex.

We will now prove that the horizontal sequences in Figure 5.3 are exact and that the diagram
commutes. We work with the operators

Curl v =

(
−∂yu
∂xu

)
=

(
0 −1
1 0

)
∇u and rotφ = ∂xφ2 − ∂yφ1

for scalar functions v and vector fields φ. The piecewise counterparts are as usual denoted with
the index h.

Theorem 5.10. The diagram of Figure 5.3 commutes. If Ω is simply connected, the horizontal
sequences in Figure 5.3 are exact and the diagram commutes.

Proof. The commuting property is a direct consequence of the projection properties of the re-
spective interpolation operators. It is a classical result that the first row is an exact sequence and
we are left with showing this property for the second row. Clearly, divh Curlh = 0, which implies
the complex property

CurlhM0(T) ⊆ Zh
where

Zh := {vh ∈ CR1
0(T) : divh vh = 0}.

For showing CurlhM0(T) = Zh it suffices to compare dimensions. We have previously shown that
the dimension of Zh equals card(N(Ω)) + card(E(Ω)). This is precisely the number of degrees of
freedom of the Morley element and thus the dimension of M0(T). The kernel of Curlh, namely
the piecewise constant functions, has only a trivial intersection with M0(T).

From the above we observe that the solution u to the Stokes system with right-hand side f can
be written as Curlφ for some φ ∈ H2

0 (Ω). We then have −∆ Curlφ+∇p = f . Taking rot of the
equation leads to

∆2ϕ = − rot f

because rot ∆ Curl = ∆2. If the distribution rot f is an L2 function, this can be directly discretized
with the Morley element. Alternatively, we can discretize the right-hand side with the linear form

ˆ
Ω
f · Curlh vh dx for vh ∈M0(T).

The resulting method with produce uh = Curlh ϕh, which is the solution to the Crouzeix–Raviart
method. In this sense, the structure from the continuous setting is preserved by the nonconforming
spaces. In fluid mechanics, the function φ is called stream function.
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§4. The Helmholtz decomposition

The Helmholtz theorem is a classical result stating that any (unstructured) L2 vector field can
be decomposed as a gradient field and a divergence-free field. In what follows, we denote

Z = H(div0,Ω) = {τ ∈ H(div,Ω) : div τ = 0}.

Lemma 5.11 (Helmholtz decomposition). Let Ω ⊆ Rn be an open, bounded, connected Lipschitz
domain and let p ∈ [L2(Ω)]n. Then there exist a unique α ∈ H1

0 (Ω) and a unique R ∈ Z such that

p = ∇α+R.

The decomposition is L2(Ω)-orthogonal.

Proof. Let α ∈ H1
0 (Ω) denote the solution to −∆α = −div p and set R := p − ∇α. Then we

have divR = 0 and thus the claimed decomposition. The orthogonality is easily checked with
integration by parts,

´
Ω∇α ·Rdx = −

´
Ω α divRdx = 0.

In shorthand notation, we write

[L2(Ω)]n = ∇H1
0 (Ω)⊕ Z.

The gradient part ∇α is sometimes called Helmholtz projector in the literature. A remarkable
structure of the nonconforming method is that is satisfies a discrete analogue of the Helmholtz
decomposition. Thereby, we also find a close connection to the Raviart–Thomas space. We will
prove

[P0(T)]n = ∇hCR1
0(Ω)⊕ Zh

where Zh := RT 0(T) ∩ Z.

Lemma 5.12 (discrete Helmholtz decomposition). Let Ω ⊆ Rn be an open, bounded, connected
Lipschitz polytope and let ph ∈ [P0(T)]n. Then there exist a unique αh ∈ CR1

0(Ω) and a unique
Rh ∈ Zh such that

ph = ∇hαh +Rh.

The decomposition is L2(Ω)-orthogonal.

Proof. As in the continuous case, we denote by αh ∈ CR1
0(T) the unique solution to

ˆ
Ω
∇hαh · ∇hvh dx =

ˆ
Ω
ph · ∇hvh dx for all vh ∈ CR1

0(T)

and denote Rh := ph−∇hαh. Clearly, Rh is piecewise constant. We denote by ψF the Crouzeix–
Raviart basis function with respect to the interior face F ∈ F(Ω) (in 2d this is an interior edge).
With this test function observe from the above solution property and integration by parts that

0 =

ˆ
Ω
Rh · ∇hψF dx =

ˆ
F

[Rh]F · νFψF ds = [Rh]F · νF
ˆ
F
ψF ds.

We conclude that Rh does not have normal jumps and therefore belongs to H(div,Ω). Hence,
Rh ∈ Zh. The orthogonality of the decomposition follows from integration by parts:ˆ

Ω
∇hαh ·Rh dx = −

ˆ
Ω
αh divRh dx+

∑
F∈F(Ω)

Rh · νF [αh]F ds = 0

because the jumps of αh have vanishing integral mean over the faces.

39



Instead of working with explicit gradients, we can equivalently work with the orthogonal com-
plement of Z for solving the Poisson equation. We denote by Γ := ∇H1

0 (Ω) the space of gradients
and observe

Γ = Z⊥.

Given f ∈ L2(Ω), assume we are given any vector field ϕ ∈ [L2(Ω)]n with −divϕ = f . Then, the
Poisson equation −∆u = f is equivalent to finding γ ∈ Γ withˆ

Ω
γ · τ dx =

ˆ
Ω
ϕ · τ dx for all τ ∈ Γ.

The constraint γ ∈ Γ can be encoded with a multiplier z ∈ Z. The mixed problem is then to find
(γ, z) ∈ [L2(Ω)]n × Z such that

ˆ
Ω
γ · τ dx+

ˆ
Ω
z · τ dx =

ˆ
Ω
ϕ · τ dx for all τ ∈ [L2(Ω)]n

ˆ
Ω
γ · y dx = 0 for all y ∈ Z.

For showing that this is indeed well-posed, we only need to check the inf-sup condition

0 < β = inf
y∈Z\{0}

sup
τ∈[L2(Ω)]n\{0}

´
Ω y · τ dx

‖y‖H(div,Ω)‖τ‖L2(Ω)
,

which is immediately verified (choose τ = y).
On the discrete level, we can analogously write Γh = ∇hCR1

0(T) and

Γh = Z⊥h

where now the symbol ⊥ indicates the orthogonal complement within [P0(T)]n. The discrete
formulation of the above version of Poisson’s equation is to find γh ∈ Γh withˆ

Ω
γh · τh dx =

ˆ
Ω
ϕ · τh dx for all τh ∈ Γh.

The mixed problem is then to find (γh, zh) ∈ [P0(T)]n × Zh such that
ˆ

Ω
γh · τh dx+

ˆ
Ω
zh · τh dx =

ˆ
Ω
ϕ · τh dx for all τh ∈ [P0(T)]n

ˆ
Ω
γh · yh dx = 0 for all y ∈ Zh.

We note that this is a conforming method for the mixed problem (but of course Γh 6⊆ Γ). This
shows that the Crouzeix–Raviart method can be interpreted as a conforming method. For a
particular choice of ϕ we can indeed recover the usual Crouzeix–Raviart solution such that∇huh =
γh.

Lemma 5.13. Let f ∈ L2(Ω) be piecewise constant. If ϕ ∈ RT 0(T) with −divϕ = f is given as
right-hand side in the above mixed problem, then ∇huh = γh.

Proof. We can decompose any discrete test function τh = ∇hαh + Rh. We conclude from the
orthogonality and the solution property of uh thatˆ

Ω
∇huh · τh dx =

ˆ
Ω
∇huh · ∇hαh dx =

ˆ
Ω
fαh dx.
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Since f = −divϕ and ϕ is a Raviart–Thomas function, we can integrate by parts
ˆ

Ω
fαh dx =

ˆ
Ω
ϕ · ∇hαh dx =

ˆ
Ω
ϕ · τh dx−

ˆ
Ω
zh · τh dx

where zh is the orthogonal projection of ϕ onto Zh. Therefore, ∇huh solves the mixed problem
with the multiplier zh.

Corollary 5.14. Let f be piecewise constant. Let σh ∈ RT 0(T) be the vector part of the mixed
Raviart–Thomas solution and let uh denote the Crouzeix–Raviart solution. Then

Π0σh = ∇huh.

Proof. It is easy to check that the L2 projection of σh on Zh equals zero (first line of the mixed
system) and that −div σh = f (second line of the mixed system). In the foregoing proof we have
shown ˆ

Ω
∇huh · τh dx =

ˆ
Ω
σh · τh dx for all τh ∈ [P0(T)]n,

which is equivalent to the asserted identity.
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A. Problems

Exercise A.1. Let L be a linear and continuous map between Banach spaces X,Y . Prove
ker(L∗) = L(X)◦ and ker(L) = ◦(L∗(Y ∗)).

Exercise A.2. Let X,Y be Banach spaces and L ∈ L(X,Y ). Prove that L is compact if and
only if L∗ is compact.
Hints (converse direction is similar):
1. An operator is called compact if it maps bounded sets to relatively compact sets.
2. Show that A = L(B1(0)) is compact if L is compact.
3. Given a bounded sequence in Y ∗, show that it is uniformly bounded and equicontinuous over A.
Show that there is a convergent subsequence in C(A) (Arzelà–Ascoli).
4. Show that L∗ maps that subsequence to a Cauchy sequence in X∗.

Exercise A.3. For Hilbert spaces X,Y and a continuous linear map L ∈ L(X,Y ), the map
LH ∈ L(Y,X) defined by

〈Lx, y〉Y = 〈x, LHy〉X for any x ∈ X, y ∈ Y

is called the adjoint of L. Prove
LH = J−1

X ◦ L
∗ ◦ JY

where JX , JY denote the canonical isomorphisms to the biduals of X, Y .
(Hint: Riesz representation theorem.)

Exercise A.4 (Lax–Milgram lemma). Let X be a real Hilbert space with inner product 〈·, ·〉X
and let a : X ×X → R be a bilinear form satisfying the following two properties

• ∃β > 0∀(x, y) ∈ X2 |a(x, y)| ≤ β‖x‖X‖y‖Y (continuity)

• ∃α > 0 ∀x ∈ X α‖x‖2X ≤ a(x, x) (coercivity) .

Prove (using the Banach–Babuška–Nečas lemma) that there exists a unique map T : X → X
with the property

a(x, y) = 〈Tx, y〉X for all (x, y) ∈ X2.

The map T is linear, continuous, and invertible with

‖T‖L(X,X) ≤ β and ‖T−1‖L(X,X) ≤
1

α
.

Exercise A.5 (computing with dual spaces). (a) Let M ⊆ X be a subset of a Banach space X.
Prove that M◦ is closed. (Hint: Embedding in the bidual space.)
(b) Let L ∈ L(X,Y ) be a linear and continuous map between Banach spaces X,Y . Prove
L∗(Y ∗) = ◦(ker(L∗∗)◦).
(c) Let L ∈ L(X,Y ) be injective with L(X) ⊆ Y dense. Prove that L∗(Y ∗) ⊆ X∗ is dense.

Exercise A.6. Prove that any closed subspace of a reflexive Banach space is reflexive.

42



Exercise A.7 (computing with the orthogonal complement). Let X be a Hilbert space with the
Riesz isomorphism T : X → X∗.

(a) Prove that Z⊥ = T−1(Z◦) for any closed subspace Z ⊆ X.

(b) Let B : X → M∗ be a linear map such that B∗ has a bounded inverse on its range. Prove
that B : (kerB)⊥ →M∗ is an isomorphism.

Exercise A.8. Let g ∈ H1/2(∂Ω). Prove that the minimal extension, that is u ∈ H1(Ω) with

‖∇u‖L2(Ω) = min
v∈H1(Ω)
v|∂Ω=g

‖∇v‖L2(Ω),

is given by the solution to

−∆u = 0 in Ω and u = g on ∂Ω.

Exercise A.9 (negative Sobolev space). We know that H1
0 (Ω) is a Hilbert space when equipped

with the inner product
´

Ω∇v · ∇w dx. As such, it can be identified with its dual H−1(Ω). We
also know that L2(Ω) ⊆ H−1(Ω). Does this imply that L2(Ω) is also a subset of H1

0 (Ω)? Give a
complete explanation of this matter.

Exercise A.10 (Gelfand triplet). Following the chain of the Gelfand triplet, we observe that,
comparing with Y , a “smaller” space X ⊆ Y will yield a “larger” dual space Y ∗ ⊆ X∗. If X
is finite-dimensional dim(X) = n, we know that also dim(X∗) = n. Is therefore Y ∗ necessarily
finite-dimensional?

Exercise A.11. Let T be a regular triangulation of Ω ⊆ Rn and let v ∈ [P1(T)]n be a piecewise
affine vector field. For each interior edge F with adjacent triangles T+ and T− (i.e., F = T+∩T−),
the jump across F is defined by [v]F := v|T+ − v|T− . Prove that

v ∈ H(div,Ω) ⇐⇒ [v · νF ]F = 0 for all interior edges F

where νF is some normal vector of F .

Exercise A.12. Prove that the normal trace is a surjective map from {v ∈ H(div,Ω) : div v = 0}
to {g ∈ H−1/2(∂Ω) : 〈g, 1〉 = 0}.

Exercise A.13. Prove that the mixed form of the Poisson equation satisfies the properties of the
Brezzi splitting theorem.

Exercise A.14. Prove that the local basis functions ψT,E satisfy the property (2.1).

Exercise A.15. Write a routine (Python or pseudocode) that provides a global enumeration of
all edges in a given mesh T.

Exercise A.16. Implement the mixed Raviart–Thomas method for the homogeneous Dirichlet
problem of the Laplacian. Use the data from earlier exercises to compute experimental rates of
convergence in different norms.

Exercise A.17. Let T be a triangle. Prove that the following triplets (T,P,L) are finite elements
in the sense of Ciarlet.
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• The cubic Lagrange element: P = P3(T ) and L contains the point evaluations in the three
vertices of T , in two interior points of each edge, and in the midpoint of T .

• The Crouzeix–Raviart element: P = P1(T ) and L := {
ffl
E · dx : E ∈ E(T )}.

• The cubic Hermite element: P = P3(T ) and L contains the point evaluations in the three
vertices and in the midpoint of T and the evaluation of the gradient in the vertices, that is

L = {v 7→ v(z) : z ∈ N(T )} ∪ {v 7→ ∇v(z) : z ∈ N(T )} ∪ {v 7→ v(mid(T ))}.

• The Argyris element: P = P5(T ) and

L = {v 7→ v(z), v 7→ ∇v(z), v 7→ D2v(z) : z ∈ N(T )} ∪ {v 7→
 
E
∇v · νT ds : E ∈ E(T )}.

Exercise A.18. Let T be a triangle and let L consist of the six functionals

{
 
E
· ds : E ∈ E(T )} ∪ {

 
E
·s ds : E ∈ E(T )}

describing the first-order moments of a function over the three edges. Prove that (T, P2(T ),L) is
not a finite element in the sense of Ciarlet.

Exercise A.19. Let P be an m-dimensional vector space and let F be a subset of P∗ with m
elements. Prove that the elements of F form a basis of P∗ if and only if for any v ∈ P the relation
〈F, v〉 = 0 for all F ∈ F implies v = 0.

Exercise A.20. Prove that there exists a constant that only depends on the shape regularity
such that

‖v − IRTv‖L2(T ) ≤ ChT ‖Dv‖L2(T ) for any v ∈ [H1(T )]2

and
‖ div(v − IRTv)‖L2(T ) ≤ ChT ‖∇div v‖L2(T ) for any v ∈ [H2(T )]2.

Exercise A.21. Prove that unit normal vectors transform as

ν(x) =
1

|B−>ν̂(x̂)|
B−>ν̂(x̂).

Exercise A.22. Prove Lemma 2.17.

Exercise A.23. Prove that the Raviart–Thomas interpolation is invariant under the Piola trans-
form, i.e.,

IRT ,T̂ q̂ = ÎRT ,T q.

Exercise A.24. Let u(x) = sign(x1) and let Ω = (−1, 1)n denote the hypercube in Rn. Prove
that u ∈ Hs(Ω) if 0 < s < 1/2 and that u /∈ Hs(Ω) if 1/2 ≤ s < 1.

Exercise A.25. Let 0 < s < 1 and let u ∈ Hs(Ω) have compact support in Ω. Denote δ =
dist(supp(u), ∂Ω) and let ũ denote the continuation of u by zero to Rn. Prove that ũ ∈ Hs(Rn)
and

‖ũ‖2Hs(Rn) ≤ C(1 + s−1δ−2s)‖u‖2Hs(Ω).

Hint: Lemma 6.34 in [Dob10].
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Exercise A.26. Let u : Rn → R be of class C1 and let x, y ∈ Rn. Prove that

u(z)− u(x) =

ˆ 1

0
∇(tz + (1− t)x) · (z − x) dt.

Exercise A.27. Convince yourself that locally flattening the boundary of a Lipschitz domain
preserves the H1 property. Consult Lemma 6.6 from [Dob10]

Exercise A.28. Let u ∈ H̃1/2(Ω). Prove that

‖u‖2
H̃1/2(Ω)

= ‖u‖2
H1/2(Ω)

+ 2

ˆ
Ω
|u(x)|2

ˆ
Rn\Ω

|x− y|−n−1 dy dx.

Exercise A.29. Prove that the bilinear form (v, w) 7→
´ 1

0 v
′(x)w(x) dx does not possess a con-

tinuous extension toH1/2((0, 1))×H1/2((0, 1)). Hint: Consider the function log(| log(x/ exp(1))|).

Exercise A.30. Let Ω ⊆ R2 be a bounded open Lipschitz polygon. Prove that the tangential
derivative ∂s is a continuous map from H1/2(∂Ω) to H−1/2(∂Ω).

Exercise A.31. On the L-shaped domain Ω = (−1, 1)2 \ ([0, 1] × [−1, 0]) we are given the
Dirichlet boundary ΓD = {0} × [−1, 0] ∪ [0, 1]× {0} and the Neumann boundary ΓN = ∂Ω \ ΓD.
For boundary data uD = 1 on ΓD, and Neumann data

g(x, y) =
2

3
r−1/3 ×


cos(φ) sin(2φ/3)− sin(φ) cos(2φ/3) if x = 1

sin(φ) sin(2φ/3) + cos(φ) cos(2φ/3) if y = 1

− cos(φ) sin(2φ/3) + sin(φ) cos(2φ/3) if x = −1

− sin(φ) sin(2φ/3)− cos(φ) cos(2φ/3) if y = −1

in polar coordinates (r, φ), and f = 0, solve the mixed boundary value problem for the Laplacian
with the mixed Raviart–Thomas FEM. The exact solution is given by u(r, φ) = 1+r2/3 sin(2φ/3).
Plot the convergence history for the L2 norm of u− uh as well as σ − σh and on Πhu− uh.

Exercise A.32. Let Ω ⊂ R2 be a connected and open polygonal domain. Prove that every
u ∈ H2(Ω) ∩H1

0 (Ω) satisfies the identity

‖∆u‖2 = ‖D2u‖2.

Conclude that ∆ : H2(Ω) ∩ H1
0 (Ω) → L2(Ω) is injective with closed range. Furthermore, prove

that exists a constant C(Ω) such that every u ∈ H2(Ω) ∩H1
0 (Ω) satisfies

‖u‖H2(Ω) ≤ C(Ω)‖∆u‖.

Exercise A.33. Consider the ODE

v′′(r) + r−1v′(r)− λ2r−2v(r) = 0 0 < r < ρ

for some nonnegative real number λ. Prove that the solution is given by

v(r) =

{
αrλ + βr−λ if λ > 0

α+ β log(r) if λ = 0

with real numbers α, β. Hint: The ODE is called Cauchy–Euler equation.
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Exercise A.34. We consider v ∈ H(∆,Ω) for a polygon Ω. Let Γ ⊆ ∂Ω be a straight segment of
the boundary. Prove that v|Γ ∈ [H̃1/2(Γ)]∗. Hint: You may use [Gri85] that the trace of ∂ · /∂ν
is continuous and onto from H1

0 (Ω) ∩H2(Ω) to H̃1/2(Ω′) for any convex polygon Ω′.

Exercise A.35. Let Ω ⊂ R2 be a connected and open polygonal domain. Prove that H2(Ω) is
dense in H(∆,Ω), but H1

0 (Ω) ∩H2(Ω) is not dense in H1
0 (Ω) ∩H(∆,Ω).

Exercise A.36. Show that in two dimensions and for 0 < s, α < 1, we have rα ∈ H1+s(Ω) if and
only if s < 1 + α. Prove Theorem 4.10.

Exercise A.37. Prove Lemma 4.8.

Exercise A.38. Let uh ∈ S1
0(T) be the standard FEM solution to the right-hand side f ∈ L2(Ω).

Let z be an interior vertex of T with hat function ϕz. Prove that

1

2

∑
E∈E(z)

ˆ
E

[∇uh]E · νE ds =

ˆ
ωz

fϕz dx

for the set E(z) of edges containing z.

Exercise A.39. Prove that for f ∈ L2(Ω) the following error bound holds

‖∇(u− uh)‖L2(Ω) ≤ ‖τ
pw
h ‖L2(Ω) +

√√√√∑
T∈T

h2
T

π2
‖f −

 
T
f dx‖2

L2(T )
.

Hint: You may use that the Poincaré constant on a convex domain ω can be bounded by diam(ω)/π.

Exercise A.40. Consider the Dirichlet problem for the Laplacian with homogeneous boundary
conditions on the unit square. with f(x) = 2(x1(1− x1) + x2(1− x2)) and exact solution u(x) =
x1(x1− 1)x2(x2− 1). Compute ‖∇uh−σh‖L2(Ω) on a sequence of mesh refinements and compare
with the true errors.

Exercise A.41. Implement the error estimator ‖τpw
h ‖L2(Ω) and test its performance for the setting

of the previous Exercise.

Exercise A.42. Prove the projection property ∇hIh = Π0∇ for the nonconforming interpolation
operator.

Exercise A.43. Prove that |||·|||h is a norm on H1
0 (Ω) + CR1

0(T).

Exercise A.44. Let T be a triangle and v ∈ H1(T ) satisfy
ffl
E v ds = 0 for an edge E of T . Prove

‖v‖L2(T ) + h
1/2
T ‖v‖L2(E) ≤ ChT ‖∇v‖L2(T )

with a constant C that only depends on the shape regularity.

Exercise A.45 (Euler formulae). Let T be a triangulation of the simply-connected polygonal
domain Ω. Prove

card(T) + card(N) = 1 + card(E) and 2 card(T) + 1 = card(N) + card(E(Ω)).

Here, as usual, E is the set of edges, E(Ω) the set of interior edges, and N the set of vertices.
What happens on planar domains with holes?
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Exercise A.46. Implement the Crouzeix–Raviart method for Ω and f as in Exercise A.40 and
produce experimental convergence history plots for the error in the |||·|||h norm and the L2 norm.

Exercise A.47. Prove that the L2 error of the Crouzeix–Raviart method is of order h2 provided
u ∈ H1

0 (Ω) ∩H2(Ω).

Exercise A.48. (conforming divergence-free functions are trivial)
Let T be the criss triangulation of the unit square and let uh ∈ [S1

0(T)]2 with div uh = 0. Prove
that uh = 0.
Hint: The criss triangulation is

.

Exercise A.49. Prove that the functions αz, αE for all interior vertices z and interior edges E
form a basis of Zh if Ω is simply connected. How needs the construction be modified for domains
with holes?

Exercise A.50. Implement the Crouzeix–Raviart method for the Stokes equations. As a test
example, use the following data on the square Ω = (−1, 1)2 (not the unit square): The right-hand
side f = 0 is zero and the exact solution is

u(x1, x2) =

(
20x1x

4
2 − 4x5

1

20x4
1x2 − 4x5

2.

)
Choose the inhomogeneous Dirichlet data uD according to u. Create convergence history plots
for the |||·|||h error in the u variable and the L2 error in the p variable.
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