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1. Finite differences for Poisson’s equation

§1. Basic notions

In this lecture we study a class of partial differential equations (PDEs) and their numerical
approximation. We confine ourselves to linear equations of second order. The most prominent
example is Poisson’s equation −∆u = f , where u is the unknown function, ∆ is the Laplacian,
and f is some given function, usually referred to as right-hand side. The equation is called partial
differential equation because it involves partial derivatives of the solution (in contrast to ordinary
differential equations (ODEs), which only depend on one scalar variable. The notion of 2nd order
describes that the highest involved derivative of u has order 2. In order to get started with
a fairly simple setting, we will consider Poisson’s equation in the first lectures. Generally, we
pose the questions of existence of a solution to a PDE and its uniqueness. Clearly, solutions to
Poisson’s equation are not unique without any further constraints being imposed. For instance,
any solution can be shifted by an arbitrary affine function and will still remain a solution. We will
thus consider the Dirichlet problem, which imposes a zero boundary condition on the solution.
This PDE is posed on a domain Ω ⊆ Rn which is open, bounded, and connected.

Definition 1.1 (Dirichlet problem for the Laplacian). Let Ω ⊆ Rn be open, bounded, and
connected. A function u ∈ C2(Ω)∩C(Ω̄) is said to be a classical solution to the Dirichlet problem
(for the Laplacian) with right-hand side f ∈ C(Ω) and boundary values g ∈ C(∂Ω) if it satisfies

−∆u = f in Ω und u = g on ∂Ω.

�

The question under which circumstances solutions to the Dirichlet problem exist is difficult to
answer in general. At this stage, we confine ourselves to a basic statement on uniqueness.

Lemma 1.2 (maximum principle). Let Ω ⊆ Rn be open, bounded, and connected and let u ∈
C2(Ω) ∩ C(Ω̄) satisfy ∆u ≥ 0 in Ω. Then the maximum of u is attained on the boundary, i.e.,

max
Ω̄

u = max
∂Ω

u.

Proof. We note that Ω̄ is compact and thus the maximum of u is attained in Ω ∪ ∂Ω. Let us
first assume the strict inequality ∆u > 0 in Ω. At any point x0 ∈ Ω with u(x0) = maxΩ̄ u,
the Hessian is necessarily negative-semidefinite, written D2u(x0) ≤ 0, and so has only non-
positive eigenvalues. In particular its trace (the sum of all eigenvalues) is non-positive, whence
tr(D2u(x0)) = ∆u(x0) ≤ 0. In view of the assumed inequality ∆u > 0, such a point x0 ∈ Ω
cannot exist, which implies that the maximum is attained on ∂Ω. In the general case of ∆u ≥ 0
in Ω we let ε > 0 and define uε(x) = u(x) + ε|x|2 where | · | denotes the Euclidean norm. We then
have for any ε > 0 that ∆uε > 0 in Ω and the above argument shows that

max
Ω̄

uε = max
∂Ω

uε.
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We observe for any x ∈ Ω̄ that

u(x) ≤ uε(x) ≤ max
Ω̄

uε = max
∂Ω

uε = max
x∈∂Ω

u(x) + ε|x|2 ≤ max
∂Ω

u+ εR2

for R := maxx∈Ω̄ |x|2. The assertion then follows from letting ε→ 0.

Corollary 1.3 (uniqueness). There is at most one classical solution to the Dirichlet problem from
Definition 1.1.

Proof. Let u1, u2 be two classical solutions. Then, w := u1 − u2 satisfies w ∈ C2(Ω) ∩ C(Ω̄)
and solves ∆w = 0 in Ω with w = 0 on ∂Ω. The maximum principle implies that w attains its
maximum on ∂Ω and thus w ≤ 0 in Ω. On the other hand, ∆w = 0 also implies ∆(−w) ≥ 0.
The maximum principle applied to −w thus proves −w ≤ 0. In consequence w = 0 in Ω and thus
u1 = u2.

Corollary 1.4 (comparison principle). Let u, v ∈ C2(Ω) ∩ C(Ω̄) be such that u ≤ v on ∂Ω and
∆u ≥ ∆v in Ω. Then u ≤ v in Ω.

Proof. The difference w := u − v satisfies ∆w ≥ 0 and by the maximum principle w attains its
maximum on ∂Ω. But there we have w ≤ 0. Therefore w ≤ 0 in Ω or equivalently u ≤ v in Ω.

§2. Finite difference discretization of the Laplacian

We want to design a numerical method to approximately solve the Dirichlet problem. For the
sake of a short presentation, we confine ourselves to the case of Ω being the two-dimensional
square domain Ω = (0, 1)2 and to homogeneous boundary conditions, i.e., g = 0 in Definition 1.1.
Generalizations will be discussed later (problem sessions).
The idea of the so-called Finite Difference Method (FDM) is to replace partial derivatives by

difference quotients.

Definition 1.5 (first-order difference quotients). Given a step size h > 0 and a sequence of
elements (Uj)j=0,...,J of some vector space, we define

∂+Uj :=
Uj+1 − Uj

h
, (j = 0, . . . , J − 1) (forward difference quotient)

and
∂−Uj :=

Uj − Uj−1

h
, (j = 1, . . . , J) (backward difference quotient).

�

Definition 1.6 (second-order central difference quotient). Given a step size h > 0 and a sequence
(Uj)j=0,...,J of elements of some vector space, the quantity

∂+∂−Uj =
Uj+1 − 2Uj + Uj−1

h2
,

is called the second-order central difference quotient. �

For a function u over [0, 1] we let

∂+u(x) =
u(x+ h)− u(x)

h

with analogous notation for ∂−. The following approximation properties can be proven via Taylor
expansion.
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Figure 1.1.: Scematic diagram of the 5-point stencil with weights.

Lemma 1.7. Given u ∈ C2([0, 1]), we have for ∂+
x and ∂−x that

|∂+
x u(x)− ∂xu(x)| ≤ h

2
‖∂2

xxu‖C([0,1]) for all x ∈ [0, 1− h]

|∂−x u(x)− ∂xu(x)| ≤ h

2
‖∂2

xxu‖C([0,1]) for all x ∈ [h, 1].

Given u ∈ C4([0, 1]), we have for ∂+
x and ∂−x that

|∂+
x ∂
−
x u(x)− ∂2

xu(x)| ≤ h2

12
‖∂4

xxxxu‖C([0,1]) for all x ∈ [h, 1− h].

Proof. Problem A.3.

Let J ≥ 0 and h = 1/J . We set up a grid with J + 1 points in every coordinate direction by
letting

xj,k = (jh, kh) j, k = 0, . . . , J.

We wish to approximate the solution u by a grid function U whose value at xj,k we denote by
Uj,k. For interior points we define a discrete version of the Laplacian ∆ = ∂2

x1x1 + ∂2
x2x2 through

central differences

∆hUj,k = ∂+
x1∂
−
x1Uj,k + ∂+

x2∂
−
x2Uj,k for j, k = 1, . . . , J − 1.

It is straightforward to compute the representation

∆hUj,k =
1

h2
(Uj+1,k + Uj,k+1 − 4Uj,k + Uj−1,k + Uj,k−1). (1.1)

We see that the value ∆hUj,k depends on the point xj,k and its four neighbours in the grid. The
stencil is called five-point stencil, see Figure 1.1.

Definition 1.8. Let Ω = (0, 1)2 and f ∈ C(Ω). The discretized Poisson problem (with zero
boundary conditions) seeks (Uj,k : j, k = 0, . . . , J) such that{

−∆hUj,k = f(xj,k) for j, k = 1, . . . , J − 1

U0,k = UJ,k = Uj,0 = Uj,J = 0 for j, k = 0, . . . , J.

�
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We briefly comment on the implementation. In order to represent U as a vector, we choose the
lexicographic enumeration and identify {0, . . . , J}2 with {1, . . . , L} (where L = (J + 1)2) through
the map

(j, k) 7→ j + k(J + 1) + 1 =: `.

Loosely speaking, we enumerate the grid by taking rows from left to right starting on the left
bottom. We see from (1.1) that the discrete Laplacian takes the form

∆hU` =
1

h2
(U`+1 + U`+(J+1) − 4U` + U`−1 + U`−(J+1))

for any interior point x`. We see that Uj,k for j or k in {0, J} are no unknowns because they are
known through the boundary condition. We are therefore merely interested in computing Uj,k for
j, k ∈ {1, . . . , J − 1}.
We consider the sub-list (Ů1, . . . ŮN ) corresponding to the interior points and define the matrix

X :=


4 −1

−1
. . . . . .
. . . . . . −1

−1 4

 .
This results in the system 

X −I

−I . . . . . .
. . . . . . −I

−I X



Ů1
...
...
ŮN

 = h2


f1
...
...
fN

 .

Here f` = f(x`) for every interior node. We note that this is a system of the type Ax = b for a
sparse matrix A. In an implementation, a sparse matrix format should be used. In a practical
implementation, the easiest choice is to first set up a system matrix for all points including the
boundary points (imagining U being zero for all “ghost points” outside Ω̄) because this matrix has
constant diagonals. In a second step, the system is restricted to the interior points, the so-called
degrees of freedom, the global indices corresponding to the values Ůj .

§3. Basic error analysis of the finite difference method

We want to quantify the error u − U between the true solution u to the Dirichlet problem and
its finite difference approximation U . The fundamental tool is a discrete version of the maximum
principle for ∆h.

Lemma 1.9 (discrete maximum principle). Let Ω be the unit square. Let the mesh function U
satisfy ∆hUj,k ≥ 0 for all j, k ∈ {1, . . . , J −1}. Then, U attains its maximum at a boundary point
(i.e., at some xj,k with j ∈ {0, J} or k ∈ {0, J}.

Proof. Let xj,k with j, k ∈ {1, . . . , J−1} be an interior point. From the definition of ∆h we obtain

Uj,k =
1

4
(Uj−1,k + Uj+1,k + Uj,k+1 + Uj,k−1)− h2

4
∆hUj .
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From ∆hUj,k ≥ 0 we thus infer

Uj,k ≤
1

4
(Uj−1,k + Uj+1,k + Uj,k+1 + Uj,k−1).

Assume Uj,k is the maximum of U . Then it is not smaller than any of the four neighbouring
values. Hence, equality holds in the foregoing estimate. In particular

Uj,k = Uj−1,k = Uj+1,k = Uj,k+1 = Uj,k−1.

Iterating this argument up to the boundary shows that U is constant and therefore the maximum
is attained at the boundary.

The foregoing lemma was formulated for the unit square. It is clear how to generalize it to
other geometries.
We denote the set of boundary points of the grid by Γ. For mesh functions V we use the

following notation on maximum norms

|V |∞,Ω̄ := max
j,k=0,...,J

s.t. xj,k∈Ω∪Γ

|Vj,k|

|V |∞,Ω := max
j,k=0,...,J
s.t. xj,k∈Ω

|Vj,k|

|V |∞,Γ := max
j,k=0,...,J
s.t. xj,k∈Γ

|Vj,k|

For the unit square we have Γ ⊆ ∂Ω. Note, however, that for more complicated geometries the
‘boundary points’ of the grid need not lie on ∂Ω.
The discrete maximum principle implies the following stability estimate.

Lemma 1.10 (stability). Let Ω be the unit square. There exists a constant C > 0 with the
following property. Given a mesh over Ω and a mesh function U , we have

|U |∞,Ω̄ ≤ |U |∞,Γ + C|∆hU |∞,Ω.

Proof. We define the mesh function

Wj,k =
1

4
|xj,k|2 (squared Euclidean norm).

Then ∆hWj,k = 1 for any pair (j, k). Let r := |∆hU |∞,Ω and define the mesh functions V ± :=
±U + rW . Then

∆hV
± = ±∆hU + r ≥ 0.

By the discrete maximum principle, V ± attains its maximum on the boundary. This means

±U + rW ≤ | ± U + rW |∞,Γ over Ω̄.

The triangle inequality on the right-hand side and W ≥ 0 on the left hand side thus prove

|U |∞,Ω̄ ≤ |U |∞,Γ + r|W |∞,Γ.

This proves the assertion with C = |W |∞,Γ.
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Remark 1.11. The generalization of the stability estimate to domains different from the square is
immediate. �

Corollary 1.12. The finite difference method has a unique solution U .

Proof. We have already seen that the finite difference system is a quadratic finite-dimensional
system of linear equations. Thus, uniqueness implies existence. Suppose there exist two solutions
U , V satisfying −∆hU = F = ∆hV (where F is the mesh function interpolating f at the grid
points) and U |Γ = 0 = VΓ. Then ∆h(U−V ) = 0, and the stability estimate implies |U−V |∞,Ω̄ = 0.
Thus U = V .

Remark 1.13. For a mesh function F we denote by −∆−1
h F the solution to the finite difference

system with zero boundary conditions. The stability estimate can then be written as follows

|∆−1
h F |∞,Ω̄ ≤ C|F |∞,Ω.

We thus see that −∆−1
h has a uniformly bounded continuity constant (C is independent of the

grid size h). �

When operating on grids we identify u with the mesh function having values u(xj,k).

Lemma 1.14 (consistency). Assume u ∈ C4(Ω̄). Then

|∆hu−∆u|∞,Ω ≤
1

2
h2
∑
j=1,2

‖∂4
xju‖C(Ω̄).

Proof. This is an immediate consequence of Lemma 1.7.

Theorem 1.15 (FDM convergence). Assume the solution u to the Poisson problem −∆u = f
over the unit square Ω with homogeneous boundary conditions satisfies u ∈ C4(Ω̄). Then the finite
difference error satisfies

|u− U |∞,Ω̄ ≤ Ch2
∑
j=1,2

‖∂4
xju‖C(Ω̄)

with a constant C independent of the mesh size and f .

Proof. Stability implies

|u− U |∞,Ω̄ ≤ C|∆h(u− U)|∞,Ω = C|∆hu−∆u|∞,Ω

because −∆hU = F = −∆u at the grid points. The right-hand side is then estimated with the
consistency estimate, which concludes the proof.

Remark 1.16. The simple proof of convergence shows the general principle of convergence proofs
for finite difference methods:

stability + consistency =⇒ convergence.

This can be formalized in a general framework (Lax–Richtmyer theorem), but we confine ourselves
to formulating this rule of thumb. The above convergence proof contains the whole essence of the
reasoning behind. �
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§4. Nine-point stencils and complements on FDM

The five-point stencil studied so far is somehow a minimal choice. One can think of improving
accuracy by increasing the dependence on neighbouring grid points. In two dimensions, nine-point
stencil take into account the diagonal neighbours as well. We note that the distance of a point
xj,k to its diagonal neighbour is

√
2h. We then have the central differences

Uj+1,k − 2Uj,k + Uj−1,k

2h
Uj,k+1 − 2Uj,k + Uj,k−1

2h
Uj+1,k−1 − 2Uj,k + Uj−1,k+1

2
√

2h
Uj+1,k+1 − 2Uj,k + Uj−1,k−1

2
√

2h
,

see also Figure 1.2.
We next discuss how to design a linear combination that consistently discretizes the Laplacian

and has higher-order convergence properties.
Consider the function u(xj,k + tem) where m ∈ {1, 2} is the mth cartesian unit vector. Taylor

expansion of fourth order results in

u(xj,k + tem) = u(xj,k) + ∂mu(xj,k)t+
1

2
∂(2)
m u(xj,k)t

2 +
1

6
∂(3)
m u(xj,k)t

3

+
1

24
∂(4)
m u(xj,k)t

4 +
1

120
∂(5)
m u(xj,k)t

6 +O(t5).

If we evaluate this expression for t = ±h and add the results, the odd-order terms cancel and we
obtain

u(xj,k + hem) + u(xj,k − hem) = 2u(xj,k) + ∂(2)
m u(xj,k)h

2 +
1

12
∂(4)
m u(xj,k)h

4 +O(h6).

Adding this identity for m = 1, 2 results in the well known relation of the 5-point stencil

u(xj+1,k) + u(xj−1,k) + u(xj,k+1) + u(xj,k−1)

= 4u(xj,k) + ∆u(xj,k)h
2 +

1

12
(∂xxxx + ∂yyyy)u(xj,k)h

4 +O(h6).
(1.2)

We can apply similar arguments to the diagonal directions

d1 = 2−1/2(1,−1) and d1 = 2−1/2(1, 1)

and obtain with t = ±
√

2h and analogous computations

u(xj+1,k−1) + u(xj−1,k+1) + u(xj+1,k+1) + u(xj−1,k−1)

= 4u(xj,k) + 2∆u(xj,k)h
2 +

1

6
(∂xxxx + ∂yyyy + 6∂xxyy)u(xj,k)h

4 +O(h6).
(1.3)

Here, various sums of mixed derivatives have cancelled out. We now add 4 times (1.2) to (1.3)
and obtain

4u(xj+1,k) + 4u(xj−1,k) + 4u(xj,k+1) + 4u(xj,k−1)

+u(xj+1,k−1) + u(xj−1,k+1) + u(xj+1,k+1) + u(xj−1,k−1)

= 20u(xj,k) + 6∆u(xj,k)h
2 +

1

2
(∂xxxx + ∂yyyy + 2∂xxyy)u(xj,k)h

4 +O(h6)
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Figure 1.2.: Scematic diagram of the 9-point stencil with weights.

We use that
−∆u(xj,k) = f(xj,k)

and
−(∂xxxx + ∂yyyy + 2∂xxyy)u(xj,k) = −(∂xx + ∂yy)∆u(xj,k) = (∂xx + ∂yy)f(xj,k)

and derive the relations

S9p
(j,k)u = 6h2f(xj,k) +

1

2
h4∆f(xj,k) +O(h6).

for the 9-point stencil S9p
(j,k) symbolized as follows−1 −4 −1

−4 20 −4
−1 −4 −1

 .
The corresponding finite difference equations are then

20Uj,k − 4Uj+1,k − 4Uj−1,k − 4Uj,k+1 − 4Uj,k−1 − Uj+1,k−1 − Uj−1,k+1 − Uj+1,k+1 − Uj−1,k−1

= 6h2f(xj,k) +
1

2
h4∆f(xj,k).

The Laplacian of f on the right-hand side can be either directly computed from f or alternatively
approximated by the 5-point stencil.

Remark 1.17. We expect U to converge at a better order than the ordinary 5-point stencil provided
the exact solution is sufficiently regular. We will not provide a detailed proof in this lecture but
remark that it can in principle be worked out with the basic tools from the previous section. �

Remark 1.18. The 9-point stencil can be viewed as a weighted average of two (rotated) 5-point
stencils. From the above derivation it is clear that any convex combination of the stencils yields
a first-order scheme. The special choice 4 : 1 and a modification of the right-hand side, however,
result in an even higher-order scheme. �

We know that convergence of any finite difference scheme follows from stability and consistency.
We do not work out an error analysis of the nine-point stencil here; it will be part of the problem
sessions.
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Curved geometries. We end this section by commenting on practical aspects of the FDM (be
it the 5- or 9-point stencil). Wor convenience, we formulated many results for the square where
the domain could be exactly covered by a cartesian mesh. For more complicated situations with
possibly curved geometries this is no longer possible. Assume for example that domain Ω ⊆ [0, 1]2

can be embedded in the unit square (or any other box after appropriate scaling). Generally we
cannot expect that the boundary ∂Ω has a meaningful intersection with the gridpoints. Instead,
we define

Ωh := {xj,k : xj,k ∈ Ω and all neighbours belong to Ω̄}

and
Γh := {xj,k : xj,k ∈ Ω and a neighbour does not belong to Ω̄}.

By neighbour we mean a gridpoint belonging to the stencil at xj,k. The FDM equations then
read ∆hUj,k = Fj,k for all xj,k ∈ Ωh. The results proven in the foregoing sections transfer to this
situation.

More general elliptic operators. We can reduce a PDE of the form

tr(AD2u) = f

with a (constant) positive definite and symmetric matrix A to an equation involving only the
diagonal entries of D2 by diagonalizing A = RΛRT with an orthogonal matrix R and a diagonal
matrix Λ. Since the trace is independent of the chosen coordinate system we see that the above
PDE is equivalent to

tr(ΛRTD2uR) = f.

It is easy to check that this PDE only depends on ∂r1,r1 and ∂r2,r2 where r1, r2 are the chosen
eigenvectors of A. Thus, after rotating the coordinate system, a (weighted) 5-point stencil can be
used.
When lower-order terms are present, for instance as

tr(AD2u) + b · ∇u+ cu = f

for a vector b and a constant c, these can be included as well. The zero-order term is simply
discretized by cU . The term involving the gradient can be discretized through first-order difference
quotients.

11



2. Iterative methods

§1. Elementary perturbation analysis

We denote by K one of the fields K = R oder K = C. In what follows, V is a vector space over
K and n ∈ N. A norm on V is a homogeneous, positive definite, and subadditive real-valued
function, typically denoted by ‖ · ‖.

Example 2.1. Important norms on the finite dimensional spave Kn are the Euclidean (`2) norm
‖x‖2 :=

√∑n
j=1 |xj |2, the maximum (`∞) norm ‖x‖∞ := maxj=1,...n |xj |, or the the `p norm (for

1 ≤ p <∞) ‖x‖p :=
(∑n

j=1 |xj |p
)1/p

.

Linear maps between normed spaces can be measured with the operator norm.

Definition 2.2 (operator norm). Given normed spaces (V, ‖ · ‖V ) and (W, ‖ · ‖W ), and a linear
map A : V →W , the operator norm of A is given by

‖A‖L(V,W ) := sup
x∈V\{0}

‖Ax‖W
‖x‖V

.

�

If the norms are fixed and there is no risk of confusion, we will often write ‖A‖ with out index
for the operator norm. Note that ‖A‖L(V,W ) can be ∞ in the above definition. We will denote
by L(V,W ) the space of linear maps between V and W with bounded norm, referred to as the
bounded linear operators. This is not critical if V is finite-dimensional because the unit sphere in
Kn is compact. If V = Km and W = Kn and the linear maps are interpreted as matrices, the
norms over V and W are referred to as vector norms and the operator norm is sometimes called
the induced matrix norm.
The operator norm is submultiplicative ‖AB‖ ≤ ‖A‖ ‖B‖ and in particular compatible in the

sense that ‖Ax‖ ≤ ‖A‖‖x‖.
Remark 2.3. Given norms on Km and Kn, there may exists other compatible matrix norms on
Km×n which are not the operator norm. �

Example 2.4. a) The Frobenius norm ‖A‖Fr =
√∑n

j,k=1 |Ajk|2 is submultiplicative and com-
patible with the Euclidean norm, but not the corresponding operator norm.

b) The operator norm corresponding to ‖ · ‖∞ is the maximal row sum

‖A‖∞ := max
1≤j≤n

n∑
k=1

|Ajk|.

c) The operator norm corresponding to ‖ · ‖1 is the maximal column sum.

‖A‖1 := max
1≤k≤n

n∑
j=1

|Ajk|.
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The operator norm corresponding to the Euclidean norm is called the spectral norm. It is
computed in the following theorem.

Theorem 2.5. The operator norm corresponding to the Euclidean norm is given by

‖A‖2 = max{|λ|1/2 : λ eigenvalue of A∗A}.

Proof. The matrixM := A∗A is Hermitian and possesses n real eigenvalues λ1, . . . , λn ∈ R (coun-
ted with multiplicities) with a corresponding orthonormal systems w1, . . . , wn of eigenvectors.
Every x ∈ Kn has an expansion

x =
n∑
j=1

αjwj with αj = 〈x,wj〉2.

From the orthogonality one computes ‖x‖22 =
∑n

j=1 |αj |2 and

‖Mx‖22 = 〈Mx,Mx〉2 =

n∑
j,k=1

αjλjᾱkλ̄k〈wj , wk〉2 =

n∑
j=1

|λj |2|αj |2.

Therefore

‖M‖22 = sup
x∈Kn\{0}

∑n
j=1 |λj |2|αj |2∑n
j=1 |αj |2

≤ max
j=1...n

|λj |2

and so
‖A‖22 = sup

x∈Kn\{0}

〈Mx, x〉2
‖x‖22

= ‖M‖2 ≤ max
j=1...n

|λj |.

The bound is sharp because for any j ∈ {1, . . . , n} we have

|λj | = |λj | ‖wj‖2 = ‖λjwj‖2 = ‖Mwj‖2 ≤ ‖M‖2 ≤ ‖A‖22.

We recall that a normed vector space V is said to be complete if every Cauchy sequence in V
has a limit in V . It is an elementary result from linear functional analysis that L(V, V ) is then
complete under the operator norm (Exercise A.11). In such case, an operator B is guaranteed to
be invertible if it does not deviate too much from the identity I.

Lemma 2.6 (Neumann series). Let V be a complete normed linear space and let ‖ · ‖ denote a
submultiplicative norm on L(V, V ) that is equivalent to the operator norm. If B ∈ L(V, V ) satifies
‖B‖ < 1, then (I −B) is invertible with (I −B)−1 =

∑∞
j=0B

j und ‖(1−B)−1‖ ≤ (1− ‖B‖)−1.

Proof. The series converges because∥∥∥ n∑
j=0

Bj −
m∑
j=0

Bj
∥∥∥ ≤ n∑

j=m+1

‖B‖j für n ≥ m ≥ 0.

The geometric series yields convergence with the limit∥∥∥ ∞∑
j=0

Bj
∥∥∥ ≤ ∞∑

j=0

‖B‖j = (1− ‖B‖)−1.
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The inverse property can be directly checked
∞∑
j=0

Bj(1−B) =

∞∑
j=0

Bj −
∞∑
j=0

Bj+1 = I.

In the case of Kn, the Neumann series is valid for any submultiplicative matrix norm because
all norms over a given finite-dimensional space are equivalent.
When solving a linear matrix-vector system Ax = b it is important to understand the response

of the solution x̃ = x+∆x of the system Ãx̃ = b̃ with perturbed data Ã = A+∆A and b̃ = b+∆b.

Definition 2.7. Given a norm on Kn, the number κ(A) := ‖A‖‖A−1‖ is called the condition
number von A. If A is singular, we interpret the expression as κ(A) =∞. �

Theorem 2.8 (perturbation result). Let ‖ · ‖ be any norm on Kn, let A ∈ Kn×n be regular, and
let the ∆A ∈ Kn×n satisfy

‖∆A‖ < 1

‖A−1‖
.

Then Ã = A+ ∆A is regular and the relative error of the perturbed system satisfies

‖∆x‖
‖x‖

≤ κ(A)

1− κ(A)‖∆A‖‖A‖−1

(
‖∆b‖
‖b‖

+
‖∆A‖
‖A‖

)
.

Proof. Because A + ∆A = A(I + A−1∆A) and ‖A−1∆A‖ ≤ ‖A−1‖‖∆A‖ < 1 by assumption,
we can apply the Neumann series and see that Ã is regular. We directly compute that Ã∆x =
∆b−∆Ax. Therefore

‖∆x‖ = ‖Ã−1(∆b−∆Ax)‖ ≤ ‖Ã−1‖(‖∆b‖+ ‖∆A‖‖x‖).

With the norm bound from the Neumann series we infer

‖Ã−1‖ = ‖(A(I +A−1∆A))−1‖ ≤ ‖(I +A−1∆A)−1‖‖A−1‖ ≤ ‖A−1‖
1− ‖A−1∆A‖

.

We combine these bounds and obtain (excluding the trivial case x = 0) that

‖∆x‖ ≤ ‖A−1‖
1− ‖A−1∆A‖

(‖∆b‖+ ‖∆A‖‖x‖) ≤ ‖A
−1‖ ‖A‖ ‖x‖

1− ‖A−1‖‖∆A‖

(
‖∆b‖
‖A‖‖x‖

+
‖∆A‖
‖A‖

)
.

The relations ‖b‖ ≤ ‖A‖‖x‖ and ‖A−1‖ = κ(A)/‖A‖ finally lead to

‖∆x‖ ≤ κ(A)‖x‖
1− κ(A)‖∆A‖/‖A‖

(
‖∆b‖
‖b‖

+
‖∆A‖
‖A‖

)
.

The result states that small perturbations of the data are at most amplified by a factor pro-
portional to κ(A). The bound can be considered to be sharp. Note that the condition number
depends on the choice of norm. For the Euclidean norm, Hermitian matrices satisfy

κ2(A) := ‖A‖2‖A−1‖2 =
|λmax|
|λmin|

the the eigenvalues λmax resp. λmin of A of maximal resp. minimal modulus. This follows from
Theorem 2.5. Therefore, κ2(A) is sometimes called spectral condition number.
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§2. Classical iterative methods

We are interested in characterizing the convergence of a linear stationary fixed-point iteration
xk+1 = Mxk. The principal tool will be the spectral radius of M .

Definition 2.9. The set of eigenvalues of a given matrix M ∈ Cn×n is denoted by σ(M). The
number ρ(M) := maxλ∈σ(M) |λ| is called the spectral radius of M . �

It is immediately verified that ρ(M) ≤ ‖M‖ for any norm ‖ · ‖ on Cn because the largest-in-
modulus eigenvalues λ and any corresponding eigenvector x satisfy

ρ(M) = ‖λx‖ = ‖Mx‖ ≤ ‖M‖.

Conversely, the following holds.

Lemma 2.10. Given M ∈ Cn×n and ε > 0 there exists a norm ‖ · ‖ on Cn with the property

‖M‖ ≤ ρ(M) + ε.

Proof. Without loss of generality we may assume that M has the format of a single Jordan block

M =


λ 1

. . . . . .
λ 1

λ


(the justification is left as an exercise). A transformation with the diagonal matrix Dε with
diagonal entries 1, ε, ε2, . . . , εn−1 yields

D−1
ε MDε =


λ ε

. . . . . .
λ ε

λ


A direct computation shows

‖D−1
ε MDε‖∞ ≤ ρ(M) + ε

and the left-hand side is the operator norm corresponding to ‖x‖ := ‖D−1
ε x‖∞.

Lemma 2.11. A matrix M ∈ Cn×n satisfies ρ(M) < 1 if and only if limk→0M
kx = 0 for all

x ∈ Cn .

Proof. If ρ(M) < 1, then by the foregoing lemma there exists a norm ‖·‖ on Cn such that ‖M‖ < 1,
so that the sequence ‖Mkx‖ ≤ ‖M‖k‖x‖ converges to zero as k →∞. Conversely, any eigenpair
(λ, x) satisfies Mkx = λkx, so that convergence for all x necessarily requires ρ(M) < 1.

The spectral radius can be viewed as a measure for convergence speed.

Lemma 2.12. Any norm ‖ · ‖ on Cn and any M ∈ Cn×n satisfy limk→∞ ‖Mk‖1/k = ρ(M).
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Proof. For any ε > 0 we can define the scaled matrix

N :=
1

ρ(M) + ε
M

satisfying ρ(N) < 1. In particular

lim
k→∞

Nk = 0 und sup
k→∞

‖Nk‖ ≤ c <∞.

We observe
‖Mk‖ ≤ c|ρ(M) + ε|k

and, since ε was arbitrary,
lim sup
k→∞

‖Mk‖1/k ≤ ρ(M).

Testing with a normalized eigenvector x corresponding to the eigenvalue realizing the spectral
radius yields

ρ(M)k = ‖Mkx‖ ≤ ‖Mk‖,

which implies the stated identity.

As a consequence we have the following convergence of the relative error

‖Mky‖
‖y‖

≤ ρ(M)k.

for any nontrivial starting vector y ∈ Cn.
We want to use the foregoing results for deriving and justifying iterative methods for solving

Ax = b. Throughout the whole course we will tacitly assume that A is regular, so that the linear
problem is well posed.
The basic idea is to (additively) split A in an easy-to-invert part and some remainder. The

most basic choice is the unit matrix I, and the splitting A = I + (A− I) leads to the equivalent
system

x = b+ (I −A)x.

This motivates the fixed-point iteration

xk+1 = b+ (I −A)xk, k = 0, 1, 2, . . . (2.1)

with any given x0 ∈ Cn.

Definition 2.13. The scheme (2.1) is called Richardson iteration. �

It is easy to verify that the Richardson iteration satisfies xk+1 =
∑k

j=0(I −A)jb+ (I −A)kx0,
which reveals that the iteration describes the inversion process of the Neumann series. If ρ(I−A) <
1, the iteration converges. This is a consequence of the Neumann series or alternatively follows
from the fact that the error ek = xk − x, satisfies the relation

ek+1 = (I −A)ek = · · · = (I −A)k+1e0.

In this case we can apply the lemma with M := (I −A).
In order to obtain better methods, we need to detract more information from A than just the

unit matrix. Since we think of easy-to-solve systems in diagonal or echelon form, we consider the
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splitting A = D+L+R, where D is a diagonal matrix, L is a strict lower (left) triangular matrix
and R is a strict upper (right) triangular matrix. By taking D as the invertible part, we obtain
the fixed-point equation

x = D−1(b− (L+R)x)

and the corresponding iteration

xk+1 = D−1b+ Jxk, k = 0, 1, 2, . . . , for J := −D−1(L+R). (2.2)

Definition 2.14. The scheme (2.2) is called Jacobi iteration. �

Obviously, the Jacobi iteration requires that all diagonal entries of A be nonzero.
By considering the full upper triangular part D + L ab, analogous considerations lead to the

iteration

xk+1 = (D + L)−1b+H1xk, k = 0, 1, 2, . . . , for H1 := −(D + L)−1R. (2.3)

Definition 2.15. The scheme (2.3) is called Gauss-Seidel method. �

To be well defined, also the Gauss-Seidel method requires that all diagonal entries of A be
nonzero.
The substitution Ax = b shows that the errors ek := xk − x of the iterations satisfy the

recurrence relations
ek+1 := Jek resp. ek+1 := H1ek.

Convergence properties will therefore hinge on the spectral radii ρ(J) for the Jacobi method and
ρ(H1) for the Gauss-Seidel method. We formulate a simple criterion for bounding these.

Definition 2.16. A matrix A ∈ Cn×n is said to be irreducible, if for J ∈ {1, . . . , n} the property
Aj,k = 0 for all j ∈ J and k ∈ Jc implies J = ∅ or Jc = ∅. �

Irreducibility is a coupling condition on A. It states that there is no permutation P of the
indices that could lead to Ã = P ∗AP having a zero block ÃJ,Jc .

Theorem 2.17 (Gershgorin). Let A ∈ Cn×n. Any eigenvalue λ ∈ C of A belongs to the union of
the Gershgorin disks

λ ∈
n⋃
j=1

Brj (Ajj) with the radii rj :=

n∑
k=1
k 6=j

|Ajk|.

If A is irreducible and λ ∈ ∂(
⋃n
j=1Brj (Ajj)), then λ ∈

⋂n
j=1Brj (Ajj).

Proof. Let x ∈ Cn with |x|∞ be an eigenvector corresponding to λ. By separating the components
in Ax = λx we obtain with the triangle inequality that

|(λ−Ajj)||xj | ≤
∑
k 6=j
|Ajk||xk| ≤

∑
k 6=j
|Ajk| = Rj .

If j is an index such that |xj | = 1 (which exists thanks to the normalization of x), we have
|λ−Ajj | ≤ Rj and, thus, λ belongs to one of the Gershgorin disks.

17



For the proof of the second assertion, let A be irreducible and let λ belong to the boundary of
the union of disks. Assume for contradiction that λ /∈ Br`(A``) for some `. We define the index
set

J = {j ∈ {1, . . . , n} : |xj | = 1}.

By normalization of x, the set J is nonempty, and so is its complement Jc by our assumption on
the index `, otherwise the above chain of inequalities would imply R` < R`. We observe that for
any j ∈ J equality holds in the above chain of inequalities. Comparing the sums therein then
yields Ajk = 0 for all J ∈ J and k ∈ Jc. This contradicts the irreducibility of A. Therefore λ
must belong to all disks simultaneously.

Definition 2.18. A matrix A ∈ Cn×n is said to be strictly diagonally dominant if

|Ajj | >
n∑
k=1
k 6=j

|Ajk| for all j ∈ {1, . . . , n}.

It is weakly diagonally dominant if

|Ajj | ≥
n∑
k=1
k 6=j

|Ajk| for all j ∈ {1, . . . , n}

and strict inequality holds for at least one j. �

Theorem 2.19. If A is strictly diagonally dominant, both the Jacobi and Gauss-Seidel iterations
are convergent and the spectral radius of their iteration matrices satisfies

ρ ≤ max
1≤j≤n

|Ajj |−1
∑

k=1k 6=j
|Ajk| < 1.

If A is weakly diagonally dominant and irreducible, both the Jacobi and Gauss–Seidel iterations
are convergent.

Proof. For the Jacobi iteration, the first statement is an immediate consequence of the Gershgorin
theorem. For the second statement, we observe that all Gershgorin disks of the iteration matrix
have 0 as their midpoint and a radius bounded by 1. An eigenvalue of modulus 1 must therefore
belong to all disks simultaneously (because A and therefore the iteration matrix are irreducible).
But this is excluded by the one strict inequality in the definition of “weakly diagonally dominant”.
Therefore all eigenvalues are strictly smaller than 1. The proof for the Gauss–Seidel method is
similar and left as an exercise.

The Gauss-Seidel iteration uses more information on A than the Jacobi method and therefore
seems more powerful. It is, however, important to note that it involves the solution of systems in
row-echelon form, which requires serial computations. In contrast, the Jacobi method is parallel-
izable and does not depend on the enumeration of indices.

§3. Relaxation techniques

We can damp (or relax ) the effect of a fixed-point method xk+1 = b̃ + Mxk by taking a convex
combination of the old and new iterates with some parameter ω ∈ (0, 1] on the right-hand side

xk+1 = ω(b̃+Mxk) + (1− ω)xk = ωb̃+Mωxk für Mω := (ωM + (1− ω)I).
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For example, for the Richardson scheme we have M = (I − A) and b̃ = b, while for Jacobi we
have b̃ = D−1b and M = J . Our goal is to choose ω such that ρ(Mω) is small, which would lead
to improved convergence properties.
In view of our finite difference model problem we restrict our attention, throughout this para-

graph, to Hermitian positive definite Matrices A ∈ Cn×n. Hence, for Richardson’s and Jacobi’s
iteration, the matrix I −M will be similar to an Hermitian Matrix: while this is immediate for
Richardson, we see this for the Jacobi method by considering I − J = D−1(D + L+R) = D−1A
and multiplying with D±1/2 on both sides, so that D1/2(I + J)D−1/2 = D−1/2AD−1/2. We
say that these methods are symmetrizable (unlike the Gauss–Seidel method). A suitable damp-
ing parameter (with optimal choice possibly larger than 1) can always enforce convergence for
symmetrizable methods for positive definite problems:

Theorem 2.20. Let A ∈ Cn×n be Hermitian positive definite and let M denote the iteration
matrix of a symmetrizable iteration (M = I − A for Richardson or M = J = −D−1(L + R) for
Jacobi). For the choice

ω∗ =
2

2− λmax(M)− λmin(M)

we have ρ(Mω∗) = |1− ω∗(1− λmin(M))| < 1 and the relaxed iteration is convergent.

Proof. Any eigenvalue λj of Mω satisfies

λj(Mω) = 1− ω(1− λj(M)).

We compute the spectral radius

ρ(Mω) = max
j
|1− ω(1− λj(M))| = max {|1− ω(1− λmin(M))|, |1− ω(1− λmax(M))|} .

We want to minimize this maximum, that is we want to find a point where the two shifted and
scaled absolute value functions intersect. Symmetrizability implies that the eigenvalues of I −M
are real and positive, whence the eigenvalues of M are strictly smaller than 1. We have that
0 < 1 − λmax(M) ≤ 1 − λmin(M), so we seek the optimal point between the two zeros, namely
between 1/(1−λmin(M)) and 1/(1−λmax(M)). In that interval we know the sign of the functions
and obtain the condition

−(1− ω(1− λmin(M))) = 1− ω(1− λmax(M)),

which is solved by the value ω∗ claimed above. For this value, the displayed expressions are
nonnegative. Since the eigenvalues of M are smaller than 1, the value ω∗ is positive, and a
computation thus shows that ρ(Mω∗) < 1.

For the Gauss–Seidel method (not symmetrizable) and we will formulate a different relaxation
technique, the successive over-relaxation (SOR). Given a parameter 0 < ω < 2, it corresponds to
solving the following system

Dxk+1 = ω(−Lxk+1 −Rxk + b) + (1− ω)Dxk.

The terminology “over-relaxation” refers to the fact that with the typical choice ω > 1, we leave
the setting of convex combinations. Such choice gives more emphasis to the new (unexplored)
iterate and is made for the purpose of extrapolation or convergence acceleration. The method is
called “successive” because the (over-)relaxation interacts with the process of solving the system
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in row-echelon form. Thus an entry of xk+1 depends on the entries of xk+1 computed earlier in
the serial solution process.
Of course we can state the SOR iteration in the usual format of a stationary iteration

xk+1 = ω(D + ωL)−1b+ (D + ωL)−1(−ωR+ (1− ω)D)xk.

The iteration matrix on the right-hand side is sometimes denoted by Hω, which is consistent with
H1 from the Gauss–Seidel method.

Theorem 2.21 (Ostrowski-Reich). Given an Hermitian positive definite matrix A ∈ Cn×n, the
SOR method converges for any 0 < ω < 2.

Proof. Without loss of generality we assume b = 0 because we know that convergence only depends
on the spectral properties of the iteration matrix. We directly compute from its definition that
the SOR iteration is equivalent to

(1− ω

2
)D(xk+1 − xk) = ω

(
(−L− 1

2
D)xk+1 + (−L∗ − 1

2
D)xk

)
where we used R = L∗ because A is assumed Hermitian. We multiply this from the left with
(xk+1 − xk)∗. We observe that some mixed terms cancel and compute using the relation z∗Lz =
1
2z
∗(L+R)z that

(1− ω

2
)(xk+1 − xk)∗D(xk+1 − xk) =

ω

2

(
−x∗k+1Axk+1 + x∗kAxk)

)
.

We may exclude the pathological case xk+1 = xk because it would imply Axk = b. Since 0 < ω <
2, we then see from the foregoing formula with k = 0 that

x∗1Ax1 < x∗0Ax0.

From the compactness of the sphere {z ∈ Cn : z∗Az = 1}, we then deduce the stronger property

x∗1Ax1

x∗0Ax0
≤ β < 1

for some positive β and any choice of x0 (where x1 is understood as a function of x0). Inductively
we find

x∗kAxk ≤ βkx∗0Ax0.

Since A is positive definite, this implies that xk converges to zero as k →∞.

Remark 2.22. As a byproduct we note that the Gauss–Seidel method (choice ω = 1) converges
for any Herminian positive definite matrix. �

The Gauss–Seidel method is not symmetric, and our choice of solving for D+L was arbitrary.
One could interchange the roles of L and R, which results in a different method with analogous
properties. We can symmetrize the SOR method by alternating forward and backward substitu-
tion. We count pairs of iteration steps and denote

Dxk+1/2 = ω(−Lxk+1/2 −Rxk + b) + (1− ω)Dxk,

Dxk+1 = ω(−Lxk+1/2 −Rxk+1 + b) + (1− ω)Dxk+1/2.
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The iteration can be rewritten as
xk+1 = Mxk +B−1b

with the matrices

M := (D + ωR)−1((1− ω)D − ωL)(D + ωL)−1((1 + ω)D − ωR)

and
B :=

1

ω(2− ω)
(D + ωL)D−1(D + ωR).

as Exercise A.18.

§4. Orthogonal polynomials

In essence, the above basic iterative schemes consist in the evaluation of a matrix polynomial.
The analysis of iterative methods therefore makes use of polynomial approximation theory.
We consider polynomials of degree n with real coefficients as functions over a nonempty interval

[a, b]. They span an (n + 1)-dimensional linear space, denoted by Pn. It is a subspace of the
continuous functions, Pn ⊆ C([a, b]). Given a positive function ω : [a, b] → R such that the
integral

∫ b
a ω(x) dx is well defined and finite, the following scalar product can be defined on

C([a, b]),

〈f, g〉L2
ω(a,b) :=

∫ b

a
f(x)g(x)ω(x) dx for f, g ∈ C([a, b]).

It is shown in Problem A.10 that this is indeed a scalar product. It induces a norm ‖f‖L2
ω(a,b) =

(
∫ b
a |f(x)|2ω(x) dx)1/2. If we apply the Gram–Schmidt process to the monomial basis (1, x, . . . , xn)

of Pn, we obtain an orthogonal basis. We use the normalization p0 ≡ 1 and pk = xk + qk−1(x)
for k = 1, . . . , n and some polynomial qk−1 ∈ Pk−1. The resulting orthogonal system (p0, . . . , pn)
consists of polynomials with leading coefficient 1.

Definition 2.23. The polynomials resulting from the procedure just described are called ortho-
gonal polynomials with respect to the weight function ω. �

Example 2.24. For the interval [−1, 1] and ω ≡ 1 we obtain multiples of the Legendre polyno-
mials known from Gaussian quadrature.

Example 2.25. For the interval [−1, 1] and ω(x) = (1 − x2)−1/2, the resulting polynomials
normalized to the leading coefficient 2n−1 are called Chebyshev polynomials and denoted by Tk(x).

Orthogonal polynomials always satisfy a three-term recurrence relation. In view of later ap-
plications, we first formulate a more abstract result.

Theorem 2.26. Let V be a linear space with scalar product 〈·, ·〉 and let A : V → V be a self-
adjoint linear map. Suppose we are given a sequence V0 ⊆ V1 ⊆ · · · ⊆ V of subspaces with
dimVk = k + 1 and the mapping property

A(Vk) ⊆ Vk+1 and A(Vk) 6⊆ Vk.

Then, for any p0 ∈ V0 and real numbers η0, η1, . . . ,∈ R \ {0} there exists a unique extension to
an orthogonal system (pk)k≥0 (with pk ∈ Vk for all k) satisfying the normalization

〈pk, pk〉 = ηk−1〈Apk−1, pk〉 for all k ≥ 1. (2.4)
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The pk (k ≥ 1) are given through the following three-term recurrence relation

pk = (ηk−1A− δk)pk−1 − γ2
kpk−2 für k = 1, 2, . . . ,

where p−1 := 0 and the coefficients read

δk := ηk−1
〈Apk−1, pk−1〉
〈pk−1, pk−1〉

und γ2
k :=

ηk−1

ηk−2

〈pk−1, pk−1〉
〈pk−2, pk−2〉

.

Proof. We perform induction over k ≥ 1. Let (p0, . . . , pk−1) be an orthogonal system and let
pk ∈ Vk be orthogonal to all pj with j < k. We assume the normalization (2.4) for pk. Then
pk − ηk−1Apk−1 ∈ Vk−1 and, hence, there are coefficients c0, . . . , ck−1 satisfying the expansion

pk − ηk−1Apk−1 =
k−1∑
j=0

cjpj , namely cj =
〈pk − ηk−1Apk−1, pj〉

〈pj , pj〉
.

The orthogonality property of pk and the self-adjointness of A prove

〈pk − ηk−1Apk−1, pj〉 = −〈ηk−1pk−1, Apj〉,

whence c0, . . . , ck−3 = 0. Furthermore

ck−2 = −〈ηk−1Apk−1, pk−2〉
〈pk−2, pk−2〉

= −ηk−1

ηk−2

〈pk−1, pk−1〉
〈pk−2, pk−2〉

und ck−1 = −ηk−1〈Apk−1, pk−1〉
〈pk−1, pk−1〉

.

This is the claimed recursion. The uniqueness of pk was shown through the construction process.

For the application to orthogonal polynomials, we take Theorem 2.26 with Vk = Pk and the
inner product 〈·, ·〉L2

ω(a,b). The linear map A is the multiplication by x, namely Ap(x) = xp(x).
The normalization (2.4) states that pk(x) − xpk−1(x) belongs to Pk−1. From p0 = 1 we deduce
that pk has 1 as its leading coefficient. We note the following consequence.

Corollary 2.27. The orthogonal polynomials over [a, b] with respect to the weight ω and leading
coefficient 1 satisfy the three-term recurrence relation

pk(x) = (x− δk)pk−1(x)− γ2
kpk−2(x) for k = 1, 2, . . . ,

with p−1 := 0, p0 ≡ 1 and the coefficients

δk :=

∫ b
a x pk−1(x)2ω(x)dx

‖pk−1‖2L2
ω(a,b)

und γ2
k :=

‖pk−1‖2L2
ω(a,b)

‖pk−2‖2L2
ω(a,b)

.

The roots of orthogonal polynomials satisfy the following important property.

Theorem 2.28. All roots of the orthogonal polynomial pk ∈ Pk over [a, b] are real, simple, and
lie in (a, b).
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Proof. Let λ1, . . . , λm ∈ (a, b) denote the points where pk changes sign in (a, b). We define

q(x) :=
m∏
j=1

(x− λj).

The product satisfies pkq ∈ Pk+m and has no change of sign in (a, b). Consequently,∫ b

a
pk(x)q(x)ω(x) dx 6= 0

Since pk is orthogonal on Pk−1, we necessarily have m = k.

From elementary numerical analysis courses it is known that the interpolation error for standard
Lagrange interpolation in the max-norm is proportional to max norm of the normalized polynomial∏n
j=0(x− xj) where the xj are the interpolation points x0, . . . , xn−1. Consequently it is sensible

to choose these points as the zeros of some q ∈ Pn with leading coefficient 1 satisfying

max
x∈[a,b]

|q(x)| = min
{

max
x∈[a,b]

|s(x)| : s ∈ Pn with leading coefficient 1
}
.

We will achieve this via the Chebyshev polynomials Tn. In Exercise A.20, it is shown that Tn
has the leading coefficient an = 2n−1, satisfies the bound |Tn(x)| ≤ 1 for any x ∈ [−1, 1] and
|Tn| attains the value 1 only at the Chebyshev nodes zk = cos(kπ/n) for k = 0, . . . , n. The sign
satisfies Tn(zk) = (−1)k. The next result shows that the Chebyshev polynomials are in some
sense minimal.

Theorem 2.29. Any polynomial pn ∈ Pn with leading coefficient 1 attains a value with |pn(x)| ≥
21−n at some x ∈ [−1, 1].

Proof. Assume for contradiction that pn ∈ Pn has leading coefficient 1 and the property |pn(x)| <
21−n for all x ∈ [−1, 1]. Then, at the Chebyshev points we would have

21−nTn(zk)− pn(zk)

{
> 0 for k even,
< 0 for k odd.

By continuity, 21−nTn − pn has at least n zeros and, by construction, 21−nTn − pn ∈ Pn−1. In
conclusion, the difference must be zero, contradicting the strict inequalities displayed above.

The foregoing theorem implies that the scaled Chebyshev polynomial 21−nTn solves the minmax
problem stated above. A conclusion usually taught in courses of elementary numerical analysis
is that the Chebyshev points are a “good” choice for interpolation points. In this lecture, the
minmax property will help us to identify optimal matrix polynomials. We briefly mention how
the results generalize if the interval [−1, 1] is transformed to [a, b]. The affine transformation
reads

y(x) = 2
x− a
b− a

− 1.

If p ∈ Pn is a suitable polynomial for [−1, 1] with leading coefficient 1, the polynomial p(y(x))
transformed to the interval [a, b] has the leading coefficient 2n/(b−a)n. The following result states
a general re-scaling procedure.
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Theorem 2.30. Given an interval [a, b] and some η ∈ R \ [a, b], then the polynomial

T̂n(x) :=
Tn(y(x))

Tn(y(η))

minimizes maxx∈[a,b] |q(x)| amongst all polynomials q ∈ Pn with q(η) = 1.

Proof. From Theorem 2.28 we know that all zeros of Tn(y(x)) lie in [a, b]. Therefore c :=
Tn(y(η)) 6= 0 and T̂n is a well defined polynomial. We see that T̂n(η) = 1, and from the bound
|Tn| ≤ 1 in [a, b] we obtain |T̂n(x)| ≤ 1/|c| for all x ∈ [a, b]. Assume for contradiction that some
qn ∈ Pn with qn(η) = 1 satisfies the strict inequality |qn| < 1/|c| in [a, b]. We first observe

T̂n(x)− qn(x) = sn−1(x)(x− η)

for some polynomial sn−1 ∈ Pn−1 because the difference vanishes in η. The argument from the
proof of Theorem 2.29 then shows that T̂n(x)− qn(x) must have n zeros [a, b], which contradicts
η /∈ [a, b].

§5. The cg method

Throughout this paragraph, A ∈ Rn×n is symmetric and positive definite (s.p.d.). Such a matrix
induces a scalar product and a norm, the so-called energy norm.

Definition 2.31. For A ∈ Rn×n s.p.d., the energy scalar product and norm are defined by

〈y, z〉A := 〈y,Az〉2 und ‖z‖A :=
√
〈z,Az〉2 for y, z ∈ Rn.

�

In this setting we can characterize solutions to a linear systems Ax = b as minimizers of the
so-called energy functional

f : Rn → R, f(z) =
1

2
z∗Az − z∗b.

Lemma 2.32. Let A ∈ Rn×n s.p.d. and b ∈ Rn. A vector x ∈ Rn solves Ax = b if and only if

f(x) = min
z∈Rn

f(z).

Proof. Exercise A.19.

With this view on the linear problem, we now aim at approximating the solution x by the
solution xk of the minization problem restricted to a subspace Vk ⊆ Rn.

Definition 2.33 (Galerkin method). Given a subspace Vk ⊆ Rn and some x0 ∈ Rn, the Galerkin
method is to compute xk ∈ Vk satisfying

f(xk) = min
z∈x0+Vk

f(z).

�
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Given some xk ∈ Rn, there gradient of f at xk satisfies gk := ∇f(xk) = Axk − b and therefore
equals the residual. As a necessary criterion for a minimum we have that 〈gk, v〉2 vanishes for
every v ∈ Vk, written gk ⊥2 Vk. As a consequence, we obtain that xk and x` for the Galerkin
solution x` from a larger space (x0 + Vk) ⊆ (x0 + V`) satisfy

〈Axk, v〉2 = 〈b, v〉2 = 〈Ax`, v〉2 for all v∈Vk.

Therefore
〈A(x` − xk), v〉2 = 〈x` − xk, v〉A = 0 for all v ∈ Vk,

or in shorthand notation (x` − xk) ⊥A Vk. In particular we have (x − xk) ⊥A Vk. The fact that
in the Galerkin method the error is A-orthogonal to the approximating subspace is referred to as
Galerkin orthogonality.
We know that there information best available from a large sparse matrix A is the multiplication

with a vector.

Definition 2.34. The spaces Vk := span{g0, Ag0, . . . , A
k−1g0} (for 0 ≤ k ≤ n− 1) are called

Krylov spaces. �

Definition 2.35. The Galerkin method with respect to the (shifted) Krylov spaces x0 + Vk is
called cg method. �

The cg therein abbreviates “conjugate gradient”, and we will later justify this name, the meaning
of which is irrelevant for the moment. We observe from xk ∈ x0+Vk that the gradient gk = Axk−b
belongs to Vk. Without having an algorithm to compute the cg approximation at the moment,
we can formulate an error estimate.

Theorem 2.36. For any starting vector x0 ∈ Rn, the cg method satisfies the error estimate

‖xk − x‖A ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)k
‖x0 − x‖A.

Proof. Galerkin orthogonality implies that (xk − x) is A-orthogonal to Vk. Therefore, any y ∈ Vk
satisfies

‖xk − x‖2A = 〈xk − x, xk − x〉A = 〈y − x0 − x, xk − x〉A ≤ ‖y + x0 − x‖A‖xk − x‖A.

We divide by ‖xk − x‖A and take the minimum over all y. Since any y ∈ x0 + Vk can be written
as y = x0 + p(A)g0 for some polynomial p ∈ Pk−1, we obtain

‖xk − x‖A = min
y∈x0+Vk

‖y − x‖A = min
p∈Pk−1

‖x0 + p(A)g0 − x‖A.

In particular, xk is the best approximation from x0 +Vk to x. Since g0 = A(x0−x), we can write
x0 + p(A)g0 − x = (1 + p(A)A)(x0 − x) and therefore

‖xk − x‖A = min
q∈Pk
q(0)=1

‖q(A)(x0 − x)‖A ≤ min
q∈Pk
q(0)=1

‖q(A)‖A‖(x0 − x)‖A.

Since A is symmetric and positive definite, it can be diagonalized and σ(A) ⊆ [a, b] for positive
numbers a, b. We substitute w = A1/2z and compute

‖q(A)‖A = sup
z∈Rn\{0}

‖q(A)z‖A
‖z‖A

= sup
w∈Rn\{0}

‖q(A)A−1/2w‖A
‖A−1/2w‖A

= sup
w∈Rn\{0}

‖q(A)w‖2
‖w‖2

= ‖q(A)‖2.

25



By diagonalizing A, we see that the eigenvalues of q(A) are simply given by q(λ) for the eigenvalues
λ of A. Therefore we conclude ‖q(A)‖A = maxλ∈σ(A) |q(λ)| and obtain

‖xk − x‖A ≤ min
q∈Pk
q(0)=1

max
λ∈σ(A)

|q(λ)| ‖x0 − x‖A.

Since 0 /∈ [a, b], we can apply Theorem 2.30, which states

min
q∈Pk
q(0)=1

max
λ∈[a,b]

|q(λ)| = max
λ∈[a,b]

|Tk(y(λ))|
|Tk(y(0))|

for the kth Chebyshev polynomial Tk and y(λ) = 2(λ − a)/(b − a) − 1. From the boundedness
|Tk| < 1 on [−1, 1], its symmetry, and y(0) = −(b+a)/(b−a) we infer from b = λmax and a = λmin

that

min
q∈Pk
q(0)=1

max
λ∈[a,b]

|q(λ)| ≤ |Tk(y(0))|−1 =

∣∣∣∣Tk (b+ a

a− b

)∣∣∣∣−1

=

∣∣∣∣Tk (κ+ 1

κ− 1

)∣∣∣∣−1

for κ := κ2(A) = λmax/λmin. We know from Exercise A.20 that

Tk(z) =
1

2

(
(z +

√
z2 − 1)k + (z −

√
z2 − 1)k

)
and thus verify for z = (κ+ 1)/(κ− 1) by a direct computation that

Tk

(
κ+ 1

κ− 1

)
=

1

2

((√
κ+ 1√
κ− 1

)k
+

(√
κ− 1√
κ+ 1

)k)
≥ 1

2

(√
κ+ 1√
κ− 1

)k
.

The assertion follows from combining the foregoing estimates.

From Galerkin orthogonality we deduce the relation xk+1 = xk + αkdk for some dk ∈ Vk+1

which is orthogonal to Vk and some scaling αk ∈ R. For the gradient this implies

gk+1 = gk + αkAdk.

Before computing a representation for dk, we deduce a formula for αk. Since every yk+1 ∈ Vk+1

can be written as yk+1 = yk + cdk for some yk ∈ Vk and some c ∈ R, we have

0 = 〈gk+1, yk+1〉2 = 〈gk + αkAdk, yk + cdk〉2 = 〈gk + αkAdk, cdk〉2 = c(〈gk, dk〉2 + αk‖dk‖2A).

where the terms involving yk vanish due to the orthogonality of Axk − b and dk to Vk. With
elementary manipulations we thus obtain

αk = − 〈gk, dk〉2
〈dk, dk〉A

.

It is not difficult to verify (Exercise A.24) that dimVk = k as long as the gradient gk does
not vanish, gk 6= 0 (otherwise xk = x is the global solution). Thus we are in the setting of
Theorem 2.26.
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Lemma 2.37. In the cg method with d0 = −g0 we have

αk =
‖gk‖22
‖dk‖2A

.

Furthermore, the sequence

dk+1 = −gk+1 + βkdk where βk :=
‖gk+1‖22
‖gk‖22

,

satisfies dk+1 ∈ Vk+1 and dk+1 ⊥A Vk as long as gk 6= 0.

Proof. The proof is by induction. The assertion is obviously true for k = 0. Assume the result is
true for (k − 1) ≥ 0. We then have from the induction hypothesis

−〈gk, dk〉2 = −〈gk,−gk + βdk−1〉2 = 〈gk, gk〉2 = ‖gk‖22
because gk is 2-orthogonal on Vk. This proves the representation for αk.
From Theorem 2.26 we know that dk+1 is determined by a three-term recurrence relation. For

ηj := −αj we obtain

dk+1 = −αk(A−
〈Adk, dk〉A
‖dk‖2A

)dk −
αk
αk−1

‖dk‖2A
‖dk−1‖2A

dk−1

with the desired orthogonality properties. With the formula for αk, αk−1 that we just proved, a
straightforward computation shows that the last term (including the sign) on the right-hand side
equals −βk−1dk−1, which, thanks to the induction hypothesis, equals −(dk + gk). Using this and
αkAdk = gk+1 − gk we can simplify the three-term recurrence relation as follows

dk+1 = −gk+1 + gk + αk
〈Adk, dk〉A
‖dk‖2A

dk − dk − gk = −gk+1 + (αk
〈Adk, dk〉A
‖dk‖2A

− 1)dk.

We now compute with αkAdk = gk+1 − gk and the 2-orthogonality of gk and gk+1 (because
gk ∈ Vk) that

αk
〈Adk, dk〉A
‖dk‖2A

=
1

αk

〈αkAdk, αkAdk〉2
‖dk‖2A

=
1

αk

‖gk‖22 + ‖gk+1‖22
‖dk‖2A

= βk + 1.

Combining the last two displayed expressions yields the assertion.

The resulting algorithm is as follows.

Algorithm 2.38 (cg method). Start: x0 and d0 = −g0 = Ax0 − b For k = 0, 1, 2, . . . (as long as
gk 6= 0) iterate

• αk :=
g∗kgk
d∗kAdk

• xk+1 := xk + αkdk

• gk+1 := gk + αkAdk

• βk :=
g∗k+1gk+1

g∗kgk

• dk+1 := −gk+1 + βkdk

�

Remark 2.39. After n steps (in exact arithmetic), the Krylov space equals Rn and xn = x is the
exact solution. In principle, we therefore have a direct method. In practice, the cg method is
viewed as an iterative method and one observes good approximations for small k � n. �

27



§6. Other descent methods

The cg method can be viewed as an instance of descent methods for minimizing the functional f
over Rn. The general procedure is as follows.

Definition 2.40 (descent method). We call any algorithm of the following form a descent method :
Choose a starting vector x0 and iterate for k = 0, 1, 2, . . . :

• choose dk ∈ Rn (descent direction)

• minimize the functional f(xk+tdk) with respect to t (line search) and denote the minimizer
by αk ∈ R

• set xk+1 := xk + αkdk

�

Remark 2.41. The value for αk can be explicitly computed. Indeed, the function

h(t) := f(xk + tdk) =
1

2
(xk + tdk)

∗A(xk + tdk)− (xk + tdk)
∗b

is quadratic in t with derivative

h(t)′ = td∗kAdk + d∗kAxk − d∗kbk = td∗kAdk + d∗krk

with the residual rk := Axk−bk. Since h is a convex parabola, the condition h(t)′ = 0 is necessary
and sufficient of a minimum. This means

αk = −
d∗krk
d∗kAdk

.

�

Example 2.42. The cg method is the descent method with d0 = −g0 and mutually A-orthogonal
descent directions.

Example 2.43 (gradient descent). Since the negative gradient points in the direction of the
steepest descent, it is reasonable to choose dk = −gk = −∇f(xk) as descent direction. This is
the gradient method. It is easy to verify that the iterates belong to the same affine Krylov spaces
as in the cg case

xk ∈ x0 + span{g0, Ag0, . . . , A
k−1g0}

and that two consecutive descent directions are 2-orthogonal, 〈gk+1, gk〉2 = 0 (because the partial
derivative 〈∇f(xk+1), gk〉 is zero at the minimum in the line search). However, the descent
directions are not all pairwise orthogonal. It can be proven (Exercise A.23) that the gradient
method converges with the following upper bound

‖xk − x‖A ≤
(
κ2(A)− 1

κ2(A) + 1

)k
‖x0 − x‖A.

This is much slower than for the cg method; the reason being that for large condition numbers of
A, the directions can be “almost parallel” and the sequence xk has an oscillatory behaviour.

The conjugate gradient (cg) method can therefore be seen as an improvement of the gradi-
ent method where A-orthogonality of the directions dk is enforced. An alternative wording for
“orthogonal” is “conjugate”, hence the nomenclature.
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§7. Preconditioning

The convergence speed of the cg method heavily depends on the spectral condition number κ2(A)
of the matrix A. In order to improve the convergence of the iteration, we want to transform A in
such a way that the condition number is moderate. Assume we know a linear map, denoted by a
matrix C ∈ Rn×n, which leads to moderate values of κ2(CA). We then transform our system to
the modified system CAx = Cb and apply the cg method to it. We assume C to be symmetric
and positive definite. Indeed, if C has the factorization C = EE∗, this is equivalent to minimizing

f̃(y) =
1

2
y∗Ãy − b̃∗y with Ã = E∗AE and b̃ = E∗b.

The minimizer is y = E−1x and can be theoretically computed with the cg method. In practice
we do not want (and do not need) to use the factorization of C. With the above substitutions we
we have indeed

g̃k := ∇f(yk) = Ãyk − b̃ so that Eg̃k = CAx− Cb = Cgk.

The descent directions d̃k is substituted as follows Ed̃k = dk. With these substitutions we obtain
a practical algorithm. (on the left we display the theoretical version for the purpose of derivation).

Algorithm 2.44 (pcg method). (the actual algorithm is that on the right-hand side)
Theoretical derivation:
Start: y0 and d̃0 = −g̃0 = Ãx0 − b̃
For k = 0, 1, 2, . . . :

• αk :=
g̃∗k g̃k
d̃∗kÃd̃k

• yk+1 := yk + αkd̃k

• g̃k+1 := g̃k + αkÃd̃k

• βk :=
g̃∗k+1g̃k+1

g̃∗k g̃k

• d̃k+1 := −g̃k+1 + βkd̃k

Practical version:
Start: x0 and d0 = −Cg0 = −C(Ax0 − b)
For k = 0, 1, 2, . . . :

• αk :=
g∗kCgk
d∗kAdk

• xk+1 := xk + αkdk

• gk+1 := gk + αkAdk

• βk :=
g∗k+1Cgk+1

g∗kCgk

• dk+1 := −Cgk+1 + βkdk

�

Of course, in practice the vectors Cgk are stored as temporary variables. The matrix C is
referred to as preconditioner and the resulting method is the pcg method (preconditioned cg). In
practice, C need not be represented by a matrix. Instead it can be given by a function or an
algorithm.
From the theoretical version of the algorithm we immediately deduce from Theorem 2.36 the

error estimate

‖yk − y‖Ã ≤ 2

(√
κ2(CA)− 1√
κ2(CA) + 1

)k
‖y0 − y‖Ã

because Ã and CA have the same eigenvalues. With Ey = x we finally obtain the following.

Corollary 2.45. For any starting vector x0 ∈ Rn, the pcg method with positive definite precondi-
tioner C satisfies the error estimate

‖xk − x‖A ≤ 2

(√
κ2(CA)− 1√
κ2(CA) + 1

)k
‖x0 − x‖A.
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We thus have seen that finding a good preconditioner can substantially speed up the perform-
ance of the cg method.

§8. The SSOR preconditioner

We study one basic preconditioner for the cg method applied to FDM. If we perform one step of
SSOR with x0 = 0, we obtain x1 = Cb with

C := ω(2− ω)(D + ωR)−1D(D + ωL)−1.

This is our choice of an “approximate inverse” of A and thus as a preconditioner. Note that the
symmetry of A implies R = L∗ and thus C is symmetric and positive definite.
Let us define the following quantities:

µ := max
z 6=0

z∗Dz

z∗Az
, δ := max

z 6=0

z∗(LD−1L∗ − 1
4D)z

z∗Az

as well as

G(ω) := (2− ω)−1

(
1 + µ

(2− ω)2

4ω
+ ωδ

)
for 0 < ω < 2.

Theorem 2.46. With the above definitions we have κ2(CA) ≤ G(ω) for any ω ∈ (0, 2).

Proof. The matrix CA is positive definite and its smallest resp. largest eigenvalue satisfies

λ̃min = min
z 6=0

z∗Az

z∗C−1z
resp. λ̃max = max

z 6=0

z∗Az

z∗C−1z
.

Details will be worked out as Exercise A.17. In the proof, we will show that λ̃max ≤ 1 and that
λ̃min ≥ 1/G(ω), which then implies the assertion.
With the matrices

V :=
1

ω
((ω − 1)D + ωL) and W :=

1

ω
(2− ω)D

we straighforwardly compute

C−1 = (V +W )W−1(V +W )∗ = A+ VW−1V ∗.

Since both terms on the right-hand side describe positive definite matrices, we see, after multiply-
ing with any vector z from both sides, that λ̃max ≤ 1. For bounding the lowest eigenvalue, we use
the representation

C−1 = (2− ω)−1

(
A+

1

4ω
(2− ω)2D + ω

(
LD−1L∗ − 1

4
D

))
,

which will be proved in Exercise A.28. The numbers µ, δ satisfy

z∗Dz ≤ µz∗Az and z∗(LD−1L∗ − 1

4
D)z ≤ δz∗Az.

This and the above representation of C−1 show

z∗C−1z ≤ G(ω)z∗Az

whence λ̃min ≥ 1/G(ω).
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To make the condition number of CA as small as possible, we can minimize the function G
over the interval (0, 2). The result is as follows.

Lemma 2.47. The function G attains its minimum over (0, 2) at the point

ω∗ =
2

1 + 2√
µ

√
1
2 + δ

with the value G(ω∗) =

√
(
1

2
+ δ)µ+

1

2
.

Proof. Exercise A.29.

Testing the max in the definition of δ with any Cartesian unit vector reveals δ ≥ −1/4. If, in
addition, we have ‖D−1/2LD−1/2‖∞ ≤ 1/2 and ‖D−1/2L∗D−1/2‖∞ ≤ 1/2, then the numerator in
the definition of δ satisfies, after the substitutions y := D1/2z and L̃ := D−1/2LD−1/2 that

z∗(LD−1L∗)z − 1

4
z∗Dz = y∗L̃L̃∗y − 1

4
y∗y ≤ 0

and therefore −1/4 ≤ δ ≤ 0. We will now see that for this case, the SSOR preconditioning
improves the spectral condition number to the square root of the original κ2(A).

Lemma 2.48. Let A satisfy ‖D−1/2LD−1/2‖∞ ≤ 1/2 and ‖D−1/2L∗D−1/2‖∞ ≤ 1/2. With the
optimal value ω∗ we have

κ2(CA) ≤
√

1

2
κ2(A) +

1

2
.

Proof. We combine Theorem 2.46 and Lemma 2.47. We have already seen that δ ≤ 0 so that we
are left with showing that µ ≤ κ2(A). We write

µ = max
z 6=0

z∗Dz/(z∗z)

z∗Az/(z∗z)
.

From the Rayleigh quotient we see that the denominator is bounded from below by the smallest
eigenvalue λmin of A. The numerator is bounded by the largest diagonal entry d of D, which is a
lower bound to the largest eigenvalue λmax of A (because testing with an appropriate unit vector
z shows d = z∗Az ≤ λmax). Therefore µ ≤ λmax/λmin = κ2(A).

We conclude with the principal result of this section. Recall from Exercise A.27 that the spectral
condition of the finite difference system matrix A scales like κ2(A) = O(h−2).

Theorem 2.49. The SSOR preconditioning with optimal parameter ω∗ reduces the condition
number of the FDM system matrix from κ2(A) = O(h−2) to κ2(CA) = O(h−1).

Proof. We explicitly verify ‖D−1/2LD−1/2‖∞ ≤ 1/2 and ‖D−1/2L∗D−1/2‖∞ ≤ 1/2. Indeed, from
the structure of the FDM matrix we see that in each row and column D−1/2LD−1/2 we have twice
the value −1/4 and use the foregoing lemma.

In practice, it is difficult to determine the precise value of ω∗. But it turns out that the
performance of the preconditioner is quite insensitive to deviations from the optimal value, see
the programming exercises.
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§9. The smoothing property of iterative methods

Both experience and theoretical considerations show that the classical iterative solvers behave
poorly for the finite difference system because of the conditioning κ2(A) = O(h−2). We will
now take closer look at the spectral decomposition of the error x − xk and deduce a favourable
property of the relaxed iterations that was not quantified in our asymptotic error estimates. In
the exercises it was shown that the eigenvalues of the FDM system (with homogeneous Dirichlet
boundary conditions) are given by

λj,k = 4(sin2(
1

2
jπh) + sin2(

1

2
kπh))

for any j, k = 1, 2, . . . , J − 1. The eigenvalues of the iteration matrix given by the relaxed
Richardson method are therefore

λj,k(I − ωA) = 1− 4ω(sin2(
1

2
jπh) + sin2(

1

2
kπh)).

If we choose ω = 1/4, which corresponds to the ordinary Jacobi iteration, we see that for small
values of j, k the modulus of the eigenvalues |λj,k(I − ωA)| is close to 1. The contribution of
the error that belongs to the corresponding eigenvectors is therefore reduced very slowly, and the
same is true if j and k are close to (J−1). Values of j or k near J/2 instead lead to contributions
that are rapidly damped. The choice ω = 1/8, the terms related to values of j or k close to (J−1)
will also experience an adequate damping so that after a few iterations the error can be expected
to be essentially described by linear combinations of eigenvectors for “small” j and k. In view
of the eigenvectors (or eigen-mesh-functions) Um,n = sin(jπmh) sin(kπnh) we deduce that some
“oscillatory” part of the error is rapidly damped so that we are left with a “smooth” part.
We want to formalize these observations. In general we call a function oscillatory if it is

(suitably) bounded but exhibits significant variations on small scales, so it has large gradients.
In one dimension the prototype is sin(kπx) on [0, 1] with L2 norm uniformly bounded by 1 while
its derivative has an L2 norm that grows linearly in k. Analogous properties are true in higher
dimensions where we say a function u is oscillatory if

‖u‖L2(Ω) � ‖∇u‖L2(Ω).

For a quantification of this behaviour, we can consider the eigenvalues of the Dirichlet Laplacian.
If we have a function with zero boundary conditions satisfying −∆u = λu, from integration by
parts we obtain

‖∇u‖2L2(Ω) =

∫
Ω
|∇u|22 dx = −

∫
Ω
u∆u dx = λ

∫
Ω
u2 dx = λ‖u‖2L2(Ω)

so that large eigenvalues λ lead to highly oscillatory eigenfunctions. For mesh functions, we replace
∆ by ∆h and the eigenpairs of the Laplacian by the eigenpairs of the discrete Laplacian. The L2

norm of the gradient is replaced by x∗Ax and therefore we see that the norm ‖x‖A measures the
growth of the mesh function U associated to the coefficient vector x.

Remark 2.50. We must not neglect the scaling with respect to the mesh size h. If we compare
the A-norm with the Euclidean norm we obtain ‖x‖2A = h2λj,k‖x‖22 for the coefficients x of the
discrete eigenfunction Uj,k. �

Since A is Hermitian positive definite, we can define arbitrary real powers As of A and define
the following norm.
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Definition 2.51. Given A is Hermitian positive definite and s ∈ R, we define the norm

‖y‖A,s :=
√
y∗Asy.

for any y ∈ Cn. �

For s = 0 we have the Euclidean norm, whereas for s = 1 we recover the energy norm. In general
we think of s as describing a scale of smoothness. We will prove a basic smoothing property for
the relaxed Richardson iteration. We begin with a technical lemma.

Lemma 2.52. Let B ∈ Cn×n be Hermitian and positive definite with the bound ‖B‖2 ≤ 1. Then
‖B(I −B)m‖2 ≤ (m exp(1))−1 for all m ≥ 1.

Proof. We see that B and B(I −B)m have the same eigenvectors and deduce from the assumed
spectral bound that

‖B(I −B)mx‖2 ≤ sup
0≤z≤1

z(1− z)m.

The function z(1 − z)m has its only critical point at z? = 1/(m + 1) where the function attains
its maximum with the value

1

(m+ 1)

(
m

m+ 1

)m
=

1

m

1

(1 + 1
m)m+1

≤ 1

m exp(1)

where we used the classical bound exp(1) < (1 + 1/m)m+1.

Given a matrix A ∈ Cn×n, we denote by

R = R(ω,A) := I − ωA

the relaxation operator. This is the iteration of the relaxed Richardson scheme. It is immediate
to see that the error ek := x− xk of the iteration is propagated as ek = Rke0.

Theorem 2.53 (smoothing property). Let A ∈ Cn×n be Hermitian positive definite. The relaxed
Richardson iteration with parameter ω ≤ 1/λmax(A) satisfies

‖Rky‖A,s+t ≤ C(t, ω)k−t/2‖y‖A,s for all y ∈ Cn and all s ∈ R, t > 0

with C(t, ω) =
(

t
2ω exp(1)

)t/2
.

Proof. We see that A(s+t)/2Rk = At/2RkAs/2 and compute

‖Rky‖A,s+t = ‖At/2RkAs/2y‖2 ≤ ‖At/2Rk‖2‖y‖A,s.

We write At/2Rk = (AR2k/t)t/2 = ω−t/2(ωAR2k/t)t/2. Since all eigenvalues of ωA lie between 0
and 1, and can apply the technical lemma to B := ωA and m := 2k/t and obtain

‖At/2Rk‖2 ≤ ω−t/2‖ωAR2k/t‖t/22 ≤ ω−t/2
(

t

2k exp(1)

)t/2
.

This concludes the proof.
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The result is referred to as “smoothing property” based on the following reasoning. If the error
y has high oscillations, we expect the estimate

‖y‖A,s+t . ω−t/2‖y‖A,s

to be sharp (recall that ω = O(1/λmax)). That is, for some constant c > 0, the converse estimate

ω−t/2‖y‖A,s ≤ c‖y‖A,s+t

holds. In this case, the theorem states

‖Rky‖A,s+t ≤ c
(

t

2 exp(1)

)t/2
k−t/2‖y‖A,s+t

This means that oscillations of y are smoothed out rapidly for the first few k. If for example
t = 1, quotients of two consecutive prefactors on the right-hand side is

√
1/2,

√
2/3,

√
3/4,. . . ,

which corresponds to good contraction rates for small k.

Example 2.54. The above spectral analysis and the theoretical smoothing result suggest that
the relaxed Jacobi iteration with ω = 1/2 should satisfy the smoothing property. Indeed, by the
Gershgorin theorem we know that twice the diagonal entry of the finite difference matrix is an
upper bound for its largest eigenvalue. For the ordinary Jacobi iteration this is not guaranteed,
which corresponds to the above observation that the high frequencies are not damped. Figure 2.1
compares the iterations in a practical experiment. We recall that for the FDM, the relaxed
Jacobi iteration with relaxation parapeter 1/2 corresponds to the relaxed Richardson method
with ω = 1/4 in one dimension and ω = 1/8 in two dimensions.

§10. The two-grid algorithm

After a few smoothing steps with the Richardson relaxation, the high frequency modes in the error
are basically damped out and the error can be represented with respect to a coarser grid of mesh
size, say, 2h without essential loss of information. We therefore may project (or interpolate) the
smoothed error to that coarser grid. If this is a sufficiently coarse grid, we solve the resulting finite
difference system with a direct solver, which is then a feasible task. We illustrate this two-grid
method in detail.
As we consider different finite different systems with respect to different grid sizes, we will

indicate the current grid with the index h. We denote by Rh an application of the relaxed
Richardson iteration with right-hand side bh, that is

Rhy = y − ω(Ahy − bh).

Having started with an initial guess x(0)
h for the solution xh to Ahxh = bh, of course we do not

know the error ehν := xh − Rνhx
(0)
h after ν relaxation steps. (otherwise we could directly compute

x from it). But we know the residual rhν := bh−AhRνhx
(0)
h , which corresponds to the transformed

error Ahehν . These quantities are thus connected via ehk = A−1
h rhk . After a few smoothing steps

we expect that the interpolated residual J(rhk) is a good approximation to rhk . Here J some
suitable operator restricting mesh functions from the scale h to mesh functions on the scale 2h.
We thus compute A2hz = Jrhk and expect accordingly that the coarse mesh function z is a good
approximation to ehν . We then embed (or prolongate) z to the fine grid by some operator I2h→h
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Figure 2.1.: Finite difference approximations to the one-dimensional equation u′′ = 0 with ho-
mogeneous boundary conditions on a grid with 257 nodes. Left: Jacobi iterations 1,
5, 10; right: relaxed Jacobi (ω = 1/2) iteration 1, 5, 10. The initial guess x0 is a
uniformly distributed random vector with values between 0 and 1.
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Figure 2.2.: Prolongation of a mesh function from the level 2h to the level h by the operator
I2h→h.

and set x(1)
h = Rνhx

(0)
h + I2h→hz. If I2h→hz is close to ehν , then x

(1)
h is close to xh. We can iterate

this procedure with y replaced by x(1)
h and obtain a sequence x(j)

h that we expect to converge to
xh.
In order to formalize this idea, we need a definition of the two inter-grid transfer operators:

the approximation of fine mesh functions by coarse mesh functions and the embedding of coarse
mesh functions into the fine-mesh functions.

Definition 2.55 (prolongation operator). Let n ∈ N and h = 1/(2n) and x0 = (2j0h, 2k0h) with
0 ≤ j0, k0 ≤ n+ 1 be a grid point in the mesh of grid size 2h. Consider the mesh functions

U2h(y) =

{
1 if y = x0

0 else
for all y = (2jh, 2kh) with 0 ≤ j, k ≤ n+ 1

Uh(z) =


1 if z = x0

1/2 if z = x0 ± (h, 0) or z = x0 ± (0, h) or z = x0 ± 2−1/2(h, h)

0 else

for all z = (jh, kh) with 0 ≤ j, k ≤ 2n + 1. The linear operator I2h→h between mesh functions
on the grid of size 2h and the grid of size h with the property Uh = I2h→hU2h is called the
prolongation operator. Figure 2.2 displays an illustration. �

One may wonder why we took this seemingly arbitrary choice for the prolongation. Indeed,
there are many possibilities of interpreting which values would be sensible evaluations of mesh
functions between two grid points. The choice we made corresponds to extending a mesh function
to a function over Ω̄ by dividing every square of the grid in two triangles by a line segment parallel
to (1, 1) and taking the unique continuous function that is affine when restricted to any of these
triangles and coincides with the original mesh function on the grid points. It is easy to check that
the resulting function has precisely the values that are prescribed by the prolongation operator.
With this choice we have the property A2h = I∗2h→hAhI2h→h, that is, the prolongation is consistent
with the action of the discrete Laplacian, see Exercise A.30. The prolongation operator is easy
to realize as a sparse matrix, see the Python routine of Figure 2.3.
With this embedding, we can give a meaning to the inner product between mesh functions on

different level by
(xh, y2h)mf := (xh, I2h→hy2h)2.
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def prolongation(n):
N=2*n
m=(n+1) **2;
M=(N+1) **2
oldnode=np.zeros(m)
for j in range(0,n+1):

oldnode[range(j*(n+1) ,(j+1)*(n+1))]=np.arange (2*j*(N+1) ,(2*j+1)
*(N+1) ,2)

oldnode=np.reshape(np.int_(oldnode) ,(n+1,n+1))
I=np.zeros((n+1,n+1,9)); J=np.zeros ((n+1,n+1,9)); V=np.zeros ((n+1,n

+1,9))
dummy=M
val=np.asarray ([.5,.5 ,0,.5 ,1,.5 ,0,.5 ,.5])
for j in range(0,n+1):

for k in range(0,n+1):
J[j,k ,:]=(j*(n+1)+k)*np.ones (9)
V[j,k,:]= val
p=oldnode[j,k]
nw=p+N; north=p+N+1; ne=p+N+2
west=p-1; east=p+1
sw=p-N-2; south=p-N-1; se=p-N
if j==0: sw=dummy; south=dummy; se=dummy
if j==n: nw=dummy; north=dummy; ne=dummy
if k==0: nw=dummy; west=dummy; sw=dummy
if k==n: ne=dummy; east=dummy; se=dummy
I[j,k,:]=np.asarray ([sw,south ,se ,west ,p,east ,nw ,north ,ne])

I=np.reshape(I,(9*m,1)).T
J=np.reshape(J,(9*m,1)).T
V=np.reshape(V,(9*m,1)).T
P=csr_matrix ((V[0,:],(I[0,:],J[0,:])),shape = (M+1,m))
R=csr_matrix ((np.ones(M),(np.arange(0,M),np.arange(0,M))),shape = (M

,M+1))
P=R*P
return P

Figure 2.3.: The prolongation operator for an (n+ 1)× (n+ 1) grid as a sparse matrix in Python.
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We see that the adjoint I∗2h→h with respect to the Euclidean scalar product is the orthogonal
projection to the mesh functions on the level 2h in (·, ·)h inner product, indeed

(xh, y2h)mf = (xh, I2h→hy2h)2 = (I∗2h→hxh, y2h)2 = (I∗2h→hxh, y2h)mf .

We thus choose I∗2h→h as the projection operator that approximates fine mesh functions by coarse
mesh functions.
Based on the above derivation we can now formulate the two-grid algorithm.

Algorithm 2.56 (two-grid iteration for FDM). We are given the right-hand side bh of the FDM.

• Input: meshes of size 2h and h; number of relaxations ν; initial guess x(0)
h

• For k = 1, 2, . . .

x
(k)
h = Rνhx

(k−1)
h + I2h→hA

−1
2h I

∗
2h→h(bh −AhRνhx

(k−1)
h )

�

§11. The multigrid algorithm

The two-grid method was introduced above for the purpose of illustration. The symbolic notation
A−1

2h in Algorithm 2.56 indicates that a finite difference system on the scale 2h is solved. With
respect to the coarser scale 2h the smoothed residual from the scale h again oscillatory and we
repeat the procedure of smoothing and projecting to a coarser grid. That is, we approximate
the action of A−1

2h by another two-grid iteration with the mesh of scale 4h. This can be repeated
recursively until a sufficiently coarse mesh is reached where direct solvers are cheap.

Algorithm 2.57 (multigrid iteration for FDM). We are given as input:

• a mesh hierarchy on levels 2mh, 2m−1h, . . . , 2h, h with some m ∈ N and H := 2mh

• the right-hand side bh of the FDM

• an initial guess x(0)
h

• the number ν of desired smoothing steps

• a parameter µ ∈ N

For k = 1, 2, . . . , the iterate
x

(k)
h = MG(h, bh, x

(k−1)
h , ν)

is recursively defined by

• rh := (bh −AhRνhx
(k−1)
h ) (pre-smoothing)

•
{

if 2h = H, then zh = A−1
2h I

∗
2h→hrh

else set z0
h = 0 and for j = 1, . . . , µ do: zjh := MG(2h, I∗2h→hrh, z

j−1
h , ν); set zh := zµh

(coarse-grid correction)

• x
(k)
h := Rνh(Rνhx

(k−1)
h + I2h→hzh) (post-smoothing)

38



�

Of course one could choose two different values ν1 resp. ν2 for the pre- resp. post-smoothing,
but we disregard this possibility here for a better readability of the algorithm. The parameter µ is
chosen as µ = 1 or µ = 2 in practice. For µ = 1 we call each iteration a V-cycle and for µ = 2 we
call it a W-cycle. Indeed, for µ = 1 the iteration goes straight down to the coarsest grid and back
until the finest grid is reached. This resembles the shape of the letter “V”. For µ = 2, each mesh
is visited more often by the algorithm and the mnemonic shape for the pattern is the letter “W”.
More elaborate graphical illustrations can be found in textbooks or on the web. Heuristically,
the W-cycle invests visits the coarse meshes more often than the V-cycle and is thus expected to
handle the low-frequency part of the error more accurately.
Later in the lecture we will prove convergence properties and complexity estimates for the

multigrid iteration. With the modest tools that we used in our FDM error analysis, such an
analysis turns out quite difficult while the analysis of the finite element method will offer more
powerful tools for accomplishing this. We confine ourselves to estimating the computational cost.
A fixed number ν of relaxation steps on a grid of size h = 1/N with n = (N + 1)2 grid points
requires O(n) operations because our matrices are sparse. The same applies to the multiplication
with the prolongation matrix or its transpose. The number of iterations for one evaluation of
MG(h, bh, ν) is therefore

O

 m∑
j=0

2−2jn

 = O(n)

because each coarsening reduces the number of grid points by a factor 4. It is possible to prove
that a fixed choice of ν and fixed maximal value k of iterations is sufficient for obtaining an error
x

(k)
h −xh that is of the order of magnitude of the original error estimate satisfied by xh. Therefore,

multigrid is a solver of linear complexity. We will prove this in the forthcoming chapters.
In Figure 2.4, a possible implementation of the W-cycle in Python is sketched (where standard

FDM routines are not further displayed). Also, the recursive implementation may not be optimal
with respect to memory consumption and speed.

Example 2.58. In this example we approximate Poisson’s equation on the unit square with right-
hand side f(x) = 2π sin(πx1) sin(πx2) with the multigrid method. The exact solution u(x) =
sin(πx1) sin(πx2) is explicitly known and used for comparison. We use k = 3 iterations of the
W-cycle with ν = 2 for both the pre- and the post-smoothing. The coarsest mesh is of size 3× 3
and we compute the discrete solution on 12 further refinements of that mesh. The convergence
history plot of Figure 2.5 compares the multigrid solution with the exact solution and shows that
the multigrid approximation has an error comparable to the exact discrete solution uh. Table 2.1
displays the numbers of nodes, the mesh sizes, the errors in the max norm and the computing
times of a simple Laptop with Intel Core i5-6300U CPU with 4 × 2.4 GHz with 7.6 GiB RAM
plus 22.8 GiB swap memory. On the finest mesh with about 60 million degrees of freedom the
computation took 8 271 seconds, which is about 2 hours, which is quite long and mainly due to
the computations with the swap memory. Note that the storage of A, b, x(k)

h , and projection
matrices almost fills the complete RAM on such a small machine.
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import numpy as np
from numpy import matlib
import scipy.sparse
import scipy.sparse.linalg
from scipy.sparse import csr_matrix
from scipy.sparse import spdiags

def f_fun(x,y): [...] return val # right -hand side function f
def FDM_coords(n): [...] return coord_x , coord_y
def FDM_data(n,f): [...] return A, b, h
def restrict2dof(n): [...] return R
def prolongation(n): [...] return P

def relax(A, b, u,n_smooth):
for _ in range(n_smooth):

u = u - 1/8 * (A*u-b)
return u

def Wcycle(coarse ,fine ,A,b,x,n_smooth):
S=restrict2dof (2** fine)
P=prolongation (2**( fine -1))
A_inner =(S.transpose ()@A)@S
b_inner=S.transpose ()@b
if coarse ==fine:

x=S*scipy.sparse.linalg.spsolve(A_inner ,b_inner)
else:

for _ in range (0,2):
x=S*relax(A_inner , b_inner , S.transpose ()*x,n_smooth)
r=b-A*x;
q=Wcycle(coarse ,fine -1,P.transpose ()@(A@P),P.transpose ()*r

,0*P.transpose ()*r,n_smooth)
x=x+P*q
x=S*relax(A_inner , b_inner , S.transpose ()*x,n_smooth)

return x

def FDM_mg(coarse ,fine ,f,n_iter ,n_smooth):
n=2** fine
A, b, h = FDM_data(n,f)
x=np.zeros((n+1) **2)
for m in range(0,n_iter):

x = Wcycle(coarse ,fine ,A,b,x,n_smooth)
return x, h

#-------- the numerical experiment --------------------------
f=np.vectorize(f_fun)
coarse =1 #2^ coarse intervals per axis
fine=8
n_iter =3
n_smooth =2
x, h=FDM_mg(coarse ,fine ,f,n_iter ,n_smooth)

Figure 2.4.: Possible implementation of the W-cycle.
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Figure 2.5.: Convergence history of ‖u− x(k)
h ‖∞,Ω̄ with k = 3, ν = 2 in Example 2.58.

mesh nodes h ‖u− x(k)
h ‖∞,Ω̄ time (seconds)

1 9.000E+00 5.000E-01 2.337E-01 2.717E-02
2 2.500E+01 2.500E-01 5.290E-02 2.324E-02
3 8.100E+01 1.250E-01 1.287E-02 5.230E-02
4 2.890E+02 6.250E-02 3.213E-03 1.120E-01
5 1.089E+03 3.125E-02 8.032E-04 2.275E-01
6 4.225E+03 1.562E-02 2.008E-04 5.213E-01
7 1.664E+04 7.812E-03 5.019E-05 1.257E+00
8 6.605E+04 3.906E-03 1.255E-05 4.109E+00
9 2.632E+05 1.953E-03 3.137E-06 1.083E+01
10 1.051E+06 9.766E-04 7.844E-07 3.721E+01
11 4.198E+06 4.883E-04 1.961E-07 1.369E+02
12 1.679E+07 2.441E-04 4.902E-08 5.199E+02
13 6.713E+07 1.221E-04 1.226E-08 8.271E+03

Table 2.1.: Results for k = 3, ν = 2 in Example 2.58.
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3. The finite element method

§1. Elementary Hilbert space theory

Hilbert spaces are taught in detail in any class on linear functional analysis. Here we only focus
on some very basic properties.
Let X be a (real) linear space. Given a symmetric and positive definite bilinear form (·, ·)X ,

we define ‖x‖X =
√

(x, x)X for any x ∈ X. It is elementary to establish the Cauchy–Schwarz
inequality

(x, y)X ≤ ‖x‖X ‖y‖X for any x, y ∈ X.

It can be shown that ‖ · ‖X defines a norm on X (thereby justifying the notation). The proofs
are the same as in the case of Euclidean vector spaces and left as an exercise. The difference to
Euclidean spaces is that X can be infinite-dimensional and therefore need not be complete. If it
is complete, we call X a Hilbert space.

Definition 3.1 (Hilbert space). A linear space X (over R) equipped with a symmertic and
positive definite bilinear form (·, ·)X is called Hilbert space if it is complete with respect to the
norm ‖ · ‖X :=

√
(·, ·)X . �

Basically, Hilbert spaces are Banach spaces with an Euclidean structure.

Lemma 3.2 (parallelogram law). In a Hilbert space X, every (a, b) ∈ X2 satisfies

‖a− b‖2X + ‖a+ b‖2X = 2(‖a‖2X + ‖b‖2X).

Proof. If we expand both terms on the left-hand side with the binomial identity, we see that the
mixed terms cancel. What remains are the terms on the right-hand side.

Theorem 3.3 (projection on complete subspaces). Let X be a Hilbert space with inner product
(·, ·)X and let Y ⊆ X be a complete linear subspace. Given x ∈ X, there exists a unique element
Px ∈ Y with the property

‖x− Px‖X = inf
y∈Y
‖x− y‖X .

The element Px is unique and characterized by the property

(x− Px, y)X = 0 for all y ∈ Y.

Proof. We abbreviate δ := infy∈Y ‖x− y‖X Let (yk)k be a sequence in Y with ‖x− yk‖X → δ as
k →∞. To prove that the sequence is Cauchy, we let m,n ≥ 0 and choose a = x−ym, b = x−yn
in the parallelogram law, which results in

‖ym − yn‖2X + 4‖x− 1

2
(ym + yn)‖2X = 2(‖x− ym‖2X + ‖x− yn‖2X).

Since ym, yn are from the linear space Y , their average lies in Y , and the second term on the
left-hand side is bounded from below by 4δ. Since the right-hand side converges to the same
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value, we deduce ‖ym − yn‖X → 0 as m,n → ∞ so that (yk)k is a Cauchy sequence. Since Y
is complete, the sequence has a limit, denoted by y, which lies in Y and satisfies ‖x − y‖ = δ.
For proving uniqueness, we assume that there are y, y′ ∈ Y realizing the infimum. The above
argument with the parallelogram law applied to y, y′ instead of ym, yn shows that y = y′, which
proves uniqueness. We thus denote Px := y.
For an arbitrary z ∈ Y and ε ∈ [0, 1], the convex combination (1− ε)Px+ εz belongs to Y , so

that we infer with elementary manipluations

‖x− Px‖2X = δ2 ≤ ‖x− (1− ε)Px− εz‖2X = ‖(x− Px)− ε(z − Px)‖2X .

Expanding the right-hand side results in the estimate

‖x− Px‖2X ≤ ‖x− Px‖2X + ε2‖z − Px‖2X + 2ε(x− Px, z − Px)X .

Simplifying, dividing by ε, and letting ε → 0, we see with the substitution y := z − Px that
0 ≤ (x−Px, y)X for all y ∈ Y . Since this must be true for ±y, the bilinearity proves the asserted
variational identity.

Definition 3.4. The map P : X → Y from Theorem 3.3 is called orthogonal projection to Y . �

It is easy to see that the orthogonal projection P to a subspace Y is linear and nonexpansive,
that is ‖P‖L(X,Y ) ≤ 1, see the exercises.
We recall the dual space X∗ := L(X,R), which is the space of continuous linear functionals over

X. The Riesz representation theorem states that there exists an isometric isomorphism between
X and X∗. The proof is taught in every course on linear functional analysis and we will briefly
discuss the proof in what follows.

Theorem 3.5 (Riesz representation theorem). Let X be a Hilbert space with inner product (·, ·)X
and let F ∈ X∗ be a continuous linear functional. Then there exists a unique element x ∈ X with
the property

(y, x)X = F (y) for all y ∈ X.
The dependence of x on F is linear and the element x satisfies ‖x‖X = ‖F‖X∗ .

Proof. We consider the map J : X → X∗ defined by

x 7→ J(x) = [y 7→ (y, x)X ]

or J(x) = (·, x)X for short. It is direct to check that J is linear and satisfies ‖x‖X ≤ ‖J(x)‖X∗ ≤
‖x‖X so that it is injective and an isometry. We are left with showing that J is surjective. Given
some nonzero F ∈ X∗, we denote by P the orthogonal projection to the kernel ker(F ) (which is
closed and thus complete, see the exercises). We choose b ∈ X with F (b) = 1 and set y := b−Pb.
By scaling the element y, we can now decompose any z ∈ X in a part in the kernel of F and a
multiple of y, namely

z = (z − F (z)y) + F (z)y.

By construction, y is orthogonal to any element of ker(F ), so that we compute

(z, y)X = (z − F (z)y, y)X + (F (z)y, y)X = (F (z)y, y)X = F (z)‖y‖2X .

Rearranging this formula reveals

F (z) = ‖y‖−2
X (z, y)X = J(‖y‖−2

X y)(z) for all z ∈ X

(note that y is nonzero because F (y) = 1). We thus have shown F = J(x) for x = ‖y‖−2
X y,

whence J is surjective.
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We now use Hilbert space methods to show well-posedness of our variational formulation.

§2. The Dirichlet problem in Sobolev spaces

Throughout this course, Ω ⊆ R2 will be an open convex polygon. It is known that such domains
posses, almost everywhere on the boundary, a well-defined outer unit normal vector ν. The
divergence theorem teaches us the following: For a bounded Lipschitz domain Ω and a vector
field v ∈ C1(Ω;R2) we have ∫

∂Ω
v · ν ds =

∫
Ω

div v dx.

Here (and throughout this text) we denote integration with respect to the n-dimensional Lebesgue
measure by the symbol “dx” while integration with respect to the 1-dimensional surface measure
is indicated by “ds”. The divergence theorem implies the formula of integration by parts: For two
differentiable functions u and v we have∫

Ω
(u ∂jv + v ∂ju)dx =

∫
∂Ω
uv νjds

for any j ∈ {1, . . . , n}, where νj is the jth component of the outer unit normal. A variant thereof
is called Green’s formula ∫

Ω
(u∆v +∇u · ∇v)dx =

∫
∂Ω
u
∂v

∂ν
ds,

where v ∈ C2(Ω) ∩ C1(Ω̄) is assumed.

Definition 3.6 (weak derivative). Let Ω ⊆ R2 be open. Let v ∈ L1
loc(Ω) and j ∈ {1, 2}. If there

exists a function g ∈ L1
loc(Ω) with the property∫

Ω
v∂jψ dx = −

∫
Ω
gψ dx for all ψ ∈ C∞c (Ω),

then this function g is called the weak partial derivative of v with respect to the direction j, and it
is denoted by ∂jv. The vector of all partial derivatives is denoted (provided it exists) by ∇v. �

Remark 3.7. The weak derivative is unique (see problems). �

The idea behind this definition is to extend the common notion of differentiability. If v is
differentiable, then the weak and the classical derivatives coincide. There are, however, functions
that are not differentiable in the classical sense, but possess a weak derivative.

Example 3.8. The absolute value function v(x) = |x| on Ω = (−1, 1) is not differentiable on
(−1, 1). Yet, its weak derivative is given by

v′(x) =

{
−1 if x < 0

1 if x ≥ 0.
(3.1)

Note that we can modify elements of L1
loc(Ω) at x = 0 to any value.

From the example we see that functions with certain kinks can be weakly differentiable.
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Example 3.9. We subdivide the interval (−1, 1) into finitely many sub-intervals [xj , xj+1], where

−1 = x1 < · · · < xN = 1 and ∪N−1
j=1 [xj , xj+1] = Ω̄ = [−1, 1],

and consider the globally continuous functions that are affine when restricted to any of the sub-
intervals [xj , xj+1]. Any such function is weakly differentiable.

We introduce spaces of functions that posses appropriate weak derivatives. It will turn out that
these are suited for a sound theory of Poisson’s equation (and similar problems). We shall prove
many, but not all of the stated results.

Definition 3.10 (Sobolev spaces). Let Ω ⊆ R2 be bounded and open. Define

H1(Ω) := {v ∈ L2(Ω) : ∀j ∈ {1, 2} ∂jv ∈ L2(Ω)}.

That is, the functions from H1(Ω) belong to L2(Ω); their first weak derivatives exist and belong
to L2(Ω) as well. �

Sobolev functions have far more structure than generic L2 functions. Recall that elements
from L2(Ω) are equivalence classes (up to equality almost everywhere) and that point evaluations
are not well defined. This is generally the case for Sobolev function, too. Yet, we will see that
such functions possess boundary values in some generalized sense. We first study an important
property, namely that H1(Ω) can equivalently be defined by a completion process. Let us define
the following norm on H1(Ω),

‖v‖H1(Ω) :=
√
‖v‖2

L2(Ω)
+ ‖∇v‖2

L2(Ω)
.

We use the convention that ‖∇v‖2L2(Ω) =
∫

Ω |∇v|
2 dx for the Euclidean norm |·|.

Theorem 3.11. Let Ω ⊆ R2 be an open bounded polygon. The space H1(Ω) is complete with
respect to the norm ‖ · ‖H1(Ω), i.e. a Banach space. The space C∞(Ω̄) is dense in H1(Ω).

Theorem 3.12. Let Ω ⊆ R2 be an open, bounded domain with polygonal Lipschitz boundary.
Then, there exists a unique continuous and linear map S : H1(Ω)→ L2(∂Ω) with the property

Sv = v|∂Ω for all v ∈ H1(Ω) ∩ C1(Ω̄).

Remark 3.13. A linear map T : H1(Ω)→ L2(∂Ω) is said to be continuous if there exists a constant
CT <∞ such that

‖Tv‖L2(∂Ω) ≤ CT ‖v‖H1(Ω) for all v ∈ H1(Ω).

The theorem states the following. The operation of taking boundary values, which is well defined
for functions from C1(Ω̄), has a unique continuation to functions from H1(Ω). Taking such
generalized boundary values still leads to functions in L2(∂Ω), and we interpret these as boundary
values of functions from H1(Ω). This concept turns out important if we wish to pose the Dirichlet
problem in Sobolev spaces. The operator S is called trace operator, and Sv is called the trace of
v on ∂Ω. �

We outline a proof of the trace theorem, where for simplicity of notation we assume that Ω̄ = T
is a triangle. By density, it will be enough to show that for any edge F of T and any v ∈ C1(T ),
the following bound holds ‖v‖L2(F ) ≤ C‖v‖H1(T ). The constant C depends on the domain Ω but
not on v. This will be proven in the following theorem.
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Theorem 3.14 (trace identity and trace inequality for triangles). Let T ⊆ R2 be a triangle with
some edge F ⊆ T and opposite vertex P ∈ T . Any function v ∈ C1(T ) then satisfies

|T |
|F |

∫
F
v ds =

∫
T
v dx+

1

2

∫
T

(• − P ) · ∇v dx

and
‖v‖2L2(F ) ≤

3|F |
2|T |
‖v‖2L2(T ) +

|F |
2|T |

diam(T )2‖∇v‖2L2(T ).

Here, |T | denotes the area of T and |F | denotes the length of F .

Proof. We have div(• − P ) = 2 (in two space dimensions). Integration by parts therefore reveals∫
T
v dx+

1

2

∫
T

(• − P ) · ∇v dx =

∫
∂T
v (• − P ) · ν ds,

where ν is the outer unit normal of T . We observe that, on the two edges of T different from F ,
the vector (• − P ) is tangential to ∂T and, thus, its product with ν equals zero. Hence,∫

∂T
v (• − P ) · ν ds =

∫
F
v (• − P ) · ν ds.

Since furthermore ν is constant along F , the quantity (•−P ) · ν is constant on F as well, and its
value corresponds to the orthogonal projection of (• − P ) in direction of ν. This is precisely the
length of the height on F , which by elementary geometry takes the value 2|T |/|F |. This proves
the first assertion.
In order to show the second claimed property, we apply the trace identity to v2. Note that
∇(v2) = 2v∇v. We thus infer

|T |
|F |

∫
F
v2 ds =

∫
T
v2 dx+

∫
T

(• − P ) · v∇v dx ≤
∫
T
v2 dx+ diam(T )

∫
T
|v| |∇v| dx,

where in the second step we have estimated the length of (• − P ) by the diameter of T . After
rearranging the identity we obtain

‖v‖2L2(F ) ≤
|F |
|T |
‖v‖2L2(T ) +

|F |
|T |

diam(T )

∫
T
|v| |∇v| dx.

We use the Cauchy-Schwarz inequality and the Young inequality 2ab ≤ a2 + b2 to estimate the
second integral as follows

diam(T )
|F |
|T |

∫
T
|v| |∇v| dx =

|F |
|T |

∫
T
|v|
(

diam(T )|∇v|
)
dx

≤ |F |
2|T |

(‖v‖2L2(T ) + diam(T )2‖∇v‖2L2(T )).

This implies the second assertion.

As a consequence from the trace theorem, it makes sense to impose boundary values on functions
from H1(Ω). We will usually write u|∂Ω instead of Su etc., but we need to be aware that this
function is only of class L2 on ∂Ω. For the Dirichlet problem, it is reasonable to consider the
following subspace

H1
0 (Ω) := {v ∈ H1(Ω) : v|∂Ω = 0},

i.e., the space of Sobolev functions with zero boundary values.
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Theorem 3.15. Let Ω ⊆ R2 be an open bounded polygon. The space H1
0 (Ω) is the completion

C∞c (Ω̄) with respect to the norm ‖ · ‖H1(Ω).

For functions from H1
0 (Ω), the L2 norm can be controlled by the L2 norm of the gradient. This

result is called Friedrichs’ inequality (sometimes Poincaré–Friedrichs inequality).

Theorem 3.16 (Friedrichs’ inequality). Let Ω be an open, bounded, and connected Lipschitz
domain. Then there exists a constant C > 0 such that

‖v‖L2(Ω) ≤ C‖∇v‖L2(Ω) for all v ∈ H1
0 (Ω).

The constant is C proportional to the diameter of Ω.

Proof. The proof is left as an exercise. We sketch the basic idea. In view of Theorem 3.15, it is
enough to consider v ∈ C∞c (Ω) and then argue by density. We extend v by zero to some larger
rectangular box containing Ω. After shifting coordinates, we may assume that Ω ⊆ (0, L)2, L > 0.
Then, v is of class C∞c ((0, L)2) with respect to this box. For any x ∈ Ω, we can integrate

v(x) = v(x1, x2) = v(0, x2) +

∫ x1

0
∂1v(t, x2) dt.

We observe that the boundary term is zero. For the remaining term, we use the Cauchy-
Schwarz/Hölder inequality and obtain

|v(x)|2 ≤ L
∫ L

0
|∂1v(t, x2)|2 dt.

We now intergrate with respect to x1∫ L

0
|v(x)|2dx1 ≤ L2

∫ L

0
|∂1v(t, x2)|2 dt.

and thereafter integrate with respect to x2∫ L

0

∫ L

0
|v(x)|2 dx1dx2 ≤ L2

∫ L

0

∫ L

0
|∂1v(t, x2)|2 dtdx2.

Since the support of v lies inside Ω, this implies the asserted estimate for v. By a density argument,
it is true for all functions from H1

0 (Ω).

The most important implication of Friedrichs’ inequality is that ‖∇ · ‖L2(Ω) defines a norm on
H1

0 (Ω). (Convince yourself that this cannot be a norm on the larger space H1(Ω) by considering
constant functions.) Denoting the constant from Friedrichs’ inequality by CF, we indeed have the
equivalence of norms

‖v‖2H1(Ω) = ‖v‖2L2(Ω) + ‖∇v‖2L2(Ω) ≤ (1 + C2
F)‖∇v‖2L2(Ω) ≤ (1 + C2

F)‖v‖2H1(Ω). (3.2)

We use the notation |v|1 = ‖∇v‖L2(Ω).
We are now in the position to formulate the Dirichlet problem in Sobolev spaces. From the

above formulae we see that −∆u = f and u|∂Ω = 0 implies∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx for all v ∈ C∞c (Ω).

This formulation requires less derivative information on u.
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Definition 3.17. Let Ω ⊆ R2 be an open and bounded Lipschitz domain. Given f ∈ L2(Ω), the
variational (or weak) formulation of the Dirichlet problem for Poisson’s equation seeks u ∈ H1

0 (Ω)
such that ∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx for all v ∈ H1

0 (Ω).

�

This generalizes Poisson’s equation in the sense that every classical solution will also be a
solution to the variational formulation (see exercises).

Lemma 3.18. Let Ω ⊆ R2 be an open and bounded Lipschitz domain. The space H1
0 (Ω) equipped

with the bilinear form ∫
Ω
∇v · ∇w dx

is a Hilbert space.

Proof. Friedrichs’ inequality shows that the symmetric bilinear form is positive definite. The
completeness with respect to | · |1 is a consequence of the equivalence of norms (3.2) and the fact
that H1

0 (Ω) is a closed subspace of H1(Ω).

Theorem 3.19. Let Ω ⊆ R2 be an open and bounded Lipschitz domain and let f ∈ L2(Ω).
The variational formulation of the Dirichlet problem of Poisson’s equation has a unique solution
u ∈ H1

0 (Ω).

Proof. We check that

v 7→
∫

Ω
fv dx

is a continuous linear functional on the Hilbert space H1
0 (Ω). This follows from the Cauchy and

the Friedrichs inequality ∫
Ω
fv dx ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)CF|v|1.

Hence, we are in the setting of the Riesz representation theorem, which states that there is a
unique element u ∈ H1

0 (Ω) satisfying∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx for all v ∈ H1

0 (Ω).

By using elementary Hilbert space theory we could establish existence and uniqueness to the
Dirichlet problem for any right-hand side f ∈ L2(Ω).

§3. Discrete functions

The functions from the foregoing example allow for a very simple representation, and so they are
generally suited for numerical computations. It is easy to verify that any such function can be
characterized by the vector (v(xj))

N
j=1 of its values at the points xj . Between these nodal points,

the values are interpolated by straight lines.
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It is possible to generalize this construction to higher space dimensions. We only consider
the case n = 2 in this lecture in order to minimize the technical efforts. Let the domain Ω̄ be
subdivided in triangles. We consider the space of functions that are globally continuous and that
are affine when restricted to any of the triangles. In order to define such spaces, we introduce a
suitable class of triangular partitions.

Definition 3.20 (triangle). A subset T ⊆ R2 is called triangle if there exists (z1, z2, z3) ∈ (R2)3

such that T is the convex hull of z1, z2, z3 and these three points do not belong on one straight
line. The points z1, z2, z3 are called vertices. The line segments between zj , zk for j 6= k are called
edges. �

Definition 3.21 (regular triangulation). Let T ⊂ 2Ω̄ be a finite set of triangles in Ω̄ (2Ω̄ denotes
the power set). The set T is called a regular triangulation of Ω if die the triangles cover the
domain Ω̄, i.e.,

⋃
T∈T = Ω̄, and if any pair (T,K) ∈ T2 satisfies one of the following relations:

(i) T ∩K = ∅

(ii) T ∩K is a common vertex

(iii) T ∩K is a common edge

(iv) T = K .

�

This means that the elements of a regular triangulation may only meet under certain rules.

Example 3.22. A non-regular and a regular triangulation of the square:

In what follows, T will always denote a regular triangulation of Ω. Let T ∈ T be a triangle.
The affine functions over T are denoted by

P1(T ) := {v ∈ L∞(T ) : ∃(a, b, c) ∈ R3∀x ∈ T, v(x) = a+ bx1 + cx2}.

The functions that are piecewise affine with respect to T (but possibly globally discontinuous) are
denoted by

P1(T) := {v ∈ L∞(Ω) : ∀T ∈ T, v|T ∈ P1(T )}.

Finally, the continuous and piecewise affine functions are denoted by

S1(T) := C0(Ω) ∩ P1(T)

and the subspace with zero boundary conditions reads

S1
0(T) := {v ∈ S1(T) : v|∂Ω = 0}.

The letter S shall remind us of splines; a notion that is possibly known from one-dimensional
interpolation.
The following property is very important, and its proof is discussed in the problems below.

Lemma 3.23. The elements of S1(T) are weakly differentiable.
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Proof. Exercise.

The set of vertices (or nodes) of a triangle is denoted by N(T ) and the set of all vertices is

N := {z ∈ Ω̄ : there exists T ∈ T having z as a vertex} =
⋃
T∈T

N(T ).

The basis we choose for S1(T) or S1
0(T) is the nodal basis. First, we define the nodal basis of

S1(T) (no boundary conditions) by (ϕz)z∈N, where for any z ∈ N the function ϕz ∈ S1(T) is
defined by the property

ϕz(y) = δyz =

{
1 if y = z

0 if y ∈ N \ {z}.
(3.3)

These functions are usually referred to as “hat functions”. It will be shown in the exercises that
these function indeed form a basis.
In order to define a nodal basis of S1

0(T), one omits the hat functions belonging to boundary
vertices. To this end, we define the boundary vertices by N(∂Ω) := ∂Ω∩N and the inner vertices
by N(Ω) := N \N(∂Ω). The nodal basis of S1

0(T) then reads

(ϕz : z ∈ N(Ω)).

As in classical Lagrange interpolation, the coefficients with respect to the nodal basis are given
by the nodal values. This means that any function vh ∈ S1(T) can be expanded as follows

vh =
∑
z∈N

vh(z)ϕz.

The spaces S1(T) and S1
0(T) are called finite element spaces. Any continuous function v ∈ C(Ω̄)

can be approximated by its interpolation Iv ∈ S1(T) as follows

Iv :=
∑
z∈N

v(z)ϕz.

The map I : C(Ω̄) → S1(T) is called interpolation operator. For the case of zero boundary
conditions, the definition is analogous.

§4. The finite element method

The finite element method is to compute the orthogonal projection uh of the solution u ∈ H1
0 (Ω)

of the Dirichlet problem onto the space S1
0(T). It is therefore uniquely defined by the condition∫

Ω
∇uh · ∇vhdx =

∫
Ω
fvhdx for all vh ∈ S1

0(T), (3.4)

which describes a positive definite linear problem in a finite-dimensional space. Our Hilbert space
theory teaches us that it is indeed the best approximation.

Theorem 3.24. Let Ω ⊂ R2 be an open, bounded, connected Lipschitz polygon with a triangulation
T. Given f ∈ L2(Ω), the error between the solution u ∈ H1

0 (Ω) to the variational form of Poisson’s
equation and the finite element solution uh ∈ S1

0(T) satisfies

|u− uh|1 = inf
vh∈S1

0(T)
|u− vh|1.
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We have seen that the finite element method is, in some sense, optimal. The result should
illustrate the basic idea of the error analysis. It is possible to generalize the theory to more
general operators (not just the Laplacian), but this is not in the focus of this lecture.
We would like to quantify the right-hand side of the best-approximation result in terms of

the mesh-size (maximum diameter of the triangles in T). The idea is to plug in a suitable
approximation in the infimum for which we then derive quantified bounds. To achieve this, we will
use the finite element interpolation. It is, however, not a well defined on H1(Ω) because it takes
point evaluations, which need not exist without further assumptions (see Problem A.34). This
means that the interpolation operator, denoted by Ih, assigning the finite element interpolation
Ihv to any suitable (say continuous) function v, is not well defined on H1(Ω). It can, however,
be shown that point evaluations are well-defined in the space

H2(Ω) = {v ∈ L2(Ω) : all weak derivatives of v up to order 2 exist as functions of L2(Ω)}

with norm
‖v‖H2(Ω) =

√∑
|α|≤2

‖∂αv‖2
L2(Ω)

.

Theorem 3.25. Let Ω ⊆ R2 be an open and bounded Lipschitz polygon. Then, we have the
continuous embedding H2(Ω) ↪→ C(Ω) and there exists a constant C > 0 such that

‖v‖L∞(Ω) ≤ C‖v‖H2(Ω) for any v ∈ H2(Ω).

Proof. The result will be proven for triangles in Exercise A.45. For polygons, the result then
follows by covering the domain with triangles and using the bound available for these.

We have seen that we can apply the finite element interpolation Ih under the assumption that
our solution u satisfies the stronger property u ∈ H1

0 (Ω)∩H2(Ω). For a derivation of a quantitative
bound on the interpolation under this assumption, we will use —without proof— an interpolation
error estimate on a reference triangle. We shall then carefully consider a transformation to
arbitrary triangles and see how the estimate depends on the geometry of these.

Lemma 3.26 (interpolation on a reference triangle). Let T̂ be the convex combination of the
points (0, 0), (1, 0), (0, 1). There exists a constant Ĉ > 0 such that for any v̂ ∈ H2(T̂ ) we have

‖∇(v̂ − Ihv̂)‖L2(T̂ ) ≤ Ĉ‖D
2v̂‖L2(T̂ ).

Proof. The proof is worked out in basic finite element courses.

Here and throughout these notes, we use the notation ‖D2v‖L2(T ) =
√∫

T

∑2
j,k=1 |∂jkv|2 dx.

We introduce a parameter measuring the mesh quality.

Definition 3.27. Let T ⊆ R2 be a triangle. Let hT denote its diameter and let ρT denote the
diameter of the largest ball inscribed to T . The quantity hT /ρT is called the aspect ratio of T . �

Lemma 3.28. Let Φ(x̂) = Bx̂ + c denote the affine map from a triangle T̂ to the triangle T .
Then, the spectral norm ‖ · ‖ of B and B−1 satisfies

‖B‖ ≤ hT
ρT̂

and ‖B−1‖ ≤
hT̂
ρT
.
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Proof. Given any vector ξ ∈ R2 of length |ξ| = ρT̂ , there exists pair of points x̂, ŷ inside T̂ with
x̂− ŷ = ξ because the full ball of diameter ρT̂ is contained in T̂ . Since Φ(x̂) and Φ(ŷ) belong to
T , the image under B satisfies Bξ = B(x̂ − ŷ) = Φ(x̂) − Φ(ŷ) and its length is bounded by the
diameter hT . We thus compute

‖B‖ = sup
ξ∈R2,|ξ|=1

|Bξ| = sup
ξ∈R2,|ξ|=ρT̂

1

ρT̂
|Bξ| ≤ hT

ρT̂
.

The second asserted estimate follows from interchanging the roles of T and T̂ .

We now prove the interpolation error estimate.

Theorem 3.29 (interpolation on an arbitrary triangle). There exists a constant C > 0 such that
for any triangle T and any v ∈ H2(T ) we have

‖∇(v − Ihv)‖L2(T ) ≤ C
hT
ρT
hT ‖D2v‖L2(T ).

Proof. We consider the affine transformation

Φ : T̂ → T

from the reference triangle to T . We denote by e := v − Ihv the interpolation error and observe
from the change-of-variables formula that

‖∇e‖2L2(T ) =

∫
T
|∇e|2 dx =

∫
T̂
|(∇e) · Φ|2| detDΦ| dx

We use notation v̂ := v ◦ Φ and ê := e ◦ Φ. The chain rule reveals for any x̂ ∈ T̂ that

∇ê(x̂) = DΦ(x̂)>∇e|Φ(x̂).

Multiplying with the inverse of DΦ> and taking squares thus leads to

|(∇e) ◦ Φ|2 = |(DΦ>)−1∇ê|2 ≤ ‖DΦ−1‖2|∇ê|2

where ‖ · ‖ denotes the (pointwise) spectral matrix norm.
We observe that DΦ is constant on T̂ (because Φ is affine). We thus obtain

‖∇e‖2L2(T ) ≤ ‖DΦ−1‖2| detDΦ|‖∇ê‖2
L2(T̂ )

.

By Lemma 3.26 there exists a constant Ĉ, depending on T̂ , such that

‖∇ê‖2
L2(T̂ )

≤ Ĉ2‖D2v̂‖2
L2(T̂ )

.

Here, we have used that ê is the interpolation error if v̂. So far we have shown

‖∇e‖2L2(T ) ≤ Ĉ
2‖DΦ−1‖2

∫
T̂
|D2v̂|2| detDΦ| dx.

The chain rule shows
D2v̂(x̂) = DΦ(x̂)>D2v|Φ(x̂)DΦ(x̂).
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We thus find
|D2v̂|2 ≤ ‖DΦ(x̂)‖4|(D2v) ◦ Φ|2.

After transforming back to T we thus obtain

‖∇e‖2L2(T ) ≤ Ĉ
2‖DΦ−1‖2‖DΦ‖4‖D2v̂‖2L2(T ).

The norms of DΦ and its inverse can be estimated with Lemma 3.28 as follows

‖DΦ−1‖2‖DΦ‖4 ≤
h2
T̂

ρ2
T

h4
T

ρ4
T̂

=
h2
T̂

ρ4
T̂

h4
T

ρ2
T

.

The terms related to T̂ are independent of T and can be estimated by some universal constant.
We thus obtain (after taking squareroots) the asserted bound on the norm of the gradient.

We see from the interpolation error estimate of that the interpolation error is proportional to hT
provided the aspect ratio of the triangle is bounded. We say that a family of triangulations with
bounded aspect ratio is shape-regular. The approximation of an H2 function is then determined
by the mesh-size hT and thus improved under mesh-refinement. We obtain:

Corollary 3.30 (global interpolation error estimate). Let Ω ⊆ R2 be an open and bounded
polygon. Let {Th}h be a shape-regular family of triangulations. Then, there is a constant C > 0
such that for any v ∈ H2(Ω) the finite element interpolation Ih with respect to a mesh Th satisfies

‖∇(v − Ihv)‖L2(Ω) ≤ Ch‖D2v‖L2(Ω)

for the maximal mesh-size h = maxT ∈ ThhT .

We have seen that any v ∈ H2(Ω) is approximated with order h by the finite element interpol-
ation the H1 norm. For convex domains, the assumption that the solution to Poisson’s equation
is H2 regular, can be proven:

Theorem 3.31 (regularity on convex domains). Let Ω ⊂ R2 be an open convex domain. Given
any f ∈ L2(Ω), the solution to the Dirichlet problem of the Laplacian (Poisson’s equation) satisfies
u ∈ H1

0 (Ω) ∩H2(Ω) with the bound

‖D2u‖L2(Ω) ≤ C‖f‖L2(Ω).

Proof. See the PDE literature.

Remark 3.32. When the domain is nonconvex, the solution may fail to belong to H2(Ω). This
is for instance the case in Exercise A.12. This is why we assume convexity throughout this
lecture. �

Finally, we can quantify the approximation error of the finite element method.

Corollary 3.33. Let Ω ⊆ R2 be an open, bounded, convex polygon. Then, the error between u
and the finite element approximation uh with respect to a triangulation Th from a shape-regular
family satisfies

‖∇(u− uh)‖L2(Ω) ≤ h‖D2u‖L2(Ω).

Proof. Since u ∈ H2(Ω), the interpolation Ihu is well-defined. We know from the best-approxi-
mation property that

‖∇(u− uh)‖L2(Ω) ≤ ‖∇(u− Ihu)‖L2(Ω).

The assertion then follows from the interpolation error estimate of Corollary 3.30.
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We can prove an improved bound for the error in the L2 norm.

Theorem 3.34 (L2 error bound). Let Ω ⊂ R2 be an open convex domain. Given any f ∈ L2(Ω),
the solution to the Dirichlet problem of the Laplacian (Poisson’s equation) and its finite element
approximation satisfy

‖u− uh‖L2(Ω) ≤ Ch‖∇(u− uh)‖L2(Ω) ≤ C ′h2‖D2u‖L2(Ω) ≤ C ′′h2‖f‖L2(Ω).

Proof. The technique employed in the proof is known as the Aubin-Nitsche duality trick. The
idea is to solve for a solution z ∈ H1

0 (Ω) an auxiliary problem whose right-hand side is given by
the error e := u− uh. Let z solve∫

Ω
∇z · ∇v dx =

∫
Ω
ev dx for all v ∈ H1

0 (Ω).

We test the equation with v := e and obtain

‖e‖2L2(Ω) =

∫
Ω
e e dx for all v ∈ H1

0 (Ω) =

∫
Ω
∇e · ∇z dx.

We now use the Galerkin orthogonality and plug in the finite element approximation zh to z,∫
Ω
∇e · ∇z dx =

∫
Ω
∇(u− uh) · ∇z dx =

∫
Ω
∇(u− uh) · ∇(z − zh) dx.

Corollary 3.33 implies for the finite element errors that

‖∇(u− uh)‖L2(Ω) ≤ C‖D2uh‖L2(Ω)

and ‖∇(z − zh)‖L2(Ω) ≤ C‖D2zh‖L2(Ω) ≤ C‖e‖L2(Ω).

We now combine the above formulas and divide by the norm of e to arrive at the first asserted
estimate. The second one follows from Theorem 3.31.

§5. Mesh refinement

Given a triangulation TH , we can generate a finer triangulation Th by subdividing every triangle
in four sub-triangles by connecting the three midpoints of its edges. This procedure is sometimes
referred to as red refinement. We note that

• the mesh size h is half the mesh size H, that is h = H/2,

• all new triangles generated from a coarse triangle T are congruent to T ,

• mesh families generated by red refinement are shape regular,

• all vertices from TH are also vertices of Th.

This is partly shown in the exercises. Of course, any piecewise affine function with respect to
TH is piecewise affine with respect to Th as well. We therefore deduce the nestedness property
S1(TH) ⊆ S1(Th). Such an embedding of coarse-grid functions to fine-grid functions was already
needed for FDM multigrid. Now that we are operating with functions, we can give a sound
meaning to the embedding by stating an inclusion of vector spaces. In view of Exercise A.42, the
finite difference embedding of Figure 2.2 now becomes transparent: it is the embedding of the
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corresponding finite element space if the grid is interpreted as the set of vertices of the triangulation
from Figure A.1. The above embedding is linear and can be represented by a (rectangular) matrix,
the prolongation matrix.
Let us now briefly discuss how to operate with triangulations and finite element functions on

a computer (using Python). We describe a triangulation by prescribing a list of nodes and a list
of triangles. The nodes are put in a list coord ∈ RN×2. The x and y coordinate of the jth node
are written to the jth row. In the example of Figure 3.1 this means

coord = np.asarray([[0,0],
[1,0],
[1,1],
[0,1],
[.5,.5]])

for the unit square (0, 1)2. Here, we use the library numpy:

import numpy as np

Now we form triangles out of the node numbers. We use convention that the numbering is
counterclockwise. The list triangles ∈ RN×3 contains in its jth row the three node numbers of
triangle number j. In the example from Figure 3.1 this reads

triangles = np.asarray([[0,1,4],
[1,2,4],
[2,3,4],
[3,0,4]])

We finally save the node pairs of the boundary edges on the Dirichlet boundary

dirichlet= np.array([[0,1],
[1,2],
[2,3],
[3,0]])

We will comment on (and make use of) this later. In Python we can now plot our triangulation
by:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as mtri

plt.triplot(mtri.Triangulation(coord[:,0], coord[:, 1], triangles))
plt.show()

If we want to generate a surface plot of a piecewise affine function from S1(T), we can use trisurf.
Figure 3.2 shows a complete example.
The triangulation in the above example is very coarse. Finer triangulations can be obtained

red refinement. We provide a routine red_refine.py on the lecture webpage. We do not care
about the actual code, but we just use it. It can be used as follows

neumann=np.zeros([0, 2])
coord, triangles, dirichlet,_,_,P = \

red_refine(coord, triangles, dirichlet, neumann)
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Figure 3.1.: Triangulation of the square (0, 1)2 in four triangles. The bold numbers indicate the
node numbers wile the numbers of the triangles are displayed in italic.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as mtri
from mpl_toolkits import mplot3d
from mpl_toolkits.mplot3d import Axes3D

coord = np.asarray ([[0 ,0] ,[1 ,0] ,[1 ,1] ,[0 ,1] ,[.5 ,.5]])
triangles = np.asarray ([[0,1,4],[1,2,4],[2,3,4],[3,0,4]])
dirichlet= np.array ([[0 ,1] ,[1 ,2] ,[2 ,3] ,[3 ,0]])
# show triangulation
plt.triplot(mtri.Triangulation(coord [:,0], coord[:, 1], triangles))
plt.show()
# plot the interpolation of the function x+y
func = lambda x, y: x + y
func2=np.vectorize(func)
z=func2(coord [:,0],coord [:,1])
fig = plt.figure(figsize =(14, 9))
ax = plt.axes(projection =’3d’)
trisurf = ax.plot_trisurf(coord [:,0], coord[:,1],z,

triangles = triangles ,
cmap =plt.get_cmap(’summer ’),
edgecolor=’Gray ’);

plt.show()

Figure 3.2.: Sample use of triplot and trisurf
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import numpy as np
import math
import pylab
from red_refine import red_refine #our refinement routine
import scipy.sparse
import scipy.sparse.linalg
from scipy.sparse import csr_matrix

Figure 3.3.: The required packages for the FEM in Python

Here, neumann is just an empty list that, at this stage, has no importance. Later in the lecture
we will also consider problems with a second type of boundary condition (so-called Neumann
boundary condition), but for the moment we can ignore it; we also do not care about the two
ignored output arguments of the function. The output P is the prolongation matrix, mapping the
coefficient vector of a finite element function to its representation on the refined grid. It will be
of importance in the multigrid method.

§6. Implementation of the FEM

Let us now describe how to implement the FEM on the computer. Full Python routines can
be found on our lecture webpage, so that here we will focus on the important (mathematical)
aspects of the implementation. In order to discretize Poisson’s equation (subject to homogeneous
Dirichlet boundary conditions) with the FEM, we need

• a triangulation T, described through the data structures coord, triangles, dirichlet,

• the right-hand side f , e.g. given through values at certain points or as function,

• a vector b representing the linear functional
∫

Ω f • dx with respect to the nodal basis of
S1(T),

• the so-called stiffness matrix A, i.e., the matrix representing the bilinear form from Poisson’s
equation with respect to the nodal basis of S1(T).

With these objects at hand, we can solve for the coefficient vector of the FEM solution uh. It is
important to restrict the matrices to the degrees of freedom. In our case, these correspond to the
inner nodes (as the values for the boundary nodes are already fixed by the value 0). The list of
degrees of freedom is usually given the variable name dof.
We start by specifying some required packages for (sparse) linear algebra, see Figure 3.3. The

structure of the program is displayed in Figure 3.4.
It remains to describe the routines for assembling the stiffness matrix A and the right-hand

side vector b. We start with A. First, we build up local stiffness matrices for each triangle T

Aloc
T := (

∫
T
∇ϕj · ∇ϕk dx)j,k=1,2,3.

Here, the vertices of T are locally numbered by 1, 2, 3. Since the ϕj are affine functions, their
gradients are constant so that we arrive at the formula

Aloc
T = area(T )

∇ϕ>1∇ϕ>2
∇ϕ>3

 [∇ϕ1 ∇ϕ2 ∇ϕ3

]
.
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def FEM(coord ,triangles ,dirichlet ,f):
nnodes=np.size(coord ,0)
A=stiffness_matrix(coord ,triangles)
b=RHS_vector(coord ,triangles ,f)
dbnodes=np.unique(dirichlet)
dof=np.setdiff1d(range(0,nnodes),dbnodes)
ndof=np.size(dof)
R=restrict2dof(dof ,nnodes)
A_inner =(R.transpose ()@A)@R
b_inner=R.transpose ()@b
x=np.zeros(nnodes)
x[dof]= scipy.sparse.linalg.spsolve(A_inner ,b_inner)
return x, ndof

Figure 3.4.: The basic FEM routine.

The area is easily computed as follows. With the three vertices z1, z2, z3 ∈ R2 of T , we have that

area(T ) =
1

2
det[z2 − z1, z3 − z1].

For the computation of ∇ϕj we observe that the basis functions (or barycentric coordinates)
satisfy the system [

1 1 1
z1 z2 z3

]
︸ ︷︷ ︸

∈R3×3

ϕ1(x)
ϕ2(x)
ϕ3(x)

 =

[
1
x

]
︸︷︷︸
∈R3×1

for any T . If we take derivatives (w.r.t. x) on both sides, we arrive at

[
1 1 1
z1 z2 z3

]
︸ ︷︷ ︸

∈R3×3

∇ϕ>1∇ϕ>2
∇ϕ>3


︸ ︷︷ ︸
∈R3×2

=

0 0
1 0
0 1


︸ ︷︷ ︸
∈R3×2

.

Therefore ∇ϕ>1∇ϕ>2
∇ϕ>3

 =

[
1 1 1
z1 z2 z3

]−1
0 0

1 0
0 1

 .
We compute all local stiffness matrices in a loop

nelems=np.size(triangles,0)
Alocal=np.zeros((nelems,3,3))

for j in range(0,nelems):
nodes_loc=triangles[j,:]
coord_loc=coord[nodes_loc,:]
T=np.array([coord_loc[1,:]-coord_loc[0,:] ,

coord_loc[2,:]-coord_loc[0,:] ])
area = 0.5 * ( T[0,0]*T[1,1] - T[0,1]*T[1,0] )
T= np.concatenate((np.array([[1,1,1]]), coord_loc.T),axis=0)

58



T1= np.array([[0,0],[1,0],[0,1]])
grads = np.linalg.solve(T,T1)
Alocal[j,:,:]=area* np.matmul(grads,grads.T)

Now we need to assemble the local stiffness matrices into the global stiffness matrix. The entry
Ajk of the global stiffness matrix is given by

Ajk =

∫
Ω
∇ϕj · ∇ϕk dx =

∑
T∈T

∫
T
∇ϕj · ∇ϕk dx =

∑
T∈T

nodes j,k
belong to K

∫
T
∇ϕj · ∇ϕk dx.

This means that, for any triangle, we save the index pairs (j, k in the above sum) assigning the
global node numbers to the entries of the local stiffness matrix. We write these indices into the
arrays I1, I2. We then build up a sparse matrix based on these indices (note that repeated indices
imply summation).

nelems=np.size(triangles,0)
nnodes=np.size(coord,0)
I1=np.zeros((nelems,3,3))
I2=np.zeros((nelems,3,3))

for j in range(0,nelems):
nodes_loc=triangles[j,:]
I1[j,:,:] = np.concatenate((np.array([nodes_loc]),\

np.array([nodes_loc]),np.array([nodes_loc])),axis=0)
I2[j,:,:] = np.concatenate((np.array([nodes_loc]).T,\

np.array([nodes_loc]).T,np.array([nodes_loc]).T),axis=1)

Alocal=np.reshape(Alocal,(9*nelems,1)).T
I1=np.reshape(I1,(9*nelems,1)).T
I2=np.reshape(I2,(9*nelems,1)).T
A=csr_matrix((Alocal[0,:],(I1[0,:],I2[0,:])),shape = (nnodes,nnodes))

The full routine for the stiffness matrix can be found in Figure 3.5. We now proceed with the
assembling of the right-hand side. We again run a loop over all elements. Since b is not sparse,
we can just update the vector in each loop iteration. For approximating the integral, we use the
midpoint rule ∫

T
fϕj dx ≈ area(T )f(m)ϕj(m),

where m = 1
3(z1 + z2 + z3) is the midpoint (barycentre) of T . Since ϕj is affine, we can easily

compute ϕj(m) = 1/3. This results in the routine of Figure 3.6.
For testing the FEM code, we use the above data for the unit square. In the code they will be

loaded by a function geom_square. We use the following right-hand side for validation

f(x) = 2(x1(1− x1) + x2(1− x2)).

The exact solution reads
u(x) = x1(x1 − 1)x2(x2 − 1).

For a very basic convergence test for the L∞ norm we now execute the code from Figure 3.7.
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def stiffness_matrix(coord ,triangles):
nelems=np.size(triangles ,0)
nnodes=np.size(coord ,0)
Alocal=np.zeros((nelems ,3,3))
I1=np.zeros((nelems ,3,3))
I2=np.zeros((nelems ,3,3))

for j in range(0,nelems):
nodes_loc=triangles[j,:]
coord_loc=coord[nodes_loc ,:]
T=np.array([ coord_loc [1,:]- coord_loc [0,:] ,

coord_loc [2,:]- coord_loc [0,:] ])
area = 0.5 * ( T[0 ,0]*T[1,1] - T[0 ,1]*T[1,0] )
tmp1= np.concatenate ((np.array ([[1 ,1 ,1]]), coord_loc.T),axis =0)
tmp2= np.array ([[0 ,0] ,[1 ,0] ,[0 ,1]])
grads = np.linalg.solve(tmp1 ,tmp2)
Alocal[j,: ,:]= area* np.matmul(grads ,grads.T)
I1[j,:,:] = np.concatenate ((np.array([ nodes_loc ]),np.array([

nodes_loc ]),np.array ([ nodes_loc ])),axis =0)
I2[j,:,:] = np.concatenate ((np.array([ nodes_loc ]).T,np.array([

nodes_loc ]).T,np.array ([ nodes_loc ]).T),axis =1)

Alocal=np.reshape(Alocal ,(9* nelems ,1)).T
I1=np.reshape(I1 ,(9* nelems ,1)).T
I2=np.reshape(I2 ,(9* nelems ,1)).T
A=csr_matrix (( Alocal [0,:],(I1[0,:],I2[0 ,:])),shape = (nnodes ,nnodes)

)
return A

Figure 3.5.: Routine for the stiffness matrix.

def RHS_vector(coord ,triangles ,f):
nelems=np.size(triangles ,0)
nnodes=np.size(coord ,0)
b=np.zeros(nnodes)
for j in range(0,nelems):

nodes_loc=triangles[j,:]
coord_loc=coord[nodes_loc ,:]
tmp=np.array ([ coord_loc [1,:]- coord_loc [0,:] ,

coord_loc [2,:]- coord_loc [0,:] ])
area = 0.5 * ( tmp[0 ,0]*tmp[1,1] - tmp[0 ,1]*tmp[1,0] )
mid =1/3*( coord_loc [0,:]+ coord_loc [1 ,:]+ coord_loc [2,:])
b[nodes_loc ]=b[nodes_loc ]+area /3*f(mid[0],mid [1])

return b

Figure 3.6.: Routine for the right-hand side vector.
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fun = lambda x, y: (x-x**2)*(y- y**2)
u_exact=np.vectorize(fun)
f = lambda x, y: 2* ((x-x**2)+(y- y**2) )
coord , triangles , dirichlet , neumann = get_geom ()
max_err=np.zeros (5)
for j in range (0,5):

coord , triangles , dirichlet ,_,_,_ = \
red_refine(coord , triangles , dirichlet , neumann)

x=FEM(coord , triangles , dirichlet ,f)
u_at_nodes=u_exact(coord [:,0], coord [: ,1])
max_err[j]=np.max(np.abs(u_at_nodes -x))

print(max_err)

Figure 3.7.: Testing the FEM code.

§7. Discrete inequalities and norms

When considering discrete functions, for example functions from our finite element spaces, we
might have control (in terms of norms) over certain properties that are due the finite dimension.
For example, we know that an estimate of the form ‖∇v‖L2(Ω) ≤ C‖v‖L2(Ω) (which would some
reverse Friedrichs estimate) cannot hold for all v ∈ H1(Ω) with a universal constant C. As a
counterexample, take for example v(x) = sin(kx1) for an integer k. The L2 norm is uniformly
bounded, while the norm of the gradient grows linearly with k. For discrete functions, however,
we can state a bound of this type, albeit with constants that degenerate with the mesh size.

Theorem 3.35 (inverse estimate). There exists a constant C > 0 such that any triangle T ⊆ R2

and any affine function vh ∈ P1(T ) satisfy

‖∇vh‖L2(T ) ≤ Cρ−1
T ‖vh‖L2(T ).

If T is a triangulation of Ω from a shape-regular family, then, with some constant C > 0 that only
depends on the shape-regularity, we have

‖∇vh‖L2(Ω) ≤ Ch−1
min‖vh‖L2(Ω) for all vh ∈ S1(T)

where hmin is the minimal diameter from the triangles of T.

Proof. As in previous proofs, we consider the affine transformation Φ : T̂ → T from a fixed
reference triangle to T and use the change-of-variables formula and the chain rule to infer

‖∇vh‖2L2(T ) =

∫
T
|∇vh|2 dx =

∫
T̂
|(∇vh) · Φ|2|detDΦ| dx = | detDΦ|

∫
T̂
|DΦ−>∇v̂h|2 dx

where we used the notation v̂ := v ◦ Φ. Denoting by ‖ · ‖ the (pointwise) spectral matrix norm
we obtain

‖∇vh‖2L2(T ) ≤ |detDΦ|‖DΦ−1‖2‖∇v̂h‖2L2(T̂ )
.

We now argue by referring only to the element T̂ , where P1(T̂ ) is a three-dimensional vector space
with the seminorm ‖∇ · ‖L2(T̂ ) and the norm ‖ · ‖L2(T̂ ). We know that P1(T̂ ) is isomorphic to R3

where all norms are equivalent. Thus, the unit sphere of P1(T̂ ) with respect to the L2(T̂ ) norm
is compact so that, by a standard argument, there exists a constant Ĉ such that

‖∇ŵh‖L2(T̂ ) ≤ Ĉ‖∇ŵh‖L2(T̂ ) for all ŵh ∈ P1(T̂ ).
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The dependence of Ĉ on T̂ is very critical and it is therefore important that we use the equivalence-
of-norms argument on only one fixed reference triangle. If we used a different triangle for refer-
ence, the constant could be completely different, which is the reason why we argue by change of
variables. Summarizing the above, we have shown that

‖∇vh‖2L2(T ) ≤ Ĉ
2‖DΦ−1‖2

∫
T̂
|vh ◦ Φ|2| detDΦ| dx.

From Lemma 3.28 we know that ‖DΦ−1‖ ≤ hT̂ /ρT . Transforming back to T thus yields the first
asserted result. The second one follows by splitting the integral into triangle contributions, using
the proven local bound, and estimating any ρ−1

T by h−1
T through the aspect ratio.

We write a . b if an inequality a ≤ Cb holds for a constant C > 0 that may depend on the
aspect ratio of the triangulation under consideration or on properties of the domain Ω, but not
on the mesh size.
In what follows, we consider a sequence of uniformly (red) refined triangulations Tk starting

from an initial triangulation T0, where Tk+1 is the uniform refinement of Tk. The resulting family
of meshes (Tk)k is shape regular and quasi-uniform, which means that minimal of maximal mesh
size of a given mesh are comparable, i.e.,

hmax(Tk) . hmin(Tk) for any k ≥ 0.

We then simply write hk for the maximal mesh size of the mesh Tk.

Definition 3.36 (discrete norm). Let Tk be a triangulation from the above family and vk ∈ S1
0(Tk)

with coefficient vector y with respect to the nodal basis over Tk. We define the norm

‖vk‖s,k := h1−s
k

√
y∗Asky.

�

We have already encountered such discrete norms in the context of smoothing properties for
finite differences. Indeed, in the notation of Section §9, we could write

‖y‖
h
(1−s)/s
k Ak,s

= ‖vk‖s,k.

In the finite element context, we now have a sound interpretation of the norm ‖vk‖Ak,1, namely
then

‖∇vk‖L2(Ω) = ‖vk‖Ak,1.

For the discrete norms, we have the following generalized Cauchy–Schwarz inequality.

Lemma 3.37. Any vk, wk ∈ S1
0(Tk) satisfy.∫

Ω
∇vk · ∇wk dx ≤ ‖vk‖1+t,k‖wk‖1−t,k for any t ∈ R.

Proof. Given y, z as the coefficient vectors to the functions vk, wk with respect to the nodal basis,
we compute

〈y,Akz〉2 = 〈A(1+t)/2
k y,A

(1−t)/2
k z〉2 ≤ ‖y‖Ak,1+t‖z‖Ak,1−t.

This implies the assertion.
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We shall now prove that ‖vk‖Ak,0 is equivalent to the L2 norm of vk.

Lemma 3.38. Any vk ∈ S1
0(Tk) satisfies

‖vk‖L2(Ω) . ‖vk‖0,k . ‖vk‖L2(Ω).

Proof. We consider a single triangle T ∈ Tk, where vk|T is expanded in terms of the nodal basis
of T as vk|T =

∑3
j=1 yjϕj . As in previous proofs, we use the affine diffeomorphism Φ : T̂ → T

and write v̂ = v ◦ Φ. We transform back to a reference element and use equivalence of norms,

‖vk‖2L2(T ) = | detDΦ|‖v̂k‖2L2(T̂ )
. | detDΦ|‖y‖22

where ‖y‖2 is the Euclidean norm of y. Due to the shape regularity, | detDΦ| . h2
k because

|detDΦ| is twice the area of T . Using again equivalence of norms, the shape regularity, and
transforming back to T yields

h2
k‖y‖22 . | detDΦ|‖v̂k‖2L2(T̂ )

. ‖vk‖2L2(T ).

We have thus shown ‖vk‖L2(T ) . hk‖y‖2 . ‖vk‖L2(T ) for a single triangle T . The proof for the
norm over Ω follows from summing over all triangles and the fact that each vertex belongs to
a finite number of triangles whose number is uniformly bounded by the shape regularity. This
means that each coefficient yj is counted at most C many times for some C . 1.

With the tools developed in this section, we obtain a bound on the condition number of the
FEM system matrix.

Lemma 3.39 (conditioning of the FEM system). The corresponding finite element system matrix
Ak with respect to the triangulation Tk satisfies κ2(Ak) . h

−2
k .

Proof. Let y ∈ RNk where Nk is the number of interior vertices of Tk. This defines a function
vk ∈ S1

0(T) by the expansion vk =
∑

j yjϕj in the nodal basis over Tk. We combine Friedrichs’
inequality with the inverse estimate and obtain

‖vk‖L2(Ω) . ‖∇vk‖L2(Ω) . h
−1
k ‖vk‖L2(Ω).

Using discrete norms and the bound of Lemma 3.38 this equivalently reads

hk‖y‖2 . ‖A1/2y‖2 . ‖y‖22

for the Euclidean norm. This implies that, for nonzero y, the Rayleigh quotient satisfies the
bounds

h2
k .
‖A1/2y‖22
‖y‖22

. 1

so that any eigenvalue λ of A satisfies h2
k . λ . 1. This implies the bound for the spectral

condition number.

We have seen that the discrete norms ‖vk‖1,k and ‖vk‖0,k represent the L2 norm ∇vk and (up
to scaling) vk, respectively. We will use ‖ · ‖2,k as a surrogate for the L2 norm of the Hessian,
which of course is not well defined for a typical finite element function vk because the gradient
will be piecewise constant and discontinuous. Having the application in multigrid methods in
mind, we want to quantify the best approximation of vk by functions vk−1 on a coarser mesh. We

63



will denote the orthogonal projection (with respect to the gradient inner product of H1
0 (Ω)) to

the space S1
0(Tk) by Pk. For the approximation of the solution u to the boundary value problem

in a convex domain, we proved Corollary 3.33 where we exploited that u possesses a bounded H2

norm. This cannot be true for a general discrete function vk, which is the reason why we resort
to its discrete norm ‖ · ‖2,k instead.

Lemma 3.40 (approximation property). Let Ω ⊆ R2 be an open convex polygon. Let k ≥ 1 and
vk ∈ S1

0(Tk). The best-approximation Pk−1vk ∈ S1
0(Tk) defined via∫

Ω
∇(vk − Pk−1vk) · ∇wk dx for all wk−1 ∈ S1

0(Tk−1)

satisfies
‖vk − Pk−1vk‖L2(Ω) . hk‖∇(vk − Pk−1vk)‖L2(Ω) . h

2
k‖vk‖2,k.

Proof. We write ek := vk − Pk−1vk. As in the proof of the L2 error estimate, we consider the
solution z ∈ H1(Ω) to the problem∫

Ω
∇z · ∇w dx =

∫
Ω
ekw dx for all w ∈ H1

0 (Ω).

Since Ω is convex, we know that z ∈ H1
0 (Ω) ∩H2(Ω). We argue as in Theorem 3.34 and deduce

with the FEM solution zk−1 ∈ S1
0(Tk−1) to z and Galerkin orthogonality that

‖ek‖2L2(Ω) =

∫
Ω
∇ek · ∇(z − zk−1) dx . hk−1‖∇ek‖L2(Ω)‖D2z‖L2(Ω) . hk−1‖∇ek‖L2(Ω)‖ek‖L2(Ω)

where we have used the interpolation estimate from Corollary 3.30 and the regularity result
Theorem 3.31 for convex domains. To prove the second claimed inequality, we use Galerkin
orthogonality and Lemma 3.37

‖∇(vk − Pk−1vk)‖2L2(Ω) =

∫
Ω
∇(vk − Pk−1vk)∇vk dx ≤ ‖vk − Pk−1vk‖0,k ‖vk‖2,k.

Since ‖vk − Pk−1vk‖0,k . ‖vk − Pk−1vk‖L2(Ω), we can use the L2 bound that we just proved and
deduce the second claimed estimate.
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4. Iterative finite element solvers

§1. Multigrid method

We consider the situation that we are given a finite element triangulation TL of the open and con-
vex bounded polygon Ω ⊆ R2 that arises from a hierarchy T0,T1, . . . ,TL of successively uniformly
refined meshes, starting from a coarse triangulation T0. The meshes (T`)` from a quasi-uniform
and shape-regular family. The letter ` shall remind us of the fact that we are dealing with different
mesh levels. The finite element spaces are denoted by V` := S1

0(T`).
For the ease of notation, we define a mesh dependent inner product (·, ·)` on V` by

(v`, w`)` := h2
`

∑
z∈N(Ω)

vh(z)wh(z).

Up to scaling by h2
` , this is just the Euclidean inner product of the coefficient vectors with respect

to the nodal basis. We have seen in Lemma 3.38 that (·, ·)` is equivalent to the L2 inner product
on V` in the sense that it leads to an equivalent norm. By A` : V` → V` we denote the linear
operator defined by

(A`v`, w`)` =

∫
Ω
∇v` · ∇w` dx.

Note that after fixing the nodal basis, the operator A` is represented by the (scaled) stiffness
matrix A`. But A` operates on finite element functions and not on the corresponding coefficient
vectors. This simplifies notation and we can write the finite element equations on the level ` as

A`u` = f`

for the function f` ∈ V` defined by

(f`, v`)` =

∫
Ω
fv` dx.

The mesh dependent norm from the previous section is easily identified to satisfy

‖v`‖s,` =
√

(As
`v`, v`)` = h1−s√y∗A`y

for the coefficient vector y of v`. So far, this is just mathematical morphology. As in the finite
difference case, we consider the relaxation operator

R` = R`(ω`,A`) := I − ω`A`

where we will assume throughout this chapter that ω−1
` is an upper bound of the spectral radius

of A`, which satisfies the scaling
ρ(A`) ≤ ω−1

` . h
−2
` .

We recall that the relaxation operator is the iteration operator of the relaxed Richardson iteration

R`v` = v` − ω`(A`v` − f`)
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and note that R` of course depends on f`. We will tacitly assume that the f` given on the level `
is chosen which is clear from the context.
In Theorem 2.53 we have already seen that the relaxation operator has a smoothing property.

In the finite element setting the result reads as follows.

Theorem 4.1 (smoothing property). The relaxed Richardson iteration with parameter ω ≤
1/λmax(A`) satisfies

‖Rkv`‖s+t,` ≤ C(t, ω`)h
−t
` k
−t/2‖v`‖s,` for all v` ∈ V`, s ∈ R, t > 0

with C(t, ω`) =
(

t
2ω` exp(1)

)t/2
.

Proof. The proof of Theorem 2.53 applies directly to the stiffness matrix A`. Our discrete norm
incorporates a h`-dependent scaling, which leads to the additional factor h−t` on the right-hand
side.

The smoothing property motivates a multigrid algorithm as in the case of FDM. In the context
of FEM, we now have a clear idea, what the prolongation operator is, namely the natural injection

ι`→`+1 : V` → V`+1.

Again, its adjoint with respect to the discrete inner product, denoted as

ι∗`→`+1 : V`+1 → V`

serves as the restriction operator. The definitions imply

(ι∗`→`+1v`+1, v`)` = (v`+1, ι`→`+1v`)`+1 = (v`+1, v`)`+1 for any v`+1 ∈ V`+1, v` ∈ V`

so that ι∗`→`+1 can be viewed as an adequate replacement of the L2 projection from V`+1 to V`.
The finite element multigrid algorithm is as follows.

Algorithm 4.2 (multigrid iteration for FEM). We are given as input:

• a mesh hierarchy (T`)` on levels ` = 0, 1, . . . , L with some L ∈ N • the right-hand side fL
• an initial guess u(0)

L • the number ν of desired smoothing steps • a parameter µ ∈ N •
number k0 of multigrid iterations

For k = 1, 2, . . . , k0, the iterate

u
(k)
L = MG(L, fL, u

(k−1)
L , ν)

is recursively defined by

• rL := fL −ALR
ν
Lu

(k−1)
L (pre-smoothing)

•


if L− 1 = 0, then zL = A−1

0 ι∗L−1→LrL
else set z0

L = 0 and for j = 1, . . . , µ do: zjL := MG(L− 1, ι∗L−1→LrL, z
j−1
L , ν)

set zL := zµL
(coarse-grid correction)

• u
(k)
L := RνL(RνLu

(k−1)
L + ιL−1→LzL) (post-smoothing)
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�

Instead of IL−1→LzL we could have simply written zL, and this notation should rather resemble
the structure of an implementation where the embedding is a nontrivial operation because the
coefficient vector will change if the same function is represented with respect to two different
meshes. Again, we disregard the possibility of choosing two different values ν1 resp. ν2 for the
pre- resp. post-smoothing. As in the finite difference case, for µ = 1 we call each iteration a
V-cycle¸ and for µ = 2 we call it a W-cycle.
An obvious choice for the termination of a good initial guess u(0)

L ∈ VL is to take the multigrid
solution from a coarser level.

Algorithm 4.3 (initial values by nested iteration). We are given the input from Algorithm 4.2.
For ` = 1, . . . , L, compute

u
(0)
` = MG(`− 1, f`−1, u

(k0)
`−1 , ν)

(on level `− 1 = 0 this means direct solution).
Output: initial value u(0)

L �

§2. Analysis of the W-cycle

For the error analysis of the W-cycle, it is convenient to consider the two-grid iteration as an
auxiliary tool. The two-grid iteration with meshes T`−1 and T` corresponds to multigrid, where
the coarse-grid correction on the level L− 1 is carried out exactly. The scheme then simplifies to:

Algorithm 4.4 (two-grid iteration for FEM). We are given as input:

• mesh TL−1 and its refinement TL • fL, u(0)
L , ν as in Algorithm 4.2

For k = 1, 2, . . . , do

• rL := fL −ALR
ν
Lu

(k−1)
L (smoothing)

• u
(k)
L = RνLu

(k−1)
L + A−1

L−1ι
∗
L−1→LrL (coarse-grid correction)

�

We will now prove that for sufficiently large ν, the two-grid algorithm is contractive.

Lemma 4.5 (two-grid contraction). Denote by uL ∈ VL the exact finite element solution and
abbreviate the error by e(k) := uL − u(k)

L . In the two-grid method with ν smoothing steps we have

‖∇e(k)‖L2(Ω) . ν
−1/2‖∇e(k−1)‖L2(Ω) for any k ≥ 1.

The constant hidden in . is independent of ν.

Proof. We denote the coarse-grid correction by zex
L := A−1

L−1ι
∗
L−1→LrL. With obvious computa-

tions, the definition of rL and fL = ALuL that

(AL−1z
ex
L , wL−1)L−1 = (rL, wL−1)L = (AL(uL − RνLu

(k−1)
L ), wL−1)L

for any test function wL−1 ∈ VL−1. We have therefore shown that the coarse-grid correction
satisfies

zex
L = PL−1(uL − RνLu

(k−1)
L ). (4.1)
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The definition of u(k)
L from the two-grid method therefore implies

e(k) = (1− PL−1)(uL − RνLu
(k−1)
L ).

We have represented the error as the best-approximation error of a discrete function of the level
L by functions from the level L − 1. The approximation property from Lemma 3.40 and the
representation of the Richardson error through the relaxation operator lead to

‖∇e(k)‖L2(Ω) . hL‖uL − RνLu
(k−1)
L ‖2,L = hL‖RνLe(k−1)‖2,L.

We combine this estimate with the smoothing property from Theorem 4.1 (with s = t = 1) and
obtain

‖∇e(k)‖L2(Ω) . ν
−1/2‖e(k−1)‖1,L = ν−1/2‖∇e(k−1)‖L2(Ω).

We will now prove contraction of the W-cycle. We will use that the relaxation operator is
nonexpansive with respect to the energy norm

‖∇R`v`‖L2(Ω) ≤ ‖∇v`‖L2(Ω).

Indeed, we recall R` = I − ω`A` and note that the eigenvalues of R` lie between 0 and 1 for our
choice of ω`. We write

‖∇R`v`‖L2(Ω) = ‖A1/2
` R`v`‖0,` = ‖R`A

1/2
` v`‖0,` (4.2)

and obtain the claimed estimate from Theorem 2.5.

Theorem 4.6 (W-cycle contraction). For any γ ∈ (0, 1) there exists a number ν > 0 of relaxation
steps such that the W -cycle multigrid solution u(k)

L ∈ VL satisfies

‖∇(uL − u(k)
L )‖L2(Ω) ≤ γ‖∇(uL − u(k−1)

L )‖L2(Ω) ≤ γk‖∇(uL − u(0)
L )‖L2(Ω).

Proof. We denote by C the constant from Lemma 4.5 such that ‖∇e(k)‖L2(Ω) ≤ Cν−1/2‖∇e(k−1)‖L2(Ω)

for the two-grid iteration. We choose ν as ν ≥ (C/(γ−γ2))2 and prove the result by induction over
the levels. For L = 1 we have the two-grid method where the claim is satisfied for ν ≥ (C/γ)2,
which is satisfied for our choice of ν. Let now the claimed estimate hold for some L − 1 ≥ 1.
On the level L we assume in view of (4.2) without loss of generality that no post-smoothing is
performed. We use the auxiliary two-grid solution

ũ
(k)
L = RνLu

(k−1)
L + zex

L with zex
L := A−1

L−1ι
∗
L−1→LrL

for comparison and obtain from the triangle inequality

‖∇(uL − u(k)
L )‖L2(Ω) ≤ ‖∇(uL − ũ(k)

L )‖L2(Ω) + ‖∇(ũ
(k)
L − u

(k)
L )‖L2(Ω).

For the first term on the right-hand side we use Lemma 4.5, which implies

‖∇(uL − ũ(k)
L )‖L2(Ω) ≤ Cν−1/2‖∇(uL − u(k−1)

L )‖L2(Ω).

The remaining term is the approximation error of the coarse-grid correction, which can be written
as

‖∇(ũ
(k)
L − u

(k)
L )‖L2(Ω) = ‖∇(zex

L − z2
L)‖L2(Ω)

68



where z2
L ∈ VL−1 is the multigrid approximation of zex

L on the level L− 1 with the W-cycle. From
the induction hypothesis we obtain

‖∇(zex
L − z2

L)‖L2(Ω) ≤ γ2‖∇zex
L ‖L2(Ω)

(recall that the initial guess z0
L was chosen to be zero). The γ2 stems from the fact that the

multigrid is run twice in the W-cycle. Since the exact coarse-grid correction is the projected
error, as shown in (4.1), and the orthogonal projection is nonexpansive, we have fomr (4.2) that

‖∇zex
L ‖L2(Ω) = ‖∇PL−1R

ν(uL − u(k−1)
L )‖L2(Ω) ≤ ‖∇(uL − u(k−1)

L )‖L2(Ω).

We combine the above estimates and obtain

‖∇(uL − u(k)
L )‖L2(Ω) ≤ (Cν−1/2 + γ2)‖∇(uL − u(k−1)

L )‖L2(Ω).

Our choice of ν then proves the assertion.

Theorem 4.7 (W-cycle error estimate). We consider multigrid with the W-cycle and initial values
computed from nested iteration. If ν > 0 is chosen such that the W-cycle is contractive with γ < 1

in the sense of Theorem 4.6, then there exists k0 > 0 such that the multigrid solution u
(k)
L for

k ≥ k0 satisfies
‖∇(uL − u(k)

L )‖L2(Ω) . hL‖f‖L2(Ω).

The constant hidden in the notation . is independent of L and f .

Proof. On any level ` = 0, . . . , L, we denote e` := u` − u
(k)
` with e0 := 0. From the contraction

property from Theorem 4.6 and the choice of the initial value, we obtain

‖∇e`‖L2(Ω) ≤ γk‖∇(u` − u
(k)
`−1)‖L2(Ω).

For the right-hand side, we use the triangle inequality and the a priori error estimate from Corol-
lary 3.33 and deduce

‖∇(u` − u
(k)
`−1)‖L2(Ω) ≤ ‖∇(u− u`)‖L2(Ω) + ‖∇(u− u`−1)‖L2(Ω) + ‖∇e`−1‖L2(Ω)

≤ Ch`‖f‖L2(Ω) + ‖∇e`−1‖L2(Ω).

Combining the foregoing bounds yields

‖∇e`‖L2(Ω) ≤ γk(Ch`‖f‖L2(Ω) + ‖∇e`−1‖L2(Ω)).

By an induction argument, we therefore infer with 2h` = h`−1 (and thus h` = 2L−`hL) that

‖∇eL‖L2(Ω) ≤ C‖f‖L2(Ω)

L∑
`=1

h`γ
(1+L−`)k = 2−1C‖f‖L2(Ω)hL

L∑
`=1

(2γk)(1+L−`).

If k0 is large enough such that 2γk0 < 1, then the geometric sum is uniformly bounded and the
assertion follows.
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On the level `, the number of degrees of freedom n` (size of the FEM system to be solved) is
proportional to 4`. On simple triangulations like the FDM grid, this is clear. Generally, it follows
from Euler’s formula, cf. Exercise A.50. Matrix-vector multiplication with the sparse matrix A`
requires Cn` operations for some constant C. The parameters k0, ν in Theorem 4.7 are uniformly
bounded. With those numbers being fixed, we therefore have that the number of operations
NOP(`) satisfies

NOP(L) ≤ CnL + 2 NOP(`− 1) ≤ C
L∑
`=1

2L−`n`

the factor 2 is due to the choice of the W-cycle. Since n` . 4−(L−`)nL, we obtain with a geometric
series argument that

NOP(L) . nL,

i.e., the multigrid method provides an error of the order hL with linear computational cost.

§3. Discrete Sobolev inequality

We know that taking point evaluations is not bounded with respect to the H1 norm. But when
working with discrete functions, we can quantify the deterioration of the norm in terms of the
mesh size.

Theorem 4.8 (discrete Sobolev inequality). Let TH be a triangle from TH of mesh size H and
vh ∈ S1(Th) with respect to a refinement Th of mesh size h. Then

‖vh‖L∞(TH) . H
−1‖vh‖L2(TH) + (1 + log(h/H))1/2)‖∇vh‖H1(TH).

Proof. The proof very closely follows [BS08, §4.9]. We first note that the case of h close to H
follows from a simple scaling argument, whence we may focus on the case h < H/2 =: R0. An
elementary consideration shows that there is a sector of angle ω and length R > 0 with R ≤ H . R
denoted in polar coordinates by KR = {(r, ϕ) : 0 < r < R, 0 < ϕ < ω} such that any x ∈ TH
satisfies

x+QKH ⊆ TH
for some planar isometry Q. We consider Th ∈ Th where the maximum of |vh| is achieved and
assume without loss of generality that the barycentre of Th is the origin 0 and the corresponding Q
is the identity. We start by bounding the value vh(0). There is a positive number 0 < s < 1 (only
depending on the shape regularity) such that the scaled sector Ksh is contained in Th. Integration
until any 0 < r < R yields

vh(r, ϕ)− vh(0) =

∫ r

0
∂ρvh(ρ, ϕ)dρ.

We use Young’s inequality and find

1

2
|vh(0)|2 ≤ |vh(r, ϕ)|2 +

∣∣∣∣∫ r

0
∂ρvh(ρ, ϕ)dρ

∣∣∣∣2 .
Given any R0 < r < R, we now split the integral into a part that lies inside Th and a remainder,
and thereafter use Hölder’s inequality∣∣∣∣∫ r

0
∂ρvh(ρ, ϕ)dρ

∣∣∣∣ ≤ ∣∣∣∣∫ sh

0
∂ρvh(ρ, ϕ)dρ

∣∣∣∣+

∣∣∣∣∫ r

sh
∂ρvh(ρ, ϕ)dρ

∣∣∣∣
≤ sh‖∇vh‖L∞(Th) +

∣∣∣∣∫ r

sh
(∂ρvh(ρ, ϕ))2ρdρ

∣∣∣∣1/2 ∣∣∣∣∫ r

sh
ρ−1dρ

∣∣∣∣1/2 .
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The last appearing expression equals
√

log(r/(sh)) ≤
√

log(R/(sh)) .
√

1 + log(H/h). Further-
more, from the shape regularity we obtain sh‖∇vh‖L∞(Th) . ‖∇vh‖L2(Th). Therefore combining
the above estimates yields with Young’s inequality that

|vh(0)|2 . |vh(r, ϕ)|2 + ‖∇vh‖2L∞(Th) + (1 + log(H/h))

∣∣∣∣∫ R

sh
(∂ρvh(ρ, ϕ))2ρdρ

∣∣∣∣ .
We note H2 .

∫ ω
0

∫ R
R0
rdrdϕ . H2. Multiplying the displayed formula by r and integrating

therefore results in

H2|vh(0)|2 . ‖vh‖2L2(TH) +H2‖∇vh‖2L2(TH) + (1 + log(H/h))H2‖∇vh‖2L2(TH).

We have therefore shown

|vh(0)|2 . H−2‖vh‖2L2(TH) + (1 + log(H/h))‖∇vh‖2L2(TH).

Since a scaling argument with the function ṽh(y) = vh(y)−vh(0) shows ‖ṽh‖L∞(Th) . ‖∇vh‖L2(Th),
the triangle inequality shows the assertion of the theorem.

§4. Hierarchical multilevel decomposition

We consider a mesh hierarchy T0, . . . ,TL with finite element spaces V0, . . . , VL as in ´previous
sections. The nodal finite element interpolation to V` is denoted by I` : C(Ω̄)→ V`. Any function
vL ∈ VL is then decomposed as

vL =

L∑
`=0

(I` − I`−1)vL

where we set I−1 := 0. This corresponds to a multilevel decomposition

VL =
L⊕
`=0

W`

with
W` := {v` − I`−1v` : v` ∈ V`}.

The space W` is spanned by the hat functions that correspond to interior vertices of T` that were
not in T`−1.
We recall the scaling argument from the inverse inequality. By transforming to a reference

element, evoking equivalence of norms and using the shape-regularity, we can prove:

Lemma 4.9 (interpolation estimate for 1-level difference). For ` ∈ {1, . . . , L}, any v` ∈ V`, and
any T ∈ T`−1 we have

‖v` − I`−1v`‖L2(T ) . h`‖∇v`‖L2(T ).

We prove an L2 estimate for the single contributions of the above decomposition of vL.

Lemma 4.10. Any vL ∈ VL and any ` ∈ {0, . . . , L} satisfy

‖(I` − I`−1)vL‖L2(Ω) . h`(1 +
√
L− `)‖∇vL‖L2(Ω).
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Proof. In the case ` = 0, the result is immediately implied by the discrete Sobolev embedding, a
scaling argument, and Friedrichs’ inequality. We therefore consider the case ` > 0. Let T ∈ T`
and c ∈ R be arbitrary. We denote v` := (I`vL − c) ∈ P1(T ). From a scaling argument we obtain

‖(I` − I`−1)vL‖L2(T ) = ‖v` − I`−1v`‖L2(T ) ≤ h`‖v`‖L∞(T ) ≤ h`‖vL − c‖L∞(T )

where we have used in the last step that the maximum of |v`| corresponds to one of the nodal
values of |vL−c| on T . Here, we have abused notation and denoted by I`−1 the local interpolation
on T (note that v` is only locally defined). The discrete Sobolev inequality from Theorem 4.8
leads to

h`‖vL − c‖L∞(T ) . ‖vL − c‖L2(T ) + h`(1 + | log(h`/hL)|)1/2‖∇vL‖L2(T ).

For the choice c =
∫
T vL dx/ |T | as the integral mean, the Poincaré inequality (which is proven in

any basic course on Sobolev spaces or finite elements) states

‖vL − c‖L2(T ) . h`‖∇vL‖L2(T ).

Combining the above estimates, summing over all T ∈ T` and taking logarithms in the relation
hL = 2L−`h` then leads to the assertion.

Lemma 4.11 (strengthened Cauchy–Schwarz inequality). Let 0 ≤ j ≤ k ≤ L. Any wj ∈Wj and
wk ∈Wk satisfy ∫

Ω
∇wj · ∇wk dx . 2(j−k)/2‖∇wj‖L2(Ω)‖∇wk‖L2(Ω).

Proof. We consider a coarse triangle T ∈ Tj , use integration by parts, and the shape regularity
(note that ∇vj is constant over T ) to infer∫

T
∇wj · ∇wk dx =

∫
∂T

(∂wj/∂νT )wk ds . h
−1
j ‖∇wj‖L2(T )

∫
∂T
|wk| ds.

The boundary integral is an integral of a piecewise affine function. With the shape regularity we
obtain ∫

∂T
|wk| ds . hk

∑
z∈Nk∩∂T

|wk(z)| . hk(hj/hk)1/2

 ∑
z∈Nk∩∂T

|wk(z)|2
1/2

where we have used the Cauchy–Schwarz inequality for vectors in the last step. We know from
Lemma 3.38 that √ ∑

z∈Nk∩∂T
|wk(z)|2 . h−1

k ‖wk‖L2(T )

so that, after combining the above estimates, we conclude∫
T
∇wj · ∇wk dx . h−1

j (hj/hk)
1/2‖∇wj‖L2(T )‖wk‖L2(T ).

We now use that wk = wk−Ik−1wk and exclude the trivial case k = j. Thus k ≥ 1 and Lemma 4.9
leads to ∫

T
∇wj · ∇wk dx . (hk/hj)

1/2‖∇wj‖L2(T )‖∇wk‖L2(T ).

The relation hj = 2k−jhk then leads to the asserted estimate for T . The global estimate fol-
lows from splitting the integral in local contributions, using the proven bound, and applying the
Cauchy–Schwarz inequality in Rcard Tj .

72



§5. Hierarchical basis preconditioner

We will define a preconditioner for the FEM stiffness matrix AL with respect to the triangulation
TL. We begin by working with functions and therefore again represent the FEM system by an
operator

〈A`v`, w`〉 =

∫
Ω
∇v` · ∇w` dx

where the angle brackets represent the duality pairing between V` and V ∗` . By ι` : W` → VL we
denote the embedding. The dual operator ι∗` : V ∗L →W ∗` is then defined as usual by

〈ι∗`f, w`〉 = 〈f, ι`w`〉 for any f ∈ V ∗L , w` ∈W`.

On W` we define the operator B` : W` →W ∗` by

〈B`w`, w̃`〉 :=
∑

z∈N`(Ω)\N`−1(Ω)

w`(z)w̃`(z).

If a nodal basis is introduced in W`, this corresponds to the Euclidean inner product of the
coefficient vectors. Clearly, B` is invertible.

Definition 4.12 (hierarchical basis preconditioner). The hierarchical basis preconditioner is
defined by

B :=

L∑
`=0

ι`B
−1
` ι∗` .

�

Lemma 4.13. The operator B : V ∗L → VL is symmetric and positive definite.

Proof. The operators B` are symmetric and therefore B−1
` and ι`B−1

` ι∗` have the same property,
and so has B. Since the B` are positive definite and the multilevel decomposition of VL is a direct
sum, the operator B is positive definite as well.

We recall Young’s inequality for convolutions (using the counting measure). For given sequences
a = (aj)j and b = (bk)k of nonnegative real numbers, it states

‖a ∗ b‖`2 ≤ ‖a‖`2‖b‖`1 .

The proof departs from Hölder’s inequality (with p = q = 1/2)

∑
j

(∑
k

aj−kbk

)2

=
∑
j

(∑
k

(aj−kb
1/2
k )b

1/2
k

)2

≤ ‖b‖`1
∑
j

∑
k

(a2
j−kbk).

Fubini’s theorem shows that the sum equals ‖a‖2`2‖b‖`1 .

Lemma 4.14. Let vL ∈ VL have the multilevel decomposition vL =
∑L

`=0w` with w` ∈W`. Then

〈ALvL, vL〉 .
L∑
`=0

〈B`w`, w`〉 . (1 + | log hL|2)〈ALvL, vL〉.
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Proof. With the decomposition of vL and the strengthened Cauchy–Schwarz estimate we deduce

〈ALvL, vL〉 .
∑
j

∑
k

2−|j−k|/2‖∇wk‖L2(Ω)‖∇wj‖L2(Ω).

We apply the Cauchy–Schwarz inequality for vectors (with respect to j) and obtain

〈ALvL, vL〉 .

∑
j

(∑
k

2−|j−k|/2‖∇wk‖L2(Ω)

)2
1/2∑

j

‖∇wj‖2L2(Ω)

1/2

.

For the term inside the first square-root we use Young’s inequality for convolutions and finally
obtain with the geometric series (for 1/

√
2) that

〈ALvL, vL〉 .
L∑
`=0

‖∇w`‖2L2(Ω).

The combination of the norm equivalence from Lemma 3.38 and inverse estimates then shows
the first asserted estimate. In order to establish the second claimed estimate, we first combine
Lemma 3.38 with Lemma 4.10 and obtain

L∑
`=0

〈B`w`, w`〉 .
L∑
`=0

h−2
` ‖w`‖

2
L2(Ω) .

L∑
`=0

(1 +
√
L− `)2‖∇vL‖2L2(Ω) . L

2‖∇vL‖2L2(Ω).

Since L . 1 + log hL, we have shown

L∑
`=0

〈B`w`, w`〉 . (1 + | log hL|2)〈ALvL, vL〉

and hence the second asserted bound.

Eventually, we are interested in the eigenvalues of BAL. We need the following tool.

Lemma 4.15. Any vL ∈ VL satisfies 〈B−1vL, vL〉 =
∑L

`=0〈B`w`, w`〉.

Proof. We note that the unique multilevel decomposition of vL ∈ VL into contributions w` ∈ W`

satisfies
w` = B−1

` ι∗`B
−1vL.

Indeed, we directly check that w` ∈W` and

L∑
`=0

B−1
` ι∗`B

−1vL =
L∑
`=0

ι`B
−1
` ι∗`B

−1vL = BB−1vL = vL.

We now write

〈B−1vL, vL〉 =

L∑
`=0

〈B−1vL, w`〉.

Each contribution of the sum then satisfies

〈B−1vL, w`〉 = 〈B`B
−1
` ι∗`B

−1vL, w`〉 = 〈B`w`, w`〉

and the assertion follows.
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Theorem 4.16. The hierarchical basis preconditioner satisfies

λmax(BAL)

λmin(BAL)
. (1 + |log hL|2).

Proof. Since AL and B are symmetric and positive definite, we know that the extremal eigenvalues
of BAL are characterized as the minimum and the maximum of the Rayleigh quotient

〈ALvL, vL〉
〈B−1vL, vL〉

for 0 6= vL ∈ VL.

By Lemma 4.15, the denominator equals
∑L

`=0〈B`w`, w`〉 so that Lemma 4.14 implies

1

1 + |log hL|2
. λmax(BAL) ≤ λmax(BAL) . 1.

This implies the assertion.
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A. Problems

Exercise A.1. Prove that the Laplacian is represented in polar coordinates (r, ϕ) as follows

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
.

Exercise A.2. Let the following function be given

Φ(x) =

{
− 1

2π log |x| if n = 2
1

n(n−2)α(n)
1

|x|n−2 if n ≥ 2.

Here, α(n) 6= 0 is some real number. Show that ∆Φ(x) = 0 holds for all x ∈ Rn \ {0}.

Exercise A.3. Prove the approximation properties of difference quotients from Lemma 1.7.

Exercise A.4. Show that the discrete problem from Definition 1.8 and the stated matrix-vector
system are equivalent.

Exercise A.5 (convergence rates in Hölder norms). Let k ∈ N0 and 0 < α ≤ 1 and define the
following norm

‖v‖Ck,α(Ω̄) = ‖v‖Ck(Ω̄) + max
|β|=k

sup
x,y∈Ω
x 6=y

|∂βv(x)− ∂βv(y)|
|x− y|α

.

A continuous function v with finite norm ‖v‖Ck,α(Ω̄) is said to be uniformly Hölder continuous of
class Ck,α. Prove that the finite difference method satisfies the following convergence estimate

|u− U |∞,Ω̄ ≤ Chα max
j=1,2

‖∂2
xju‖C0,α(Ω̄)

provided ‖u‖C2,α(Ω̄) <∞.
Hint: Use first-order Taylor expansion with Lagrange form of the remainder.

Exercise A.6. Work out the details in the Taylor expansions for the derivation of the 9-point
stencil.

Exercise A.7. Prove that the 9-point stencil satisfies a discrete maximum principle and work
out an error estimate for the finite difference error |u−U |∞,Ω for the Laplacian on the unit square
with homogeneous Dirichlet boundary conditions.

Exercise A.8 (operator norm). Let ‖ · ‖ be a norm on Kn.

(a) Prove that the map ‖A‖ := supx∈Kn\{0}
‖Ax‖
‖x‖ is a norm on Kn×n which is submultiplicative

and compatible with the underlying vector norm.

(b) Let A ∈ Kn×n. Prove that the operator norm related to the Euclidean distance ‖·‖2 satisfies

‖A‖2 = ‖A∗‖2.
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(c) Prove that the Frobenius norm ‖A‖F :=
(∑n

j,k=1 |Ajk|2
)1/2

is compatible with the Euc-
lidean norm, but is not the operator norm if n ≥ 2 (a 2× 2 counterexample is sufficient).

Exercise A.9 (norms of maximal row or column sum). Prove that the norm of the maximal
column sum

‖A‖1 := max
1≤k≤n

n∑
j=1

|Ajk|

on Rn×n is the operator norm corresponding to the (vector) `1 norm. Show that the operator
norm corresponding to the `∞ norm is given by the maximal row sum.

Exercise A.10 (inner product). ¸ We consider the space C([a, b]) of continuous functions over
the interval [a, b] and a positive real function ω ∈ C([a, b]) mit ω > 0.
(a) Show that the map C([a, b])2 3 (f, g) 7→ 〈f, g〉L2(a,b),ω ∈ C given by 〈f, g〉L2(a,b),ω :=∫ b

a f(x)g(x)ω(x) dx is a scalar product on C([a, b]).
(b) Show that ‖f‖L2(a,b),ω = 〈f, f〉1/2

L2(a,b),ω
is a norm on C([a, b]).

Exercise A.11. Let V , W be normed linear spaces where W is complete. Prove that the space
L(V,W ) of bounded linear operators endowed with the operator norm is a complete normed linear
space.

Exercise A.12. Let Ω = (−1, 1)2 \ ([0, 1]× [−1, 0]) be the Γ-shaped (or L-shaped) domain. Let
u be given by

u(x, y) = (1− x2)(1− y2)r2/3 sin

(
2ϕ

3

)
.

Here, we use polar coordinates 0 < r < 1 and 0 < ϕ < 3π/2; note that x = r cosϕ and y = r sinϕ.

(a) Prove that u satisfies −∆u = f for some f ∈ C0(Ω̄) and u|∂Ω = 0. Compute f .

(b) Prove that u does not possess bounded derivatives and, thus, does not belong to C1(Ω̄).

Exercise A.13 (condition number of s.p.d. matrices). Let A ∈ Rn×n be symmetric and positive
definite. Shoow that

(a) λ ∈ R is an eigenvalue of A if and only if λ2 is an eigenvalue of A∗A.

(b) λ ∈ R is an eigenvalue of A if and only if λ−1 is an eigenvalue of A−1.

(c) ‖A‖2 = λmax for the largest eigenvalue λmax of A.

(d) κ2(A) = λmax/λmin, where λmin is the smallest eigenvalue of A.

Exercise A.14 (stationary iterations). Decide whether the Jacobi or Gauss–Seidel method are
convergent for solving Ajx = b for the matrices

A1 =

2 −1 2
1 2 −2
2 2 2

 , A2 =

 5 5 0
−1 5 4
2 3 8

 .
Exercise A.15 (convergence of iterative methods for the FDM system). Prove that the Jacobi
and the Gauss–Seidel method are convergent for the finite difference system. Prove furthermore
that the relaxed Richardson iteration is convergent if the relaxation parameter is chosen ω < 1/8.
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Exercise A.16 (Richardson iteration). Let A ∈ Cn be a matrix with a pair of nonzero eigenvalues
λ, µ ∈ C of opposite sign, i.e., λ/|λ| = −µ/|µ|. Prove that the relaxed Richardson iteration

xk+1 = ωb+ (I − ωA)xk

is divergent for any choice of the parameter ω.

Exercise A.17 (Rayleigh quotient). Let A,C ∈ Rn×n be symmetric positive definite matrices.
Prove that the smallest resp. largest eigenvalue of CA satisfies

λ̃min = min
z 6=0

z∗Az

z∗C−1z
resp. λ̃max = max

z 6=0

z∗Az

z∗C−1z
.

Exercise A.18 (SSOR). Show that the SSOR iteration can be rewritten as

xk+1 = Mxk +B−1b

with the matrices

M := (D + ωR)−1((1− ω)D − ωL)(D + ωL)−1((1 + ω)D − ωR)

and
B :=

1

ω(2− ω)
(D + ωL)D−1(D + ωR).

Exercise A.19 (energy minimization; energy norm). Let A ∈ Rn×n by symmetric and positive
definite and let b ∈ Rn. We define the following function over Rn

f(x) =
1

2
〈x,Ax〉2 − 〈x, b〉2 for any x ∈ Rn.

(a) Compute the gradient of f .

(b) Show that x ∈ Rn satisfies Ax = b if and only if f(x) = minz∈Rn f(z).

(c) Show that ‖x‖A := 〈x,Ax〉1/22 , x ∈ Rn, is a norm on Rn.

Exercise A.20 (Chebyshev polynomials). Consider the functions Tn(x) = cos(n arccosx) over
[−1, 1] for n ∈ N0 and prove:

(a) The functions Tn satisfy the recurrence relation Tn+1(x) = 2xTn(x)− Tn−1(x) for n ≥ 1.

(b) The functions (Tn)n∈N0 are an orthogonal system for the inner product 〈·, ·〉L2
ω(−1,1) with

the weight function ω(x) = (1− x2)−1/2.

(c) The Tn are identical to the Chebyshev polynomials.

(d) We have |Tn(x)| ≤ 1, and |Tn(x)| = 1 if and only if x = cos(kπ/n) for some k ∈ {0, . . . , n}.

(e) The polynomials Tn can be represented as Tn(x) = 1
2

(
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

)
.

Exercise A.21. Prove that a descent method with descent directions d0, . . . , dn−1 ∈ Rn \ {0} is
a Galerkin method with respect to the spaces Wk := span{d0, . . . , dk−1} if and only if all descent
directions are mutually A-orthogonal.
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Exercise A.22 (Kantorovich inequality). Let A ∈ Rn×n by symmetric and positive definite with
eigenvalues 0 < λ1 ≤ · · · ≤ λn and κ := κ2(A). Prove the following:

(a) Define µ :=
√
λ1λn. Then we have for all n ∈ {1, . . . , n} that

κ−1/2 ≤ λj/µ ≤ κ1/2 und λj/µ+ µ/λj ≤ κ1/2 + κ−1/2.

(Hint: Monotonicity properties of z 7→ z + z−1)

(b) The matrices µ−1A+µA−1 andA have the same eigenvectors. The corresponding eigenvalues
are bounded from above by κ1/2 + κ−1/2.

(c) Any x ∈ Rn satisfies

µ−1〈x,Ax〉2 + µ〈x,A−1x〉2 ≤ (κ1/2 + κ−1/2)‖x‖22 (Hint: Exercise A.13).

(d) Any x ∈ Rn \ {0} satisfies 〈x,Ax〉2〈x,A−1x〉2
‖x‖42

≤
(

1

2
κ1/2 +

1

2
κ−1/2

)2

.

Hint: You might use that 4ab ≤ (|a|+ |b|)2 for any real a, b.

Exercise A.23 (convergence of the gradient method). Let A ∈ Rn×n be s.p.d, b ∈ Rn, and
f(x) = 1

2〈x,Ax〉2 − 〈x, b〉2. Denote by x? the solution to Ax? = b and denote by xk the iterates
of the gradient method with dk = −∇f(xk). Prove the following.

(a) Any x ∈ Rn satisfies f(x) = f(x?) + 1
2‖x− x?‖

2
A.

(b) We have f(xk+1) = f(xk)−
1

2

‖dk‖42
〈dk, Adk〉2

.

(c) We have dk = −A(xk − x?) and ‖xk − x?‖2A = 〈dk, A−1dk〉2. Furthermore, the following
identities hold

‖xk+1 − x?‖2A = ‖xk − x?‖2A −
‖dk‖42
〈dk, Adk〉2

and ‖xk+1 − x?‖2A = ‖xk − x?‖2A
[
1− ‖dk‖42
〈dk, Adk〉2〈dkA−1dk〉2

]
.

(d) Use the Kantorovich Lemma (Exercise A.22) to prove the error bound

‖xk − x?‖A ≤
(
κ2(A)− 1

κ2(A) + 1

)k
‖x0 − x?‖A.

Exercise A.24. Prove that in the cg method the Krylov spaces satisfy gk ∈ Vk and dimVk = k
as long as gk 6= 0.

Exercise A.25 (eigenvalues of the Dirichlet Laplacian). Prove that all eigenvalues λ and eigen-
functions u 6= 0 to the problem

−∆u = λu in Ω and u|∂Ω = 0

for the unit square Ω = (0, 1)2 are given by

u(x) = sin(jπx1) sin(kπx2) and λ = (j2 + k2)π2 for any j, k = 1, 2, . . . .

(Hint: separation of variables)
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Exercise A.26 (eigenvalues of the finite difference system). Show that all eigenvalues λ and
eigenfunctions U of the finite difference system Ax = λh2x over the unit square are given by

Um,n = sin(jπmh) sin(kπnh) and λ = 4(sin2(1
2jπh) + sin2(1

2kπh))

for any j, k = 1, 2, . . . , J − 1 and all interior grid points xm,n = (mh, nh) with m,n = 1, . . . , J − 1
and h = 1/J .
Hint: You may use the relation sin((m+ 1)y) = 2 cos(jπh) sin(my)− sin((m− 1)y) for y = jhπ.

Exercise A.27. Prove that the spectral condition number of the FDM system scales like O(h−2).
Hint: Exercise A.26

Exercise A.28. Prove that the SSOR preconditioner satisfies the representation

C−1 = (2− ω)−1

(
A+

1

4ω
(2− ω)2D + ω

(
LD−1L∗ − 1

4
D

))
.

Exercise A.29. Prove Lemma 2.47

Exercise A.30. Prove that the finite difference matrices for grid-size h and 2h are related through
the prolongation operator as follows A2h = I∗2h→hAhI2h→h.

Exercise A.31. Prove, based on the divergence theorem, the formula of integration by parts as
well as Green’s formula.

Exercise A.32. Let X be a Hilbert space. (a) Prove that the kernel ker(F ) of any continuous
linear functional F ∈ X∗ is closed. (b) Prove that the orthogonal projection P : X → Y to
a closed subspace Y is linear and nonexpansive, i.e., ‖P‖L(X,Y ) ≤ 1. (c) Prove that the map
J : X → X∗ from the Riesz representation theorem is an isometry.

Exercise A.33. Prove the fundamental lemma of calculus of variations stated as (a)–(b).

(a) Let the function g ∈ C0(Ω) satisfy
∫

Ω gψ dx = 0 for all ψ ∈ C∞c (Ω). Then g = 0 in Ω.

(b) The assertion of (a) remains valid if g ∈ L1
loc(Ω) (with the same conclusion a.e. in Ω).

(c) Show that the weak derivative is unique (using (b)).

Exercise A.34. Show that the function v(x) = log(| log(|x|)|) on the disc Ω = {x ∈ R2 :
|x| < 1/ exp(1)} is weakly differentiable but neither bounded nor continuous over Ω. Prove that
‖v‖L2(Ω) <∞ and ‖∇v‖L2(Ω) <∞. (Hint: Polar coordinates.)

Exercise A.35. Show that the notions of classical and weak derivative coincide for continuously
differentiable functions.

Exercise A.36. (a) Draw a regular triangulation of the square (0, 1)2 with 7 triangles.

(b) Let K,T be triangles that intersect in one point z = T ∩ K. The point z is vertex to T
but not to K. Such point is called a hanging node. Draw a picture of this situation and
convince yourself that regular triangulations cannot contain any hanging node.

Exercise A.37. (a) Prove the claims from Example 3.8 and Example 3.9.

(b) Draw plots of such piecewise affine function for some examples.
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(c) Is the sign function from (3.1) weakly differentiable?

Exercise A.38. Show that the functions (ϕz)z∈N are uniquely defined by (3.3) and that they
form as basis of S1(T) and a partition of unity over Ω̄. Draw the graph of one of the basis functions
ϕz on an example triangulation.

Exercise A.39. Let T be a regular triangulation of Ω ⊆ R2 and let v ∈ P1(T) be a piecewise
affine function. For each interior edge F with adjacent triangles T+ and T− (i.e., F = T+ ∩ T−),
the jump across F is defined by [v]F := v|T+ − v|T− . (a) Prove that

v ∈ H1(Ω) ⇐⇒ [v]F = 0 for all interior edges F.

(b) Show that the finite element space satisfies S1(T) ⊆ H1(Ω).

Exercise A.40. Show that ‖ · ‖H1(Ω) is a norm on H1(Ω). Does ‖∇ · ‖L2(Ω) define a norm on
H1(Ω) as well?

Exercise A.41. Show that any function u ∈ C1(Ω̄) ∩C2(Ω), satisfying −∆u = f for f ∈ C0(Ω̄)
and u|∂Ω = 0, also satisfies the weak formulation of Poisson’s equation.

Exercise A.42. The finite difference grid can be triangulated as displayed in Figure A.1. Prove
that in this case the system matrices of FDM and FEM coincide.

Figure A.1.: Triangulation of Exercise A.42.

Exercise A.43 (barycentric coordinates). Let T ⊆ R2 be a triangle with vertices z1, z2, z3. Show
that to any point x ∈ T there exist unique real numbers λ1(x), λ2(x), λ3(x) with the properties

x = λ1(x)z1 + λ2(x)z2 + λ3(x)z3 and λ1(x) + λ2(x) + λ3(x) = 1.

The λj are called barycentric coordinates. Show furthermore that the barycentric coordinates (as
functions of x) coincide with the three nodal basis functions for the vertices of T .

Exercise A.44. (nodal interpolation not L2 or H1 stable) For a triangle T ⊆ R2, prove that
there is no constant C such that the nodal P1 interpolation I satisfies

‖Iu‖L2(T ) ≤ C‖u‖L2(T ) for all u ∈ C∞(T )

or ‖∇Iu‖L2(T ) ≤ C‖∇u‖L2(T ) for all u ∈ C∞(T ).

Exercise A.45. Let T ⊆ R2 be a triangle and v ∈ H2(T ) := {w ∈ H1(T ) : ∂jw ∈ H1(T ) for j =
1, 2} with norm

‖v‖H2(T ) =

√∑
|α|≤2

‖∂αv‖2
L2(T )

.
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(a) Consider a sub-triangle t := conv{A,B,C} with E := conv{A,B} and with tangent vector
τ . Apply the trace inequality to f |E := ∇v · τ and prove that

|v(B)− v(A)| ≤ |E|1/2%−1/22
(
1 + diam(t)2

)1/2‖v‖H2(t)

for % := 2|t|/|E|.

(b) For any two points A and B in T there exists C ∈ T such that (with E := conv{A,B} and
t := conv{A,B,C}), %−1 is uniformly bounded by some constant C(T ) that depends only
on T , but not on A, B, or t.

(c) Conclude that v is Hölder continuous with exponent 1/2.

Remark: This shows the embedding H2(T ) ↪→ C0,1/2(T ) on a triangle.

Exercise A.46. Let f ∈ L2(Ω) and recall the energy functional

J(v) :=
1

2
‖∇v‖2L2(Ω) −

∫
Ω
fv dx for v ∈ H1

0 (Ω).

Prove that the error of the finite element method for the Poisson problem with right-hand side f
satisfies

‖∇(u− uh)‖2L2(Ω) = 2(J(uh)− J(u)) = ‖∇u‖2L2(Ω) − ‖∇uh‖
2
L2(Ω).

Exercise A.47. Let T be a triangulation. Prove that the aspect ratio of the triangles stays
bounded under iterative red refinement.

Exercise A.48. A family of triangulations satisfies the minimal angle condition if there is a lower
bound 0 < α0 to all interior angles of the triangles from that family. Prove that the minimal
angle condition implies shape regularity.

Exercise A.49. Prove that there exists a constant C only dependent on the shape regularity
such that any finite element function vh ∈ S1(T) satisfies

‖∇vh‖L2(T ) ≤ Ch−1
T ‖vh‖L2(T ) for all T ∈ T.

This estimate is called inverse inequality. (Hint: Use transformation to a reference element T̂ .
Use equivalence-of-norms argument in the finite dimensional space P1(T̂ ) with a constant C(T̂ )
only depending on T̂ . Afterwards, transform back.)

Exercise A.50. Let (T`)` be a sequence of uniform refinements from an initial triangulation T0

of the convex domain Ω ⊆ R2. Let N`(Ω) denote the set of interior vertices and let E`(Ω) denote
the set of interior edges of T`.

(a) Prove the Euler formula card(N`(Ω)) = 1 + card(E`(Ω))− card(T`).

(b) Prove the recurrence relations

card(E`+1(Ω)) = 2 card(E`(Ω)) + 3 card(T`) and card(T`+1) = 4 card(T`)

(c) Combine (a) and (b) to deduce 4` . card(N`(Ω)) . 4` for ` ≥ 1.
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B. Programming exercises

Exercise B.1. Install a suitable Python environment on your computer. Use the NumPy library
to perform the elementary matrix-vector multiplications

[
2 4
−3 1

] [
2
−3

]
and


1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3




1
1
1
1

 .
Exercise B.2. Have a look at the scipy.sparse library, in particular dia_matrix and linalg.
Use these tools to set up the (sparse) system matrix of the finite difference method.

Exercise B.3. Implement the finite difference method for the Poisson problem on the square
domain for zero boundary conditions and the right-hand side f(x) = −ex1x1(x1(x2

2 − x2 + 2) +
3x2

2 − 3x2 − 2). You can use the command spsolve for a direct solver for sparse matrices.
Use different mesh sizes h = 2−2, 2−3, 2−4, 2−5. Compare the computed solution with the exact
solution (given by u(x) = ex1(x1−x2

1)(x2−x2
2)) at the grid-points by considering the error in the

maximum-norm. Visualize the computed solutions using surface plot tools from Python (see also
Problem B.4).

Exercise B.4. Inform yourself about the possibilities of creating surface plots in Python and
visualize the finite difference solution from the previous exercise.
Hint: A basic example taken from https://www.geeksforgeeks.org/3d-surface-plotting-in-python-using-matplotlib/

# Import libraries
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt
# Creating dataset
x = np.outer(np.linspace(-3, 3, 32), np.ones (32))
y = x.copy().T # transpose
z = (np.sin(x **2) + np.cos(y **2) )
# Creating figure
fig = plt.figure(figsize =(14, 9))
ax = plt.axes(projection =’3d’)
# Creating plot
ax.plot_surface(x, y, z)
# show plot
plt.show()

Exercise B.5. Find a way to extend the FDM to the L-shaped domain by eliminating points
outside Ω̄ from the resulting system. Test the method for the setting from Problem A.12 where
the boundary condition is given by the (known) exact solution. Which convergence properties do
you observe?
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Exercise B.6. Implement the 9-point stencil finite difference method for the Poisson problem on
the square domain for zero boundary conditions and the right-hand side from Problem B.3 Use
different mesh sizes and compare the computed solution with the exact solution at the grid-points
by considering the error in the maximum-norm. Compare the convergence speed with that of the
5-point stencil.

Exercise B.7. Compare (experimentally) the performance (in terms of convergence rates) of the
5-point and the 9-point stencil for the example on the L-shaped domain (see Problems A.12 and
B.5). Give a theoretical explanation of what you observe.

Exercise B.8. Implement the Jacobi and the Gauss–Seidel method for sparse matrices. Con-
sider the Dirichlet problem from B.3 and its FDM discretization for different mesh sizes h =
2−2, 2−3, 2−4, 2−5. Solve the linear systems with the Jacobi and the Gauss–Seidel method. Plot
the maximum error between the reference discrete solution uh (obtained by a direct solver) and
the approximate discrete solution uh,k obtained after k steps of the iterative solver in a semilog-
arithmic diagram. Do the convergence properties depend on the discretization parameter h?

Exercise B.9. Implement the cg and the pcg method for sparse martices. Check the convergence
rate (with respect to the cg iteration) for the finite difference system for different mesh size. Test
whether this can be improved if one (relaxed) Jacobi or Gauss-Seidel step is used as preconditioner.

Exercise B.10. Test the convergence propertis of the pcg method with the SSOR preconditioner
(ω = 1.3).

Exercise B.11. Start from the example triangulation from Figure 3.1 and plot the interpolation
of the function u(x, y) = sin(12πx)y2 on a sequence of 6 red-refined triangulations.

Exercise B.12. Do a convergence study of the FEM for the unit square the right-hand side f
given in B.3 with respect to the following error norm

‖∇(u− uh)‖L2(Ω).

For computing the gradient of uh on a given element T , use the local representation in terms of the
nodal basis. The gradients of the basis vectors were already computed in the loop for the stiffness
matrix. Perform an analogous convergence study for the error in the L2 norm and compare the
convergence rates (with respect to the maximal diameter of the triangles in the triangulations,
the so-called mesh size). Visualize the results in a loglog-diagram (horizontal axis: mesh size,
vertical axis: error in the different norms).

Exercise B.13. (a) Write the data structures for a triangulation of the L-shaped domain Ω :=
(−1, 1)2 \ ([0, 1]× [−1, 0]) with Dirichlet boundary ∂Ω.

(b) Plot the convergence history for −∆u = 1 on the L-shaped domain (cf. Problem A.46; the
exact solution satisfies ‖∇u‖2 = 0.2140750232). Compare the convergence rate with the
results on the square domain.
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