Computational PDEs: Viscosity Solutions

(Theorie und Numerik partieller Differentialgleichungen: Viskositétslosungen)

D. Gallistl

Lecture in Winter 2021/22 at the Universitat Jena
Last update: 12th April 2023

Our winter semester has 15 weeks (weeks 42-50 and 1-6). Each section in this lecture
notes contains material for one week, corresponding to one lecture and (optionally) a problem
session.

Contents

Topic 1: Finite differences for Poisson’s equation 2
§1 Basic notions (week 42/2021) . . . . . . ... 2
§2 Finite difference discretization of the Laplacian (week 43) . . . . . . .. .. .. 6
§3 Basic error analysis of the finite difference method (week 44) . . . . . . . . .. 10
§A  Supplement: Nine-point stencils and complements on FDM (week 49) ... 14

Topic 2: Viscosity solutions to degenerate elliptic PDEs 18
§4 Jets and the definition of viscosity solutions (week 45). . . . . . . .. .. ... 18
§5  Viscosity solutions and semicontinuous envelopes (week 46) . . . . . . . .. .. 23
§6 Existence and uniqueness of viscosity solutions (week 47) . . . . . . ... ... 27
§7 A sufficient criterion for the comparison principle (week 48) . . . . .. .. .. 31
§8 Semiconvex functions: Jensen’s lemma and sup-convolutions (week 50) . . . . 35
§9 Proof of Ishii’s lemma (week 1/2022) . . . . . . . ... ... ... ... 39

Topic 3: Monotone finite differences 43
§10 Abstract convergence; a model problem (week 2) . . . . ... ... ... ... 43
§11 Non-negative operators (week 3) . . . . . . .. ... .. 48
§12 Construction of monotone finite differences (week 4) . . . . . .. .. ... .. 52
§13 Discrete Alexandrov estimate (week 5) . . . . . . ... L. 58
§14 Finite difference ABP estimate and stability analysis (week 6) . . ... ... 62

Literature 64



D. Gallistl (U Jena) Comp. PDEs: Viscosity Solutions (WS 21/22)

Topic 1: Finite differences for Poisson’s equation

§1 Basic notions (week 42/2021)

In this lecture we study a class of partial differential equations (PDEs) and their numerical
approximation. We confine ourselves to linear equations of second order. Let us first define

what we mean by this. Throughout these notes, the space of symmetric real n x n matrices
is denoted by S™*".

Definition 1.1. Let n € N and 2 C R” be an open subset. Let furthermore a map
F:OxRxR"xS”" -5 R (1)
be given. We call the equation
F(z,u(z), Vu(z), D*u(z)) =0 forall z € Q (2)

a partial differential equation of 2nd order. Any function u :  — R satisfying the above
relation is called a solution.

The foregoing definition is rather abstract. At the same time, it implicitly requires
further properties (differentiability) of the solution, which are not stated explicitly. We
will work with this basic definition and will proceed with examples. The equation is called
partial differential equation because it involves partial derivatives of the solution (in contrast
to ordinary differential equations (ODFEs), which only depend on one scalar variable. The
notion of 2nd order describes that the highest involved derivative of u has order 2. At this
point, the function F' can be arbitrarily nonlinear.

Example 1.2 (Poisson’s equation). Recall the Laplacian
Au(z) = divVu(z) = Z djju(z) = tr D*u(w),
j=1

where tr A denotes the trace of a matrix A. For a given function f € C(f2) (usually referred
to as right-hand side) and F(z,r,p, X) = tr X — f(x) we obtain Poisson’s equation

Au(z) = f(a).

Example 1.3 (oo-Poisson equation). For a given function f € C(Q) and F given by
F(z,7,p,X) = tr(pp" X) — f(z), we obtain the equation

Asu = f(z)
where the co-Laplacian is defined as
Aot := tr(Vu(Vu) " D?u)

It is called oo-Poisson equation.
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Example 1.4 (heat equation). Let & = R xR. For this equation, the first variable (referring
to time) is usually denoted by t and the second (spatial) variable is denoted by = so that
we write (t,z) € Q. For F given by F((t,z),r,p,X) = ({) - p—tr((39)X), we obtain the
so-called heat equation

Opu(t, x) — 2 u(t,z) = 0.

What are basic differences between these two examples? Poisson’s equation is linear.
This means that, given solutions u to the right-hand side f and v to the right-hand side g,
the equation

Aw(z) = af (z) + By(z)

will be satisfied by the linear combination w := au + fv, (a, € R). This is easy to verify.
Similar considerations show that the heat equation is linear as well. It is also elementary to
verify that the co-Poisson equation does not have this property. We expect in general that

Aco(u(z) +v(x)) # f(2) + 9(2),

for solutions v and v to right-hand sides f and g, respectively. Convince yourself of this fact
by setting up suitable examples.

For X,Y € S™*™, the spectral theorem states that X,Y are diagonalizable with real
eigenvalues. We write X <Y whenever all eigenvalues of Y — X are nonnegative. Another
important classification is based on the following notion.

Definition 1.5 (degenerate ellipticity). The PDE (2) is degenerate elliptic if, given the
coefficient F' from (1), any (z,7,p) € @ x R x R", and any X,YeS™" with X <Y the
relation F(z,r,p, X) < F(z,r,p,Y) holds.

It follows from basic calculations that the Poisson and the oco-Poisson equations are
degenerate elliptic while the heat equation fails to satisfy this criterion.

In order to get started with a fairly simple setting, we will consider Poisson’s equation
in the first lectures.

Generally, we pose the questions of existence of a solution to a PDE and its uniqueness.
Clearly, solutions to Poisson’s equation are not unique without any further constraints being
imposed. For instance, any solution can be shifted by an arbitrary affine function and will
still remain a solution. We will thus consider the Dirichlet problem, which imposes a zero
boundary condition on the solution. This PDE is posed on a domain 2 C R™ which is open,
bounded, and connected.

Definition 1.6 (Dirichlet problem for the Laplacian). Let 2 C R™ be open, bounded, and
connected. A function u € C?(Q) N C(Q) is said to be a classical solution to the Dirichlet
problem (for the Laplacian) with right-hand side f € C(€Q2) and boundary values g € C(99)
if it satisfies

Ay=fin Q und wu =g on 9.

The question under which circumstances solutions to the Dirichlet problem exist is diffi-
cult to answer in general. At this stage, we confine ourselves to study uniqueness.
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Lemma 1.7 (maximum principle). Let Q@ C R™ be open, bounded, and connected and let
u € C2Q)NC(Q) satisfy Au > 0 in Q. Then the maximum of u is attained on the boundary,
i.e.,
max u = max u.
Q oN

Proof. We note that ) is compact and thus the maximum of u is attained in QU 0€2. Let us
first assume the strict inequality Au > 0 in Q. At any point zp €  with u(z¢) = maxg u,
the Hessian is necessarily negative-semidefinite, written D?u(z¢) < 0, and so has only non-
positive eigenvalues. In particular its trace (the sum of all eigenvalues) is non-positive,
whence tr(D?u(zg)) = Au(xg) < 0. In view of the assumed inequality Au > 0, such a point
xo € € cannot exist, which implies that the maximum is attained on 0f2. In the general case
of Au > 0in Q we let € > 0 and define u.(z) = u(z) + €|z|? where | - | denotes the Euclidean
norm. We then have for any € > 0 that Au, > 0 in Q2 and the above argument shows that

max e = Max Ue.
Q o0

We observe for any = € Q that

u(x) <wug(r) < MAX U = MAX U = grcré%}éu(x) +elz? < max u + eR?

for R := max,.q |z|?. The assertion then follows from letting ¢ — 0. O

Corollary 1.8 (uniqueness). There is at most one classical solution to the Dirichlet problem
from Definition 1.6.

Proof. Let u1, us be two classical solutions. Then, w := u; — uy satisfies w € C%(Q) N C(Q)
and solves Aw = 0 in € with w = 0 on 9€). The maximum principle implies that w attains its
maximum on J9 and thus w < 0 in ©. On the other hand, Aw = 0 also implies A(—w) > 0.
The maximum principle applied to —w thus proves —w < 0. In consequence w = 0 in {2 and
thus u; = us. O

Corollary 1.9 (comparison principle). Let u,v € C?(Q2) N C(Q) be such that u < v on O
and Au > Av in Q. Then u <wv in .

Proof. The difference w := u — v satisfies Aw > 0 and by the maximum principle w attains
its maximum on 0€2. But there we have w < 0. Therefore w < 0 in 2 or equivalently u < v
in Q. ]

Synopsis of §1.

We have formulated an abstract PDE and classified some examples with respect to (non)
linearity and degenerate ellipticity. We have formulated the Dirichlet problem of the Lapla-
cian and proved the maximum principle. Its consequences are uniqueness of solutions and a
comparison principle.
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Problems to §1

Problem 1. Let the following function be given

— L log || ifn=2
‘I)(ff):{ 27r1 1 if n > 2
nn—2)a(n) g2 MNZ 4

Here, a(n) # 0 is some real number. Show that A®(x) = 0 holds for all z € R™\ {0}.

Problem 2. Prove that the Laplacian is represented in polar coordinates (r, ) as follows

2 10 1 9

A= 429 29
Or? + r Or +7’2 02

Problem 3. Let a linear 2nd order PDE be given by

> aa(@)0%u(x) = f(=).

|| <2

Here, a,, and f are given functions over 2. The above sum runs over all multi-indices « of
length < 2, and 9% is the partial derivative with respect to a. Show that the linear PDE is
degenerate ellitpic if and only if the matrix (aq)|o|—2 of the indices belonging to multiindices
of length 2 is positive semi-definite.

Problem 4. Write the following PDEs in the format (2) and decide which of them are linear
or degenerate elliptic.

e Poisson’s equation
e oo-Poisson equation
e heat equation

o 0%uy — 0%uyy = f(t,z) for (t,z) ER X R

Onu(z) —u(z) tr((3 L) D*u(z)) = f(z) for z = (z1,22) € R?
o Au(z) — |u(x)|?> =0 for z € R3

Problem 5. Install a suitable Python environment on your computer. Use the NumPy library
to perform the elementary matrix-vector multiplications

12 3 4]t
2 4][2 2 3 4 1| |1
[—3 1] [—3] and sy 1 2|

41 2 3| [1
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§2 Finite difference discretization of the Laplacian (week 43)

We want to design a numerical method to approximately solve the Dirichlet problem. For the
sake of a clear presentation, we confine ourselves to the case of () being the two-dimensional
square domain € = (0,1)? and to homogeneous boundary conditions, i.e., g = 0 in Defini-
tion 1.6. Generalizations will be discussed later (problem sessions).

The idea of the so-called Finite Difference Method (FDM) is to replace partial derivatives
by difference quotients.

Definition 1.10 (first-order difference quotients). Given a step size h > 0 and a sequence
(Uj)j=o0,....s of elements of some vector space, we define

otU; == (j=0,....J =1) (forward difference quotient)

and
Uj =Uj

h o
Definition 1.11 (second-order central difference quotient). Given a step size h > 0 and a
sequence (Uj);—o,....; of elements of some vector space, the quantity

07U = j=1,...,J) (backward difference quotient).

8+87Uj =
is called the second-order central difference quotient.

For a function u over [0, 1] we let

u(z + h) —u(x)

O u(x) = 3

with analogous notation for 9~. The following approximation properties can be proven via
Taylor expansion.

Lemma 1.12. Given u € C?([0,1]), we have for 8} and 0, that
h
0 u(e) — dru(a)| < 202 ullcqoy for allz € 0,11
— h
7 u(w) = O,u(w)] < MR ullcqo) for allx € [h, 1]

Given u € C*([0,1]), we have for 3} and 0, that

- h?
07 07 u(z) = 7u(@)| < 5 10%msuleqoyy for all @ € [h,1 = hl.

Proof. Problem 6. O
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Figure 1: Scematic diagram of the 5-point stencil with weights.

Let J > 0and h =1/J. We set up a grid with J + 1 points in every coordinate direction
by letting
zjr = (jh,kh) 5, k=0,...,J.
We wish to approximate the solution u by a grid function U whose value at z;; we denote
by Uj k. For interior points we define a discrete version of the Laplacian A = 02 , + 02 .
through central differences

AhUng =90t o Uj}k +8$8;2Uj,k for j,k=1,...,J—1.

xr1 X1

It is straightforward to compute the representation

1
AU 1 = ﬁ(UjJrl,k +Ujp1 — 44U + Ui+ Ujp—1). (3)

We see that the value A,Uj ;. depends on the point z;; and its four neighbours in the grid.
The stencil is called five-point stencil, see Figure 1.

Definition 1.13. Let Q = (0,1)? and f € C(Q). The discretized Poisson problem (with
zero boundary conditions) seeks (Ujy : j,k =0,...,J) such that

ApUjk = f(@jk) for jk=1,....,J—1
UO,/C:UJ7I<;:U]'70:UJ',J:O fOI‘j,k:O,...,J.

We briefly comment on the implementation. In order to represent U as a vector, we choose
the lexicographic enumeration and identify {0, ..., J}? with {1,..., L} (where L = (J +1)?)
through the map

(k)= Jj+k(J+1)+1=:¢

Loosely speaking, we enumerate the grid by taking rows from left to right starting on the
left bottom. We see from (3) that the discrete Laplacian takes the form

1
ApUe = 75 Uerr + Upp 41y = Ve + U + U (g41))



D. Gallistl (U Jena) Comp. PDEs: Viscosity Solutions (WS 21/22)

for any interior point zy,. We see that Uy for j or k in {0,J} are no unknowns because
they are known through the boundary condition. We are therefore merely interested in
computing Uj j, for j,k € {1,...,J —1}. We consider the sub-list ((ofl, ...Uy) corresponding
to the interior points and define the matrix

-4 1
X = 1
1
1 —4
This results in the system
X I Uy f
I P 2
. : :
I X| |Uy IN

Here fy = f(x¢) for every interior node. We note that this is a system of the type Az =b
for a sparse matrix A. In an implementation, a sparse matrix format should be used.

Synopsis of §2.

We have defined various difference quotients and studied their approximation properties.

We have formulated the Dirichlet problem of the Laplacian and proved the maximum
principle. Its consequences are uniqueness of solutions and a comparison principle. We
defined a discrete version of the Laplacian by using central differences in x and y (5-point
stencil). Finally, we have discussed how to represent the discrete system of equations as a
(sparse) matrix-vector problem.
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Problems to §2

Problem 6. Prove Lemma 1.12.

Problem 7. Show that the discrete problem from Definition 1.13 and the stated matrix-
vector system are equivalent.

Problem 8. Have a look at the scipy.sparse library, in particular dia matrix and 1inalg.
Use these tools to set up the (sparse) system matrix of the finite difference method.

Problem 9. Implement the finite difference method for the Poisson problem on the square
domain for zero boundary conditions and the right-hand side f(z) = et 2y (21 (23 — 12 +2) +
3722 — 3w3 — 2). You can use the command spsolve for a direct solver for sparse matrices.
Use different mesh sizes h = 272,273,274, 275 Compare the computed solution with the
exact solution (given by u(z) = e (z1 — 2?)(z2 — z3)) at the grid-points by considering the
error in the maximum-norm. Visualize the computed solutions using surface plot tools from
Python (see also Problem 10).

Problem 10. Inform yourself about the possibilities of creating surface plots in Python and
visualize the finite difference solution from the previous exercise.
Hlnt A baSiC eXample taken fI‘OIIl https://www.geeksforgeeks.org/3d-surface-plotting-in-python-using-matplotlib/

# Import libraries
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt
# Creating dataset
x = np.outer(np.linspace(-3, 3, 32), np.ones(32))
x.copy().T # transpose
= (np.sin(x *%*2) + np.cos(y **2) )
Creating figure
ig = plt.figure(figsize =(14, 9))
ax = plt.axes(projection =’3d’)
# Creating plot
ax.plot_surface(x, y, z)
# show plot
plt.show ()

H # N <




D. Gallistl (U Jena) Comp. PDEs: Viscosity Solutions (WS 21/22)

§3 Basic error analysis of the finite difference method (week 44)

We want to quantify the error u — U between the true solution u to the Dirichlet problem
and its finite difference approximation U. The fundamental tool is a discrete version of the
maximum principle for Ay,.

Lemma 1.14 (discrete maximum principle). Let §2 be the unit square. Let the mesh function
U satisfy ApUj > 0 forall j,k € {1,...,J—1}. Then, U attains its maxzimum at a boundary
point (i.e., at some ;1 with j € {0,J} or k € {0,J}.

Proof. Let x;, with j,k € {1,...,J — 1} be an interior point. From the definition of A}, we

obtain
2

1 h
Uj,k = Z<Uj71’k + Uj+1’]€ + Uj7k+1 + U'7k,1) — ZAhUj.

From ApUj i > 0 we thus infer

1
Uik < 7Uj=16 + Ujrr ke + Ujrr + Ujg—a)-

Assume Uj i, is the maximum of U. Then it is not smaller than any of the four neighbouring
values. Hence, equality holds in the foregoing estimate. In particular

Uik = Uj—1k = Ujr1 = Uj k41 = Uj 1.

Iterating this argument up to the boundary shows that U is constant and therefore the
maximum is attained at the boundary. O

The foregoing lemma was formulated for the unit square. It is clear how to generalize it
to other geometries.

We denote the set of boundary points of the grid by I'. For mesh functions V' we use the
following notation on maximum norms

Vg = max [V
]7k_07"'7
s.t. ZU]"kEQUF

Vo0 :=  max [V]
j7k:07"'7‘]
s.t. SE]'YkEQ

|V]oor :=  max p Vi k|

jyk:(]:"'7
s.t. x; €l

For the unit square we have I' C 0f). Note, however, that for more complicated geometries
the ‘boundary points’ of the grid need not lie on 0f2.
The discrete maximum principle implies the following stability estimate.

Lemma 1.15 (stability). Let 2 be the unit square. There exists a constant C' > 0 with the
following property. Given a mesh over Q) and a mesh function U, we have

Uloo.2 < [Uloo,r + ClARU |oo,0-

10
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Proof. We define the mesh function
1, .
Wik = 1|33]k| (squared Euclidean norm).

Then ApWj = 1 for any pair (j, k). Let r := [ApU|x,n and define the mesh functions
V*:=+U +rW. Then
AhVi =AU +7r >0.

By the discrete maximum principle, V* attains its maximum on the boundary. This means
U +rW < |2 U +rWlwr over Q.
The triangle inequality on the right-hand side and W > 0 on the left hand side thus prove
Ul < [Uloo,r +7[Wiloor
This proves the assertion with C = |W| 1. O

Remark 1.16. The generalization of the stability estimate to domains different from the
square is immediate.

Corollary 1.17. The finite difference method has a unique solution U.

Proof. We have already seen that the finite difference system is a quadratic finite-dimensional
system of linear equations. Thus, uniqueness implies existence. Suppose there exist two
solutions U, V satisfying AU = F = A,V (where F' is the mesh function interpolating f at
the grid points) and U|r = 0 = Vp. Then Ay (U — V) = 0, and the stability estimate implies
U ~=V]xa=0. Thus U =V. O

Remark 1.18. For a mesh function F' we denote by AglF the solution to the finite difference
system with zero boundary conditions. The stability estimate can then be written as follows

AT g < ClF s

We thus see that A;l has a uniformly bounded continuity constant (C' is independent of the
grid size h).

When operating on grids we identify u with the mesh function having values u(z; ).
Lemma 1.19 (consistency). Assume u € C*(Q). Then
1
[Apu = Aufo,0 < §h2 > 0% ull e
j=1,2

Proof. This is an immediate consequence of Lemma 1.12. O

11
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Theorem 1.20 (FDM convergence). Assume the solution u to the Poisson problem Au = f
over the unit square Q with homogeneous boundary conditions satisfies u € C*(Q). Then the
finite difference error satisfies

= Ulog < CR* Y 1107 ull o
=12

with a constant C' independent of the mesh size and f.
Proof. Stability implies
[ = Ulsn < ClAR(u = U)loo,0 = C|Apu — Aufec 0

because ApU = F' = Awu at the grid points. The right-hand side is then estimated with the
consistency estimate, which concludes the proof. O

Remark 1.21. The simple proof of convergence shows the general principle of convergence
proofs for finite difference methods:

stability + consistency = convergence.

This can be formalized in a general framework (Lax-Richtmyer theorem), but we confine
ourselves to formulating this rule of thumb. The above convergence proof contains the whole
essence of the reasoning behind.

Synopsis of §3.

We have formulated a discrete version of the maximum principle. The main consequence was
a stability estimate. Together with consistency (which is a consequence of Taylor expansions),
this led to the convergence proof.

12
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Problems to §3

Problem 11 (convergence rates in Holder norms). Let £ € Ny and 0 < o < 1 and define
the following norm

|0%v(x) — 0%u(y)]
V|| ok,a(@) = ||V||ck(g) + Max sup
H ”C Q) H HC () BI=F 2.yeq |l‘ — y|a
TFy
A continuous function v with finite norm [|v[|ck,« () is said to be uniformly Hélder continuous

of class C*®. Prove that the finite difference method satisfies the following convergence
estimate
_ o 2 _
[u—"Ulyea <Ch max 10z, ull co.e ()

provided [|ul|¢2.a(q) < oo.
Hint: Use first-order Taylor expansion with Lagrange form of the remainder.

Problem 12. Given an inhomogeneous Dirichlet boundary condition u = g on 052, we can
extend the interpolated boundary condition to the interior by zero to a grid function U,. We
then solve the auxiliary FDM problem

ApUp = F — Apg
and see that
U:=Uy+ U,

solves AU = F and satisfies the boundary condition at the boundary grid points. Implement
the FDM for the problem
Au=0inQ and ulpg =g

with g(z,y) = 23 — 3zy%. Plot the computed solution and perform an experimental conver-
gence study (the exact solution is given by u(z,y) = 2% — 3xy?).

Problem 13. Let Q = (—1,1)2\ ([0,1] x [~1,0]) be the I'-shaped (or L-shaped) domain.
Let u be given by

2
u(x,y) = (1 —22)(1 — y?)r*?sin <§0> .
Here, we use polar coordinates 0 < r < 1 and 0 < ¢ < 37/2; note that x = rcosp and
Yy =rsine.
(a) Prove that u satisfies Au = f for some f € C°(Q) and u|gq = 0. Compute f.

(b) Prove that u does not possess bounded derivatives and, thus, does not belong to C'*(Q).

Problem 14. Find a way to extend the FDM to the L-shaped domain by eliminating points
outside Q from the resulting system. Test the method for the setting from Problem 13
where the boundary condition is given by the (known) exact solution. Which convergence
properties do you observe?

13
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§A Supplement: Nine-point stencils and complements on FDM (week 49)

The five-point stencil studied so far is somehow a minimal choice. One can think of improving
accuracy by increasing the dependence on neighbouring grid points. In two dimensions, nine-
point stencil take into account the diagonal neighbours as well. We note that the distance
of a point z; to its diagonal neighbour is v/2h. We then have the central differences

Ujt1x —2Uj +Uj 1k
2h

Ujk+1 —2Ujk + Uj g1
2h

Ujs1 -1 —2Uj, + Uj—1 541
2v/2h

Ujri 1 —2Ujk +Uj_1 51
2v/2h ’

see also Figure 2.

We next discuss how to design a linear combination that consistently discretizes the
Laplacian and has higher-order convergence properties.

Consider the function u(z; + te,,) where m € {1,2} is the mth cartesian unit vector.
Taylor expansion of fourth order results in

1 1
w(xjp +tem) = u(z)) + Omu(z;r)t + iag)u(xj,k)tQ + gﬁﬁs)u(xjyk)t?’

1
—|——8(4)u(1:j,k)t4 + m@g)u(l’jak)ﬁ + O(t5).

If we evaluate this expression for ¢ = +h and add the results, the odd-order terms cancel
and we obtain

1
w(xjk + hem) +u(zjp — hem) = 2u(x; i) + 87(3)u(xj7k)h2 + E@é;l)u(a:j’k)hél + O(h®).
Adding this identity for m = 1,2 results in the well known relation of the 5-point stencil
w(@jgre) +w(@jo1e) + u(@jpe) + w(@je—1)

1
= du(wj k) + Au(z;p)h® + E(amm + Oyyyyu(zj )t + O(R°).

(4)

We can apply similar arguments to the diagonal directions
dp =27Y2(1,-1) and dy =27Y2(1,1)
and obtain with ¢t = ++v/2h and analogous computations

w(@jp1 k1) +w(@j1 k1) + w(@ippen) +wlTio1x-1)

1
= 4“(37]',]4:) + 2Au(:vj7k)h2 + 6(633:1730_% + ayyyy + 6(9myy)u(xj,k)h4 + O(hG)

14
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Here, various sums of mixed derivatives have cancelled out. We now add 4 times (4) to (5)
and obtain

du(wjpr k) +4u(zj_1x) + 4u(zjprr) + 4u(zjp—1)

Fu(zjpr p—1) +u(@i—1 k1) + w(@jpr ppr) +u(@i—1p—1)
1

= 20u(w; k) + 6Au(w;1)h? + 5 (Dazne + Oyyyy + 20uayy)u(w;e)h" + O(h°)

We use that
Aulzjr) = f(zjx)

and
(Orzzz + Oyyyy + 28xﬂcyy)u(37j,k) = (Ogz + 8yy)Au(xj,k) = (Ozz + ayy)f(xj,k)

and derive the relations

1
9
SiFyu = 6h° fzjk) + §h4Af(xj,k) + O(h%).
for the 9-point stencil S’?f k) symbolized as follows
1 4 1
4 —20 4
1 4 1

The corresponding finite difference equations are then
—20Ujk +4U 11k +4Uj 1k +4Uj k11 +4Uj -1 + Ujrr -1 + Uj—1 k1 + Ujrr k1 + Ujo1 51
1
= 6h*f(zj0) + §h4Af(xj,k)-

Remark 1.22. We expect U to converge at a better order than the ordinary 5-point stencil
provided the exact solution is sufficiently regular. We will not provide a detailed proof in
this lecture but remark that it can in principle be worked out with the basic tools from the
previous section.

Remark 1.23. The 9-point stencil can be viewed as a weighted average of two (rotated)
5-point stencils. From the above derivation it is clear that any convex combination of the
stencils yields a first-order scheme. The special choice 4 : 1 and a modification of the right-
hand side, however, result in an even higher-order scheme.

We know that convergence of any finite difference scheme follows from stability and
consistency. We do not work out an error analysis of the nine-point stencil here; it will be
part of the problem sessions.
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4 1
4 0 4
1 4 1

Figure 2: Scematic diagram of the 9-point stencil with weights.

Curved geometries. We end this section by commenting on practical aspects of the FDM
(be it the 5- or 9-point stencil). For convenience, we formulated many results for the square
where the domain could be exactly covered by a cartesian mesh. For more complicated
situations with possibly curved geometries this is no longer possible. Assume for example that
domain Q C [0, 1]? can be embedded in the unit square (or any other box after appropriate
scaling). Generally we cannot expect that the boundary 02 has a meaningful intersection
with the gridpoints. Instead, we define

Qp = {zj : zj € Q and all neighbours belong to Q}
and
Tp:={x;k : ;% € Q and a neighbour does not belong to Q}.

By neighbour we mean a gridpoint belonging to the stencil at ;. The FDM equations then
read AU = Fjy for all ;5 € Q. The results proven in the foregoing sections transfer to
this situation.

More general elliptic operators. We can reduce a PDE of the form
tr(AD?*u) = f

with a (constant) positive definite and symmetric matrix A to an equation involving only
the diagonal entries of D? by diagonalizing A = RAR” with an orthogonal matrix R and a
diagonal matrix A. Since the trace is independent of the chosen coordinate system we see
that the above PDE is equivalent to

tr(ART D*uR) = f.

It is easy to check that this PDE only depends on 0, ,, and 0y, », where 1,73 are the chosen
eigenvectors of A. Thus, after rotating the coordinate system, a (weighted) 5-point stencil
can be used.

When lower-order terms are present, for instance as

tr(AD?*u) +b-Vu+cu=f
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for a vector b and a constant ¢, these can be included as well. The zero-order term is simply
discretized by cU. The term involving the gradient can be discretized through first-order
difference quotients.

Synopsis.

We have derived the nine-point stencil. We have chosen the coefficients in such a way that
appropriate terms in the Taylor expansion cancel, leading to higher asymptotic accuracy.
Derivatives of f enter the right-hand side. We concluded with some comments on curved
domains and more complicated PDE operators.

Problems.

Problem 15. Work out the details in the Taylor expansions for the derivation of the 9-point
stencil.

Problem 16. Prove that the 9-point stencil satisfies a discrete maximum principle and work
out an error estimate for the finite difference error |u — Ul o for the Laplacian on the unit
square with homogeneous Dirichlet boundary conditions.

Problem 17. Implement the 9-point stencil finite difference method for the Poisson problem
on the square domain for zero boundary conditions and the right-hand side from Problem 9
Use different mesh sizes and compare the computed solution with the exact solution at the
grid-points by considering the error in the maximum-norm. Compare the convergence speed
with that of the 5-point stencil.

Problem 18. Compare (experimentally) the performance (in terms of convergence rates) of
the 5-point and the 9-point stencil for the example on the L-shaped domain (see Problems 13
and 14). Give a theoretical explanation of what you observe.
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Figure 3: The graph of u is touched from above by ¢ at xg.

Topic 2: Viscosity solutions to degenerate elliptic PDEs

§4 Jets and the definition of viscosity solutions (week 45)

The basic concept of ‘weak solution” we will work with in this lecture are wviscosity solutions.
Before we state precise definitions, we shall explain the underlying idea. Let us start with
Poisson’s equation F(-, D?>u) = 0 for F(-, D*u) = Au — f.

A function u € C?(Q) N C(Q) is a classical solution to F(-, D?u) = 0 if and only if it
is a subsolution, that is F(-, D?u) = Au — f > 0, and a supersolution, that is F(-, D?*u) =
Au— f < 0. We will now weaken the latter properties and thereby generalize them to merely
continuous functions.

Suppose u is a subsolution and suppose further that there is a function ¢ € C?(R") such
that u and ) coincide in x,

u(zo) — P(wo) =0,

and u — 1) has a local maximum at zg. The latter means that there is some r > 0 such that
u—1 <0 in By(zg) C Q.

In a visual imagination one can think of the graph of u being touched from above by the
graph of ¢ in the point xq, see Figure 3.

Since v — ¥ has a maximum at zg, the Hessian is negative semidefinite in x¢ and thus
D?u(xg) < D*i)(z0). From degenerate ellipticity of F' we conclude

0 < F(z0, D*u(xq)) < F(xg, D% (x0)).

We shall say that u is a viscosity subsolution, if for every xg € £ and every ¥ € C?(R™) such
that u — 1 has a local maximum at zg, the relation F(xq, D?1)(z0)) > 0 is valid. We thus
generalize the notion of subsolution by replacing the differential inequality Au— f > 0 at xq
by the inequality Ay — f > 0 for every suitable test function 1 touching u from above in z.
The principal achievement of this definition is that we do not require any differentiability of
u for being a viscosity subsolution. But it can be easily checked (and is outlined above) that
every supersolution u € C?(£) is automatically also a viscosity supersolution. We say that
u is a viscosity supersolution, if for every xg €  and every ¢ € C?(R"™) such that u — ¢ has
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a local minimum at g, we have F(xq, D*¢(x0)) < 0. A continuous function is then called a
viscosity solution, if it is simultaneously a sub- and supersolution. We stress the fact that we
do not require more differentiability than mere continuity of u. For more general functions
F, possibly depending on u(z) and Vu(z), the same reasoning applies because if 1) touches
u at xg we have ¥(xg) = u(xg) and, from the extremal property, Vi)(xzg) = Vu(xo). We thus
can compare

F(mo,u(xo),Vu(aco),DQU(aco)) > (resp. S)F(mo,w(aco),Vw(xo),Dzw(mo))

in the above arguments.

We will now formalize the above ideas using slightly more general notions, which will
turn out to be of help in many arguments.

We start by defining generalizing pointwise derivatives for semicontinuous functions.

Definition 2.24 (semicontinuity). Let @ C R™. A function u : Q — R is upper semicon-
tinuous on ) if

limsupu(y) < wu(x) for all x € .
y—x

We then write u € USC(Q2). A function u: Q@ — R is lower semicontinuous on ) if

liminfu(y) > u(z) for all z € Q.
y—T

We then write u € LSC(9).
Definition 2.25 (second-order jets). Let u € USC(Q2) and x € Q. The set

J%Fu(z) = {(p,X) € R" x S™*"

1
u(z + 2) Su(m)+p-z+§ZTXZ+O(|Z’2) as Z—)O}

is called the second-order super-jet of u at x.
For u € LSC(R2) and x € Q, the set

3> u(z) == {(p,X) € R" x ™"

1
u(r +2) > u(:v)+p-z—|—§zTXz+o(|z]2) as z —>0}

is called the second-order sub-jet of u at x. O

Remark 2.26. The second-order super-jet of u at x describes all paraboloids that can
touch u from above at x. The symmetric statement holds for the second-order sub-jet.
The jets generalize (one-sided) derivatives. In the problems below we shall see that there
are continuous functions not differentiable in a point xg but having nonempty intersection
I3 u(20)Nd*> u(zo). The latter is then interpreted as the generalized second-order derivative
in xg.

Definition 2.27 (viscosity solutions). Consider the degenerate elliptic PDE from Defini-
tion 1.1 with continuous coefficients F' € C(Q2 x R x R™ x S"*™). A function u € USC(Q)
is called a wiscosity subsolution if (p, X) € J*> u(x) implies F(x,u(x),p, X) > 0 for every
r € Q. A function u € LSC(Q) is called a viscosity supersolution if (p, X) € J*~u(x) implies
F(x,u(z),p, X) < 0 for every z € Q. A continuous function u € C() is called wviscosity
solution if it is both a viscosity sub- and supersolution.
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Remark 2.28. This definition in terms of jets matches the intuition from the heuristic
derivation above. Also, the property of being a subsolution F(z,u(z), Vu(z), D?*u(x)) > 0
is weakened and only required for the one-sided generalized derivative, namely

inf F(x,u(x),p, X) > 0.
ST S (z,u(z),p, X)

Analogous statements apply to supersolutions. Note that the jets may well be empty, in
which case there is nothing to be checked.

We need the following technical lemma.

Lemma 2.29. Let 0 € [0,00) — R be a nondecreasing function. Then there ezists T €
C?(0,00) with
o(t) <7(t) <8c(4t) for allt > 0.

Proof. 1t is well known that monotone functions are measurable. Let

(t) = 21752/04t /OTU(S) ds dr.

Since o is increasing, we increase the inner integral from the definition of 7 if we replace r
by 4t and then estimate o(s) from above by o(4t). This proves the stated upper bound for
7(t). We furthermore note from the definition of 7 and the monotonicity of o that

1 4t T
> — .
T(t) > 57 /Qt /0 o(s)dsdr

In order to estimate this from below, we shrink the integration range for the s-integral to
[t,2t] and estimate o(s) from below by o(t). This shows 7(t) > o(t). O

Theorem 2.30 (touching by C? functions). Let u € USC(Q). For every x € 2 we have
that

I Fu(z) = {(vwm, D*p(x))

Y € C*(R™) with u(x) = ¥(x) and } '

u— 1 < 0 in an open subset containing x

Proof of Theorem 2.30. The inclusion D follows from Problem 19. We now show the inclu-
sion C. Let (p, X) € > *u(x). By definition of the jet we have

1
u(x+z) <ulx)+p-z+ izTXz +0o(|z])|]z|*  for |z| small enough

for some nondecreasing function o with o(0) = 0. We use 7 from Lemma 2.29 and deduce

1
ulx+z) <ulx)+p-z+ izTXz +7(|z])|z|*>  for |z| small enough.
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We now take the right-hand side of this estimate, make the change of variables z = y — z,
and define

1
Y(y) =ulz) +p-(y—2)+ 5 —2) Xy — o)+ 7(y - 2]y — 2]
By construction we have 1) € C?(R"), u(x) = ¥(x) and u < v near z. From Taylor expansion
of 1 we see that necessarily p = Vu and X = D?y). O

Remark 2.31. (a) Theorem 2.30 states that the second-order upper semi-jet consists of all
pairs of gradient and Hessian in = of a C? function v touching the graph of u from above at
x. By setting 1 (2) := 9(2) + |z — x|* we even see the stronger statement that the touching
function can be assumed to satisfy

u—1 <0¢€ B(z)\ {z}

for some r > 0, i.e., the function ¢ touches u only in .
(b) We see that Definition 2.27 is equivalent to what was described at the beginning of
this section.

Synopsis of §4.

In a heuristic derivation we have illustrated the idea of viscosity solutions, namely, shift-
ing derivatives to smooth test functions touching the graph from above/below. We have
formalized the concept using semicontinuous functions and second-order jets.
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Problems to §4
Problem 19. Let u € C?(R™). Prove that

I u() N> u(z) = {(Vu(z), D*u(z))}
for every z € R™.

Problem 20. Let W : R — [0, 1] be a bounded function that is nowhere differentiable and
define the function w € C(R) by w(z) = W (x)|z|3.

(a) Prove that w is differentiable in x = 0.

(b) Prove that w is nowhere differentiable in R\ {0} and that w is not twice differentiable
inz=0.

(c) Prove that w(z) = o(|z]?) as z — 0.
(d) Prove that (Ogn,Ognxn) = 3% Tw(0) N J>~w(0).

Problem 21. Let u(z) = —|z|. Compute §>*u(x) for every 2 € R. Draw a picture of
representative elements of the upper and lower semijets of in the point x = 0.

Problem 22. Let Q = {z € R? : |z| < R} for R = 1/2. Define the functions

f( ) {0 fOl“ xTr = O
X)) = 2222 4 .
22|$\21 (_1og|x‘ —+ 2(_10g|z|)3/2) for x # 0

and
u(z) = (21 — 23)\/~log z].
(a) Prove that f € C(Q) and u € C(Q) N C?*(Q\ {0}).
(b) Show Au= f in Q.

(¢) Show that wu is not a classical solution (consider second-order partial derivatives near
0).

(d) Show that u is a viscosity solution to Au = f.

Problem 23. Check the following real functions for upper/lower semicontinuity in = = 0.

ZT/|T xT .’L‘il xT COSJZ‘i1 T
u(@:{/" #0. v@):{ >0 { (x71) @ #0

w(zx) =
1 else 0 else 0 z = 0.
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§5 Viscosity solutions and semicontinuous envelopes (week 46)

We start with a definition and a remark related to the previous section. For future consid-
erations, the concept of jet closures will turn out useful. We introduce it now to be able to
discuss some properties in the exercises.

Definition 2.32 (jet closures). Let u € USC(2) and = € Q. The jet closure % u(x) is
defined as

12,+ o n nxn (l‘,p,X) = limm—mo(xmapm,Xm)
7 u(z) = {(p, X) €R" xS for some sequence (pm, Xm) € 321 (xm) [

The jet closure %~ u(x) for u € LSC(Q) is defined in an analogous fashion.

Remark 2.33. Definition 2.27 remains the same if we replace the jets 3> u(x), 3> u(z)
by their closures % u(x), %~ u(z), see Problem 28.

Definition 2.34 (Semicontinuous envelopes). Let u :  — R be a function. The function
u*: Q= RU{+oc0} given by
u*(x) := lim sup u
r—0 By (z)

is called the upper semicontinuous envelope of u. The function u, : Q@ — RU{—0c0} given by

us(x) :=lim inf u
r—0 Br(m)

is called the lower semicontinuous envelope of w.

Remark 2.35. It is easy to verify that indeed u* € USC(2) and u, € LSC(?), see Prob-
lem 25. The envelope u* [u,] is the smallest [largest] function in USC(Q2) [LSC(€)] that is
larger [smaller] than u; see Problem 26.

Lemma 2.36 (envelopes of suprema and jets). Let Q@ C R™ be open. Given a subset U C
USC(QY), define its pointwise supremum U : Q — R by

U(z) := supu(x)
ucl

and denote its upper semicontinuous envelope by U*. For every x € ) and every (p,X) €
J>TU*(x) there exist sequences (Tp)m € QN and (upm)m € UN and

(pma Xm) S 32’+um(xm)

such that
(T W(Tm), Py Xm) = (2, U*(x),p, X) as m — oo.

Proof. From the definition of the pointwise supremum and its upper semicontinuous envelope
we infer that there exist sequences &, — = and uy, with wm,(Z,) — U*(x).
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By Theorem 2.30 and Remark 2.31 we see that (p,X) = (V¢ (z), D*¥(x)) for some
Y € C3(R") with U*(z) = ¢(z) and u — v < 0 in Bg(z) \ {z} for some sufficiently small R.
We may assume Br(x) C Q.

Let, for every m, x,, € Br(x) denote a point where u,, —1 attains its maximum in Br(z).
The resulting bounded sequence (x,,),, then has a subsequence converging to some z* €
Bpr(z). Without loss of generality we may assume that (x,,) is identical to this subsequence
(because (&) — U*(x) remains valid for subsequences). We have

(U = ¢)(x) = limsup(um — ) (&) < lmsup(um — ) (@m) < (U = ¢)(").

m—00 m—0o0

Since x is the unique maximizer of (U* — v), we thus infer z = z*. In particular, for m
sufficiently large, we have z,, € Br(z) and u,, — 1 has a maximum at x,, at this interior
point. Thus,

(Prms Xin) = (Vio(2n), D*¢(2m)) € It (2m).

as can be seen from Theorem 2.30. Since the first and second-order derivatives of ¢ are con-
tinuous, we have (py,, X)) — (p, X) as m — oo. Using continuity of ¢ and the maximality
of (tup — ¥)(xy,) we finally obtain

U*(z) = limsup um (Zm)

— 1im Ut () — V(m) + V() < T sup () < U* ().

O

Theorem 2.37 (supremum of subsolutions). Suppose W C USC(Q) is a family of viscosity
subsolutions to the PDE F(-,u, Vu, D*u) = 0 with continuous F and define

U(z) := supu(x)
ucl

and denote its upper semicontinuous envelope by U*. If U* is finite over ), then U* is a
viscosity subsolution.

Proof. Let x € Q be arbitrary and (p, X) € J>TU*(x). By Lemma 2.36, there exist sequences
(zm)m € QY and (um)m € UY and

(pmv Xm) € 327+um(xm)

such that
(xm,u(xm),pm,Xm) - ((E, U*(‘T})?an) as m — o0.

Each u,, is a viscosity subsolution, whence
F(zpm, um(Tm), Pm, Xm) > 0.
By continuity of F' we conclude for m — oo that
F(z,U*(x),p,X) > 0.

Thus, U* satisfies the criterion for viscosity subsolutions. O
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Synopsis of §5.

We have defined semicontinuous envelopes. We have seen that jets of the USC envelope of
the pointwise supremum over some family of USC functions can be approximated by jets
from that family. The USC envelope over a family of subsolutions is again a subsolution (if
finite).
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Problems to §5

Problem 24. Let K C R™ be compact. Prove that any v € USC(K) attains its maximum
and any w € LSC(K) attains its minimum.

Problem 25. Given a function u : Q — R, prove that u* € USC(2).

Problem 26. Let u: Q — R. Prove that u < u*. Prove further that any v € USC(Q2) with
v > u satisfies v > u*. (The comparison of functions is meant in the pointwise sense.)

Problem 27. Compute the envelopes w* and w, of

~Jeos(zTh) z#£0
w(x)_{o x = 0.

Problem 28. Prove that the notion of viscosity solution remains the same if we replace the
jets in Definition 2.27 by their jet closures.
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§6 Existence and uniqueness of viscosity solutions (week 47)

Let F' continuous an degenerate elliptic. We study the boundary-value problem (the so-called

Dirichlet problem) for the PDE from (1.1) with continuous F: Seek u € C(2) such that

F(x,u(z), Vu(z), D*u(x)) =0 for all z € Q (6a)
u(z) = g(x) for all z € 00. (6b)

Here, g € C(092) prescribes the boundary values. A simple instance of this Dirichlet
problem is the Dirichlet Laplacian from Definition 1.6.

Definition 2.38. A function u € USC(2) (resp. u € LSC(2)) is a viscosity subsolution
(resp. supersolution) to the Dirichlet problem (6), if it is a viscosity subsolution (resp. su-
persolution) to the PDE (6a) and satisfies u < g (resp. u > ¢) on 0f2. A continuous function
is called viscosity solution to the Dirichlet problem, it it is simultaneously sub- and super-
solution.

The fundamental concept for our theory of unique solvability in the viscosity sense is the
following.

Definition 2.39 (comparison principle). We say that the Dirichlet problem (6) satisfies the
comparison principle, if and subsolution u € USC(f2) and any supersolution 4 € LSC(£2)
satisfy

u<u in .

We will learn sufficient criteria for the comparison principle to hold in the subsequent
lectures. An immediate implication is the uniqueness of viscosity solutions.

Proposition 2.40 (uniqueness). Assume the Dirichlet problem (6) satisfies the comparison
principle. Then there is at most one viscosity solution to (6).

Proof. Assume uy, ug are viscosity solutions to the Dirichlet problem. Since w4 is in particular
a subsolution with u; < g and us a supersolution with us > g, we obtain from the comparison
principle

up < upin Q and wu; < g < ug on .

From interchanging the roles of u;, us we obtain u; = us in Q. O
The existence of solutions relies on an explicit construction referred to as Perron’s method.

Theorem 2.41 (existence). Assume the Dirichlet problem (6) satisfies the comparison prin-
ciple. Assume furthermore that there exist a subsolution u with u, = g on 02 and u, > —oco
and a supersolution 4 with ©* < oo in Q and u* = g on 0. Then

V(x) :=sup{v(x) : v is subsolution with u < v < u}

s a viscosity solution to the Dirichlet problem.
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Proof. Obviously u <V < u. We consider upper semicontinuous envelopes and see that
w, <V, <V <V*<a* inQ.
From our assumptions on the boundary values of the envelopes we deduce that
Vi=V=V*=g ondQ.

From the assumption @* < oo we deduce that V* is finite with VV* < g on the boundary 0f2.
Thus, Theorem 2.37 shows that V* is a viscosity subsolution to the Dirichlet problem. From
elementary considerations and the assumed comparison principle we further deduce

u=u" <V*<a.

Since V, in its definition, is the pointwise supremum and V* is a subsolution, we see V' > V*.
We thus deduce V = V* € USC(Q) is a subsolution. Let us show that V; is a supersolution
as well. Assume (for contradiction) that there is & € 2 where the supersolution property
fails to hold. Then, by the bump construction in Lemma 2.42 below, we can locally modify
V on some B, (%) such that the modified function U is still a viscosity subsolution, satisfies
V < U, and V < U in a nonempty subset of B,(Z). . The comparison principle then
implies U < @. This contradicts the maximality of V. Thus, such a point & cannot exist,
whence Vi is a viscosity supersolution. From V, < V*, the boundary conditions, and the
comparison principle, we deduce V, = V = V*. Thus, V is a viscosity solution to the
Dirichlet problem. O

Lemma 2.42 (the bump construction). Let u € USC(S2) be a viscosity subsolution to the
PDE (2) with continuous F and assume u, > —oo. Let & € Q be a point such that there
exists (p, X) € 3% u.(2) such that F(&,u.(%),p, X) > 0 (which means that u, fails to be a
viscosity supersolution at ). Then, for some sufficiently small v > 0, there exists a viscosity
subsolution U € USC(Q) with U > u in Q and U = u on Q\ B.(&) such that

U > u on a nonempty subset of B.(&).

Proof. Without loss of generality we assume for convenience that & = 0. By assumption
there exists (p, X) € §%7(0) with F(0,u.(0),p, X) > 0. In particular, we have

1
u(z) > us(z) > us(0) +p- 2 + §ZTXZ +o(|z[*) for small |2|. (7)

We introduce parameters ~,d,r > 0 and let

v
f|Z

| 2
9 .

1
Wy 5(2) =0+ u(0) +p- 2+ izTXz -
For small r we evaluate near 0 < |z| < r and obtain

F(z, w%(S(Z)’ Vuwys, DQU)’WS) = F(2,6 + ux(0) + O(r),p + O(r), X — vInxn)-
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We obtain from continuity of F' that
F(z,wy 5(2), Vw5, D*wy 5) > F(0,u.(0),p, X) +0(1) as (v,d,7) — 0.
Therefore, by the above assumption F'(0,u(0),p, X) > 0,
F(z,w,5(2), Vw, 5, D*w, 5) >0 for (v,d,r) sufficiently small.

Let such a sufficiently small (v, d,7) be given. Note that we have just computed that the
continuous function w, s is a subsolution on the ball B,(0). Comparing the definition of
w5 with (7), we see that for fixed v we can choose d and r so small that u > w,s in
B(0) \ B,./2(0). We then define

Ulz) = {max{u(ﬂt),w%(g(x)} for z € B,(0),
u(z) for z € Q\ B, (0).

Theorem 2.37 implies that U is a viscosity subsolution (because the USC functions u and
w5 are). This function satisfies

limsup(U(z) — u(z)) = U(0) — ux(0) > ws(0) — us(0) =0 > 0.

z—0

Thus, the function has the claimed properties. ]

Synopsis of §6.

We have formulated the Dirichlet problem. The comparison principle is a criterion directly
implying uniqueness. It also implies existence via Perron’s method.

29



D. Gallistl (U Jena) Comp. PDEs: Viscosity Solutions (WS 21/22)

Problems to §6

Problem 29 (lack of comparison). Consider the one-dimensional elliptic Dirichlet problem
u(z) +18z(u () =0 in (=1,1), w(=1)=0b, wu(l)=-b
for some b > 1. Let furthermore the functions

u

213 — 140, x € [0,1], B /3 — 140, z € (0,1],
(z) = 1/3 u(z) = 1/3
/2 +1-b, ze[-1,0), /2 4+1-b, xe[-1,0],

be given. Prove that u is subsolution and u is supersolution to the Dirichlet problem but
u(z) > u(z) for some point z.

Problem 30. Let Q C R" be open, z € 2, u € USC(Q), and v € C?(). Prove that

P (u+d)(2) = {(Vi(2), D()) + (p, X) : (p, X) € 3T u(2)}

and

I (u+ ) (@) = {(Vi(2), D*(x)) + (,X) : (0, X) € T ulw)} .

Problem 31. Let u € USC(f?) have a local maximum at x € Q. Prove that any symmetric
positive semidefinite matrix 0 < A € S™*" satisfies

(0, A) € 3> Fu(z).

Problem 32. Let u,v € USC(f) and v € C?(Q2 x Q). Assume the function u(x) + v(z) —
Y(x,y) has a maximum at (z,y) € Q x Q. Prove that there exist p;, p2 € R* and B € §?*2n
such that

((pr,p2), B) € PF (u(z) +v(y)) and B < D*y(z,y).
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§7 A sufficient criterion for the comparison principle (week 48)

Precise characterizations of the comparison principle are not known. We give a sufficient
criterion under which the comparison principle holds. We consider the simplified setting
where the PDE has no dependence of u(z) and Vu(z), i.e.,

F(x,r,p,X) = F(z,X)

and we assume that F': R x S"*™ — R is continuous.
Throughout the next lectures, we assume that we are given fixed constants 0 < A < A <
oo. They quantify what we call uniform ellipticity. By I we denote the n X n unit matrix.

Definition 2.43 (Pucci’s operators). Given X € S"*" we define
PHX, N\ A) = PH(X) := max{tr(AX) : A € ™" with A\ < A < A}
PT(X, N A) =P (X) := min{tr(AX) : A € S™" with A\ < A < Al}

Warning 2.44. The choice of signs in the definition of the Pucci operators and the notion of
(uniform/degenerate) ellipticity is not uniform in the literature. Some authors use reversed
signs.

Definition 2.45 (uniform ellipticity). The map F : Q x S"*™ — R is uniformly elliptic if
for all z € Q and all X, Y € S"*" we have

P (Y - X)< F(z,Y) - F(z, X) < PH(Y — X).

Note that the definition depends on A and A, which are referred to as the uniform ellipticity
constants.

Definition 2.46 (structure condition). Let F' be given. We assume that there exists a
continuous nonnegative function wp with wp(0) = 0 such that the following is satisfied. If
X,Y € S and p > 1 satisfy

I o]_[X o I -1
o =[5 S =l ]

F(z,X)—-F(y,Y) < wF<\x —yl(1 4 plz — y])) for all z,y € Q.

then

Recall the jet closures from Definition 2.32.

Theorem 2.47 (Ishii’s lemma). Let wi,ws € USC(Q) and consider the sum w(x,y) =
wy(x) +wa(y). Let (z,y) € Q? with an element

((p1,p2), A) € I w(z,y).
Then, for each € > 0 there exist matrices X,Y € S"™*™ such that
(p1, X) € T wi(z) and (p2,Y) € I wa(y)

1 X 0 5
— = < < )
<€+\AH>1_{O Y}_AJrgA

and
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Proof. The proof is postponed to later sections. ]
Theorem 2.48 (comparison principle). Consider the PDE
F(-,D*u) =0

for a continuous and uniformly elliptic F' and let the structure assumption be satisfied. Let

u € USC(Q) be a viscosity subsolution and v € LSC(S2) a viscosity supersolution. Then,
u < v on O implies u < v € Q.

Proof. Assume (for contradiction) that 6 := maxgu — v > 0. We choose § > 0 such that

§ max e™/* < /2
x€el)
and set 7 := max,.q(u(z) — v(z) + 6e®/*) > 6 > 0. For a > 0 we define the map @, :
OxQ—Ras N
@ (2.y) = ulz) — (y) — Sl — yf? + 87/

and let (24, yq) be a point where ®,, attains its maximum. Note that this maximum satisfies
max ¢, > 7 (choose z = y and maximize). In particular we have

Qw0

|Ta — yal? < g(u(a:a) —0(ya) + 6e®1/* — 1) < Z(maxu — minv + 6/2 — 7). (8)
a

A

Since () is compact, there is a point (£, ) € Q2 and a subsequence (not relabelled) such that
(Tas Ya) = (Z,79) as o — oco. From (8) we thus see that & = . There we have

u(z) — o(E) 4+ 681/ = 7.

This implies & € €, because of v < v on 92 and the choice of §. We further note from the
first inequality in (8) that
lim a|za — ya|*> = 0. 9)

a— 00

We have that eventually @, attains its maximum at interior points (x4, ¥ya). We thus
have that for some (a-dependent) pi,p2, B, and A = DQ(%MQ —Yal?)

((p1,p2), B) € 3" (wi(za) + w2(ya))

and
B<A

with
wy(x) = u(z) + §e*/A  and wa(y) = —v(y)

(see Problem 32). We now apply Ishii’s lemma (with e = 1/«a) to wy, we and see that there
are matrices X, Y, with

(p1, Xa) € > F (u(xa) + 6e®1/Y) and  (pa,Ya) € 3 (v(ya))
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such that

—(a+ A < [XO‘ 0 ] <A+atA?

0 -Y,
where we used B < A.

FromA:oz{I

-1
77 } and elementary calculations we see that this implies

—3al < [)(()" _OYQ] < 3a [_II _II} :
Thus, we are in the setting of the structure condition. From Problem 30 we see that
(p1 — oAttt Ae) X, — OA2ele) @ e1) € T u(xa).
We now use the sub- and supersolution properties of v and v and see that
0 < F(Zo, X — A2 e) @ 1) — F(ya, Ya).
The uniform ellipticity implies
F(%a, Xa) — F(2a, Xa — X201/ e; @ 1) > P~ (0A 2"/ e; @ 1) = SN 2"/,

Thus,
0 < F(wa, Xa) = F(ya, Ya) — A 271/,

‘We now use the structure condition, which leads to
0< F(xom Xa) - F(you Ya) < WF(|:E04 - ya|(1 + Oé’fL’a - ya‘)) - 5)\_2@%“1/)‘.

In the limit @ — oo, the wp term vanishes by (9). This implies A < 0, which contradicts
the uniform ellipticity. Thus, the initial assumption 6 > 0 cannot hold. This completes the

proof.
O

Synopsis of §7.

We have restricted our attention to uniformly elliptic PDEs without dependence of u(z) and
Vu(z). For those we have shown the comparison principle provided the structure condition
(Definition 2.46) holds. The main tool in the proof is Ishii’s lemma, which allows to select
suitable elements X, Y, from the jet closures of u at ., Ya.
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Problems to §7

Problem 33. Prove that uniform ellipticity implies degenerate ellipticity.

Problem 34 (properties of Pucci’s operators I). Let 0 < A < A and M € S"*". Let the
eigenvalues of M be denoted by a1, ..., a,. Prove that

PTMAA) =AY a;+A D a; and PEMAA) =AY ai+A ) aj
a; >0 a;<0 a; >0 a; <0
Problem 35 (properties of Pucci’s operators II). Let M, N € S™*™. Prove
1. M) < PH(M)

2. M, NN <P (M, )\, A) and PH(M, N, A)>P (M,N,AN)if N <A< AN

-
<

taM) = aPT(M) if a >0

P
P
3. P~ (M) = —P+(—M)
(
5. PHM

)+ P (N) <PT(M+N)<PHM)+ PH(N)

6. P(M)+P (N)<P (M+N)<P (M)+PT(N)

T. AN <P (N, X\ A) <PH(N,NA) <nA||N||if N >0

8. P~ and P are uniformly elliptic with ellipticity constants A, nA.

Problem 36. For matrices A, B € R™" we define the Frobenius inner product A : B =
> k=1 AjxBji. Prove that A : B = tr(AB) and Ay = A:x®y for z,y € R". (Recall

rRy=u1xy'.)

Problem 37 (Hamilton—Jacobi-Bellman operator). Let A be an index set and 0 < A < A
be given. Let, for any a € A, A, : Q@ — S™*™ be measurable and bounded 0 < A\l < A, < Al
uniformly in Q; and let f, € L>°(€2). Prove that the operator

F(z, D*u(z)) = inf (tr(AaD*u(z)) — fa())

acA
is uniformly elliptic.

Problem 38. Prove Ishii’s lemma under the assumption wy,ws € C?(£).
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§8 Semiconvex functions: Jensen’s lemma and sup-convolutions (week 50)

We work towards the proof of Ishii’s lemma. To this end we study semiconvex functions and
sup-convolutions.

Definition 2.49. Let 2 C R™. A function f : @ — R is called semiconvex, if there exists
e € (0, 00] such that
J2l®

r— f(z)+ 5%

is convex. The quantity
o1 El
inf{—: 2z~ f(z)+ —— is convex
Ciom @)+ 5 }
is called semiconvexity constant.
Proposition 2.50 (continuity). Semiconvex functions over open domains are continuous.

Proof. 1Tt suffices that convex functions are continuous. This is shown in Problem 40. O

Theorem 2.51 (Jensen’s lemma). Let f : Q@ — R be semiconvex with constant yu > 0 (so
that f+|-1?/(2u) is convex). Suppose f has a strict local mazimum at x € 2. Given p € R™,
we denote by f, the function f,(z) = f(2) +p- (2 —x). We define the set

Ks,:={y € B,(x) : there is some p € Bs(0) s.t. f, has a local mazimum at y}

for parameters §, p > 0. For sufficiently small p > 0 there exists § = 6(p) > 0 such that there
is the following lower bound on the Lebesgue measure

£ (Kyp) > an) ()"
where a(n) is the volume of the unit ball of R™.

Proof. Let p > 0 be so small that f(z) > f(z) for all z € B,(x). Then there exists v(p) > 0
such that

fle)— _ max f>75(p).
By(2)\B,/s(x)

Let p € R™ with |p| = . For any z € B,(z) \ B,/2(x) we can estimate

max f, — fp(2) > f(z) — _ max  f,> f(z)— _ max f—3dp>y(p)— dp.
By(x) " P Bp(@\B,a(x) " Byp(2)\B,2(x)

If § is small enough such that dp < (p), this implies that

max f, >  max  fp.
By(z) By(2)\B,/2(x)

Hence, f, has a local maximum at some interior point y € B,(x), and thus y € K5 ,. Assume
first that f € C?(Q2). Then, at the local maximum y, we have Vf,(y) = 0 and therefore
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p = —V f(y). In summary, we have shown that for any p with |p| < J, there is y € Kj, such
that p = —V f(y), which means
B(0) € VI(Kz,). (10)

The p-semiconvexity of f and the maximality furthermore imply
—pu ' T < D f(y) <0.
Taking the product of all eigenvalues leads to
|det D*f| < ™™ on Kj,.

From the inclusion (10), the change-of-variables formula (with inequality because V f may
be not one-to-one), and the last displayed estimate we obtain

L(B;(0)) < £(VH(Ks,)) < / |det D flAL™ < £7(K )i "

K&ﬂ

This proves the assertion for the case of f € C?(1).

For a general f € C(Q2), we consider the regularization f. = f % 1. by convolution with
a standard mollifier n.. For such f., the first part of the proof shows the asserted bound
for the corresponding set K §7 o We then have from locally uniform convergence f. — f for
€ — 0 over B, that

[o.¢] oo
N U EKs, € Ks,
j=lh=j

(prove this as an exercise, see Problem 41). Moreover, from the proven lower bound, ele-
mentary properties of the measure of the limsup of sets, and the stated inclusion we infer

o o0 oo

. 1k 1/k

£"(B5(0) < lim 2" | U K5 | =2m | VU K | < Kap
k=j j=1k=j

which proves the assertion in the general case. O

Definition 2.52 (sup-convolution). Let 2 C R™ be bounded and let u : 2 — R. For given
€ > 0 we define the function u° : 2 — R at any = € Q by

(o) = sup fut - L.

yGQ 26
The function u° is called the sup-convolution of w.

Proposition 2.53 (sup-convolution is semiconvex). Let Q@ C R"™ be bounded. The sup-
convolution u® of any given function u: Q2 — R is semiconvez.
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Proof. We rewrite the definition of u®

B |96-1/|2—|96!2}_!fv|2

u¥(z) = sup {u<y> . <

ye

and rearrange as follows

P 2
u®(z) + u = sup {(u(y) — ‘gi) +e by ac} )

2
This means that the function u®(x) + % is the supremum of a family of affine functions.
Thus, it is convex and so u® is semiconvex. ]

Remark 2.54. From Proposition 2.50 we deduce that sup-convolutions are continuous.

Proposition 2.55 (magic property). Let Q C R™ be bounded and u € USC(Q2) with (p, X) €
J>Tu(x). Then

(p, X) € P Tu(x +ep) and u(zx)+ §|p\2 = u(x +ep).

Proof. Let (p, X) € 3% u®(x). From Theorem 2.30 we know that there is 1 € C%(R") such
that

ut =1 < (u” — ) (x)
with V¢ (z) = p and D?*(z) = X. We choose y such that u®(z) = u(y) — 1/(2¢)|y — z|.
Then, for all z, &,

u(®) ~ 5lz — £ < v ()
<u(z)+p-(z—2x)+ %(z —2) ' X(z —x) + o]z — z|?)
= uy) ~ gly — ol +p- (2= 2) + 5z~ ) X (2~ 2) + ol |z~ al?).

Choosing z = £ —y+ we see that (p, X) € %+ u(y). Choosing € =y and z = z— B(e " (z —
y) + p) above we obtain

1 _ 1 _
—ocle =y =Bl e =y + ) < =gy -2l —p- (Be (@ —y) +p) + O(B?).
After rearranging terms, we arrive at

Ble M @—y)+p)- (e (x—y)+p) OB

This proves y = x + p. O

Synopsis of §8.

We have proven Jensen’s lemma on semiconvex functions. We have defined the regularization
by sup-convolution and shown that it satisfies the magic property.
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Problems to §8

Problem 39. Let A be a family of affine functions over R”. Prove that sup.A is a convex.

Problem 40. Let 2 C R” an open domain and u : {2 — R be convex. Prove that u is locally
Lipschitz continuous.

Instruction (if needed): To show Lipschitz continuity near zo € 2, let Ba,(z9) C
be an open ball with z,y € B,.(z¢) and define z := =z + a(x — y) with a = r/(2|x — y|).
Show z = (1 + a)™'z + a(l + a) "'y and use this result to first estimate f(z) — f(y) <

(a + 1)7Y(f(2) — f(y)) and then establish the Lipschitz bound. Prove the estimate for
|f(xz) — f(y)| by interchanging the roles of z, y.

Problem 41. Prove the inclusion
oo oo /
1/k
N UEKs, € Ks,p
j=1k=j

claimed in the proof of Jensen’s lemma.
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§9 Proof of Ishii’s lemma (week 1/2022)

We quote a result on (semi)convex functions without proving it (the proof is nontrivial and
is better worked worked out in separate seminar).

Theorem 2.56 (Alexandrov). Let f : Q — R be semiconvex. Then f possess second-order
derivatives almost everythere in € in the sense that for a.e. x € Q) there is (p, X) € R™" x S"*"
such that

1
flx+2)=fx)+p -2+ §zTXz +o(|2%).
We start with a technical lemma.

Lemma 2.57. Let Q@ C R™ with 0 € Q. Let f: Q — R™ be u-semiconvex. If there exists
B € S such that

1
f(z) < f(0)+ §ZTBZ for |z| small,
then there exists X € S™*™ such that
(0,X) € > f(0) N> £(0)

and
—u 1< X <B.

Proof. For any p > 0, the function

gu(z) = f(z) — %ZTBZ - g\z|2

has a strict maximum at z = 0. By Jensen’s lemma, the set of |y,| < p such that there is
Ipu| < 6 (for any 6, < do(p)) such that

9u(2) + pu - 2 is maximal at y,,

has positive measure. Since, by Alexandrov’s theorem, g, is twice differentiable a.e. in €,
there exists such a y,, where g, is twice differentiable. We thus have Vg, (y,) = —p, and so

Vf(yu) = Vau(yu) + By, + py, — 0 as p— 0.
Furthermore the p-semiconvexity and D?g,(y,) < 0 imply
—p ' < D*f(yu) < B+ pul.
The differentiability at y,, clearly implies

(Vf(Wu) D*fyn)) € T>F Flyu) 0 T> Fyu).

The proof is thus concluded by taking the limit u — 0. O
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Proof of Ishii’s lemma (Theorem 2.47). Without loss of generality we assume that 0 €
Qand z = 0 = y as well as wi(xr) = 0 = wa(y) and p; = 0 = p2 (otherwise consider
w(z1, 22) — w(0,0) — p1 - 21 — pa - 22). From ((0,0), A) € J>Tw(0,0) we see that

1 1
w(z) < §ZTAZ + o(]z]?) < izT(A + ol)z for small o and |z| < ¢(0).

This means (A+0o1) € J>Tw(0,0) for small . Once the assertion is shown for A, := A+al,
it will follow for A for ¢ — 0. Without loss of generality we therefore assume A = A, and
w(z) < 22T Az for small |z|. Since the jets §% w1 (0), 3>+ w2(0), 3>Tw(0,0) only depend on
local information near 0, we may modify w1, we outside some open ball around 0 such that

1 _
w(y) < inAy for all y € Q. (11)

We choose )
A= (5_1 + HAH)

and recall the definition of the sup-convolutions w7, w3, w* of w1, wa, w, namely

wg\(z) = sup {wj(y)_W}, z €
y€Q 2A

and

Ao — |z —yl? 2
w™(z) := sup L w(y) — , z e Q.
e 2

A direct computation with the Euclidean norm shows that w1 (z1) + ws (22) = w (21, z2). It
is shown in Problem 42 that
—(eT [ AD]z —y* < 2T (A+eA?)z —y T Ay,

The definitions of w* and \ thus show

1 1 1
w(z) = sup {w(y) o G Y DIER yl2} < sup {w(y) - yTAy} +52 (X Fed?)z
yEQQ 2 y6§22 2 2

By the assumption on A from (11) the sup-term on the right-hand side is nonpositive, whence

1
w(z) < §ZT(A +eA?)z.
Since the sup-convolutions w{‘, w% are A-semiconvex, we can apply Lemma 2.57 with B :=
A+ ¢A? with 29 = 0 or z; = 0. This yields the existence of
(0, X) € 2w} (0)NJ>~w(0) and (0,Y) € 3> wy(0) N J*> w3 (0)
with (recall the definition of \)

X 0
0 Y

Then, the magic property from Proposition 2.55 implies
(0, X) € 3 wi(0)NJ* w1 (0) and (0,Y) € 3> Twy(0) N J*> wy(0),
which concludes the proof. ]

—(eT T APDI = -2\ < [ ] <B=A+eA’
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Synopsis of §9.

We have completed the proof of Ishii’s lemma.
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Problems to §9

Problem 42. Let X € S™*", a,b € R", and ¢ > 0. As usual, || X| = max|o(X)| is the
spectral norm of X (natural matrix norm w.r.t. the Euclidean scalar product).

(i) Prove
Y Xy=2"Xz+@y—2)"X(y—2)+20y—2) Xz

(ii) Prove that any a,b € R satisfy 2ab < e~'a® 4 eb?. (Hint: binomial formula.)

(iii) Prove
Y Xy<z'Xz+ X |z — y\2 +e )z - y[2 + 5]Xz]2.

(iv) Prove
y Xy < 2H(X +eX?)z 4 (€ IXIDe -yl
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Topic 3: Monotone finite differences

§10 Abstract convergence; a model problem (week 2)
We write the boundary-value problem from Definition 2.38 in a compact format. We define

F(x,r,p,X) ifxeQ

F(z,r,p, X) =
(@7.p, X) {g(x)—r if x € 0Q.

and rewrite the boundary-value problem as
Flu] := F(z,u(x), Vu(z), D*u(z)) = 0 in the viscosity sense for all z € Q. (12)

As usual, we assume F' to be continuous, but note that F is discontinuous at the boundary.
We introduce the following compact notation: Let a mesh size h > 0 be given and let

ni={he:ecZ"}
denote the scaled n-dimensional integer grid. We then define
Qh = Zz nQ

as the finite difference grid over the domain, which we know from prior sections in the
two-dimensional case n = 2. The space of grid functions, that is the space of all functions
Q, — R, is denoted by X},. The discrete domain Q5 C € then approximates  in the sense
that for any z € (2 there is a sequence (z3);, such that z; — z as h — 0.

We seek an approximation up € X}, to u satisfying

Frlup)(z) =0 for all z € Q. (13)

Here Fj, : X}, — R is a map which should suitably approximate F. The precise structure is
not relevant to the abstract arguments discussed here. However, we assume for simplicity
that the grid exactly matches with the domain’s boundary in the sense that the set I' of
boundary grid points satisfies I' = Q5 N 0€2. Then we can evaluate the boundary data g over
I'. We will always assume that

Frlupl(z) = g(2) —u(z) forall z€ T,

that is, we interpolate the boundary data.
We now generalize the notions of consistency and stability which we already have en-
countered in the Laplacian case.

Definition 3.58 (consistency). The discrete problem (13) is consistent with (12) if there

exists an operator I, : C(€2) — X}, such that I}, converges uniformly to the identity as h N\ 0,
and for any sequence (2);, with z; € Qp and 2, — 20 € Q and ¢ € C?()

;?{% Frllndl(zn) = Fl¢](20).

43



D. Gallistl (U Jena) Comp. PDEs: Viscosity Solutions (WS 21/22)

Remark 3.59. In FDM, the operator Ij is usually the interpolation in the grid points.

Definition 3.60 (stability). Problem (13) is said to be stable if for any h > 0 there exists
a solution uy € X, to (13) and the following bound holds

lup, — wh‘oo,Q;L < C’|Fh[wh]|007@h for any wy, € X,

with a constant C' > 0 independent on h or wy,.

For C? solutions to the Laplacian we formulated the rule that stability and consistency are
sufficient for convergence of the FDM. In the case of viscosity solutions, we need monotonicity
as a third ingredient.

Definition 3.61 (monotonicity). The discrete operator Fj is said to be monotone if the
following property is satisfied for any wup, vy, € Xp: if up — v, has a global non-negative
maximum at some z € )y, then

Frlun)(2) < Frlon](2).

Remark 3.62. With our simplifying assumption above that Fj[up](z) = g(z) — up(2) for
all grid points z € I' on the boundary, the monotonicity needs only be verified on interior
grid points. Indeed, if z € I' and up — vy, has a global nonnegative maximum at z, then
up(2) —vp(z) > 0. Thus

Fplop)(2) = Fylup](2) = 9(2) — vn(2) — 9(2) + un(2) = un(z) — vp(2) > 0.

From the sequence of discrete solutions (which exist by the stability assumption) we pass
to the limits

w(r) :=limsupuy(y) and wu(z):=liminfu,(y) for any z € Q.
Yy—T y—x
AV h\0
From the stability (with wj, = 0 in Definition 3.60) we infer that these functions are indeed
finite-valued. By construction we have u € USC(Q2) and u € LSC(9Q).
Next, we prove the principal result on monotone finite differences.

Theorem 3.63 (Barles—Souganidis 1991). Let F satisfy the comparison principle and let Fy,
be consistent, stable, and monotone. Assume furthermore that u < g and uw > g on 0S).
Then, up, converges locally uniformly to the (unique) viscosity solution to (12).

Proof. We shall prove that the functions u and u are sub- and supersolution, respectively.

Fix an interior point 29 € Q and let ¢ € C?(£2) be such that @ — ¢ has a strict local
maximum at zg. Without loss of generality (by modifying ¢ outside some ball around z)
we may assume that @ — ¢ has a strict global maximum at zy. Then there exist a sequence
(h)r of mesh sizes and a sequence of grid points zp,, such that

hi —0, zp, — 20 ask— oo
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and the grid function
up, — Ip, @ has a strict global maximum at zj,

(details are worked out as Problem 44). The monotonicity thus implies

0= Fhk [Uhk](zhk) < Fhk [Ihk¢](zhk)‘

We pass to the limit k& — oo and use the consistency to infer
0 < lim Fp, [T, ¢)(2n,) = F[9](20)-
k—o0

Since 2 € ) is an interior point and F' (the original PDE operator not including the boundary
conditions) is assumed to be continuous, we have that « is subsolution to (12) at zp. An
analogous argument shows that u is a supersolution. The assumption © < g and u > g on
092 and the comparison principle finally show that @ = u = wu is the viscosity solution to
(12). O

Warning 3.64. For simplicity, we have put u« < ¢ and u > ¢ as an assumption in the
formulation of our theorem. Boundary conditions are an issue as they are generally also
posed in a viscosity sense and need not be satisfied pointwise. We do not discuss this point
in the lecture and only deal with boundary conditions in the pointwise sense. But the
reader should be aware that the above assumption must be verified on a case-by-case basis
depending on F'.

In the forthcoming sections we will mainly focus on a simplified setting of a linear model
problem F(-, D*u) = Lu — f = 0 where Lu := A : D?u for a continuous, bounded, and
uniformly symmetric positive definite matrix function A : Q@ — S™*", a right-hand side
f € C(), and homogeneous Dirichlet boundary conditions.

We now show well-posedness in the following model situation. We assume that there
exists a Lipschitz constant M; and functions o; : 2 — R such that

Ajp(x) =050, and  |oj(x) —oj(y)| < M|z —y| forallz,yeQ, jk=1,...,n.
We further assume that there is a continuous real function w with w(0) = 0 such that

|f(z) = fy)l Sw(lz —y|) forallz,yecQ.

Let X,Y € S™™™ and u > 1 satisfy

I 0]_[X o oI
o =[5 A=l ]

We define vectors & = (o1(z),...,on(z)) and n = (01(y),...,0n(y)) and compute

T T
m [)0( —OY] [i] < 3u m [_I[ _II] m = 3ulé — > < 3nuM?P|z —yf?.
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Thus, using A, = 00y, we obtain
Fz, X) = F(y,Y) < [f(y) — f(z)| + (A(z) : X — A(y) : Y)
=f) = f@)+ " XE—n"Yn < w(lz —y|) + 3npdt|e — y[°.

We have thus shown that the structure condition holds and the problem therefore satisfies
the comparison principle.

Remark 3.65. The assumptions on A can be weakened. It suffices that A can be uniformly
approximated by matrices of the above structure.
Synopsis of §10.

We have shown that stability, consistency, and monotonicity imply convergence to viscosity
solutions. We further formulated a linear model problem and verified that it it satisfies the
structure assumptions and thus it is well posed.
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Problems to §10

Problem 43. Prove that the 5-point stencil for the Laplacian is consistent, stable, and
monotone.

Problem 44. Prove the following detail of the abstract convergence theorem. Let zy € ()
and ¢ € C?(2) be such that % — ¢ has a strict global maximum at zg. Then there exist a
sequence (hy); of mesh sizes and a sequence of grid points zp,, such that

hy —0, zp, — 20 ask — oo
and the grid function
up,, — In, @ has a strict global maximum at zy, .
Problem 45. Write a routine that provides, for given M > 0, all generalized neighbours
{z+hy:y€Z?|ylo < M}.

of a given vertex z. Visualize the results.

47



D. Gallistl (U Jena) Comp. PDEs: Viscosity Solutions (WS 21/22)

§11 Non-negative operators (week 3)

In view of the sufficient criteria formulated in Theorem 3.63, we will construct monotone
finite difference methods for our model problem. In general, simple methods like the five-
point stencil do not enjoy all those properties simultaneously. Thus, we have to invest a
little more work. It will turn out that our finite differences have to consider more than only
the first-order neighbours of a grid point.

As before, we think of 2 C R"™ being a simple domain like a square/box/etc. Our focus
is not on the approximation of complicated boundaries but rather on the design of finite
difference stencils. Any finite subset S € Z" is called a stencil. The stencils we shall work
with are always assumed to be of the format

S={y eZ"\ {0} : |ylc <m}

with some integer m, which is referred to as the stencil size of S. The notation |- |, indicates
the usual maximum norm of a vector. The stencil prescribes the dependency of the discrete
operator at some grid point z on the neighbours. The format is thus given by

Fplvp)(2) = Fr(z,vn(2), Tup(2)), wvn € X, (14)

where Tvp,(2) == {vp(2+hy) : y € S} is the set of function values in a neighbourhood around
z prescribed by the stencil S. Here, we use the notation F},[vy](z) instead of Fp[vp](2) from
the foregoing section to highlight that we are concerned with discretization of the PDE
operator (at interior grid points) and not of the boundary condition.

We begin with formulating a handy criterion for monotonicity.

Definition 3.66 (non-negative operator). The operator F}, is of non-negative type if, given
z€R™, r € R, and p € R4S there holds

Fh(Z,T‘-Ft,])-FT)SFh(Z,T,p)SFh(Z,T,p—FT) (15)
for all translations 0 < ¢t € R and 7 € R4S with |T]00 < .

Lemma 3.67. A finite difference operator Fy, of the format (14) is of non-negative type if
and only if it is monotone.

Proof. Let Fj, be of non-negative type and let up, vy, € Xp be such that up — v, has a global
non-negative maximum at a grid point z € €. We choose

ro=uwp(2), t:=up(z)—ovp(z)

as well as p, 7 € Reards

given by
pj :=vp(z+ hy;), 7 :=max{0,up(z+ hy;) —vn(z + hy;)} forall 1 <j < cardS.

We observe that ¢ > 0 and 0 < 7; < t because uj, — vj, has a global maximum at z. We
furthermore note

pj + 75 = vp(z + hy;) + max{0, up(z + hy;) — vp(z + hy;)} > up(z + hy;)

48



D. Gallistl (U Jena) Comp. PDEs: Viscosity Solutions (WS 21/22)

so that the upper bound in (15) yields
Fulup(2) = Fy(z,7 + t,un(z + hy; )51 5) < Fp(z,r +t,p + 7).
The lower bound in (15) thus implies
Fplup|(z) < Fyp(z,r +t,p+ 1) < Fp(z,7,p) = Fplop](2).

Hence, the operator is monotone.

Let us conversely assume that the operator Fj, is monotone, let z € Qj, be grid point and
let 7.t € R and p,7 € R4S conforming to 0 < 7; < t as in Definition 3.66 be given. We
construct grid functions uy, vy by

vp(2) =1, vp(z+hy) =pj,  up(z) =r+t, up(z+ hy;) =p; + 75
We then have
up(z) —vp(2) =t > 75 = up(z + hy;j) — vn(z + hy;)

and thus u;, — v has a non-negative maximum at z. We choose an appropriate extension of
the grid functions outside the stencil horizon such that u, — vy, has a global maximum at z.
The monotonicity therefore implies

Fy(z,r +t,p+ 1) = Fplup|(2) < Fplop)(2) = Fu(z, 7, p),

which proves the lower bound in (15) required for non-negativity. We define another grid
function wy, by
wp(2) =r, wp(z+ hy;) =p; +75.

Then, vy, — wy has a global maximum at z and we obtain from the monotonicity
Fy(z,7,p) = Fplopl(2) < Fplwp](2) = Fy(z,7,p + 7).
This proves the upper bound in (15). We conclude that F}, is of non-negative type. O

Our discrete operators will be related to finite differences with respect to the stencil S.
Similar as in prior sections, we define the first-order difference operators

1

Suz) = 3 (e 4 hy) — u(2), 0y () = 2 (0(z) — u(z — hy),

and
Syu(z) = (05 u(=) + 0u(z)) = 5r-(u(z + hy) — ul= — hy)

as well as the second-order difference operator

62 u(z) = %(u(z + hy) — 2u(z) + u(z — hy))
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for any y € S. With proofs similar to those in the case of the five-point stencil one can prove
that these operators approximate the respective differential operators, see Problem 46. We
denote

Spun(2) == {0y nun(z) 1y € S} and Sjup(z) == {5§7huh(z) ry e St

With these finite differences, we want to construct operators of the format

Filun)(2) = Fn(z, un(2), Spun(2), 62up(2)) (16)

with a function
Fp : Qp x R x ReardS o geardS _y

We denote the points in the domain of ¥, by (2,7, ¢, s) and assume F, to be symmetric with
respect to £qg+; and +s4;.

From Lemma 3.67 and Definition 3.66 we see that such a scheme is monotone provided
it satisfies the sufficient criterion

h | 0Fy, oFp, ) oFy,
— = < — { Nj=1,... dS d —<0. 17
2 [9g; | = s or all j ,...,card S, an 5 S (17)

This will be worked out as Problem 47
In the continuous case we distinguished between degenerate ellipticity and uniform el-
lipticity. An analogous criterion formulating stronger conditions on JF is as follows.

Definition 3.68 (positive operator). An operator of the format (16) is of positive type if
(17) is satisfied and there exists a positive number X\ ; > 0 and an orthogonal set of vectors
{y;}j—1 € S such that

h | 0Fp,

0T
) )
2 3(]]'

)\07]1 + >~ g
J

Of course, positivity implies non-negativity. Note that the number A\g; may depend on

h.

Synopsis of §11.

We have formulated non-negativity, a criterion equivalent to monotonicity. We furthermore
defined finite differences with respect to a stencil S and confinded ourselves to discrete
operators based on these quantities and formulated a criterion (positivity) slightly stronger
than monotonicity.
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Problems to §11

Problem 46. Let v : R — R be a sufficiently smooth. Prove that the finite difference
operators defined above satisfy

ou(z)

= O(hly*), oy ynu(2)| = O(R?[y*)

and

2U zZ
]3 G) 52, u(z)

21,14
%, = 0PIyl

Here we use the notation du/dy = Vu -y and 0%u/0y? =y D?uy.

Problem 47. Prove that the operator Fj, is of non-negative type provided that

card S
F F;
Q >0forall j=1,...,cardS and Q Z

Opj

8Fh
8p]

Prove that an operator of the format (16) is monotone provided (17) is satisfied.

Problem 48. Recall the 5-point stencil discretization of Poisson’s equation. Write the
scheme in the formats (14) and (16) and prove that it is of positive type.
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§12 Construction of monotone finite differences (week 4)

In the remaining parts of this lecture we will restrict ourselves to the linear model problem
Flu] = Lu—f = 0 where Lu := A : D?u for a continuous, bounded, and uniformly symmetric
positive definite matrix function A4 : @ — S and f € C(Q). We confine ourselves to
homogeneous Dirichlet boundary conditions. Note that wide stencils may exceed the domain
boundary for grid points close to 9€2;,. We will not deal with this problem from a theoretical
point of view but will rather implement a practical solution in the excercises.

We will assume the discretized operator to be of the format

Fulun)(z) = Lrun(z) = £(2) = Y ay(2)8; yun(2) — f(2) (18)

yeSs

where the a,(z) are scalar coefficients. The criteria from the foregoing section reveal that
F}, is of non-negative type if all a,(z) > 0 and of positive type if a,, (2) > Ao, > 0 for some
orthogonal basis (y;);.

Remark 3.69. One may wonder why we are studying wide-stencil schemes instead of dis-
cretizing the problem with a fixed-stencil method, say the 5-point stencil. Even in the linear
model case, it is possible to prove that for any fixed stencil width there is a linear operator
L such that any linear, consistent finite difference scheme of the above format (18) is not of
positive type. We will not go into the details of this statement but should keep it in mind
as a motivation for the design of wide-stencil methods.

We begin with formulating a simple positivity criterion based on a particular structure
of the matrix A.

Lemma 3.70. Suppose that the coefficient matriz A of the operator Lu = A : D?u has the
form

A)= > ay@yey
yeL™
[yloo <M

for some positive integer M and coefficients ay(x) > 0 for every x € 2. Assume further that
there exists an orthogonal basis (y;); € Z" with |y;|cc < M such that ay; > c for some ¢ > 0.
Then, the finite difference operator

Lpup(z) = Z ay(x)éihuh(z)

is of positive type with Ao, = ¢ and a consistent approximation of L.

Proof. Positivity can be verified by differentiating £;uy with respect to the second-order dif-
ferences. The claimed consistency follows from the approximation properties of the difference
quotients. ]
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The foregoing lemma assumes a very special structure. However, we will now show that
certain diagonal dominant matrices A belong to that class.
Assume we are given an orthogonal basis (y;); € Z" of R". Then, A can be expanded as

follows .

Az) = Z ajk(2)y; @y with aj, =
jk=1

]
— . Ay 19
] Tl A4 (19)

Lemma 3.71 (diagonally dominant case). Suppose A is given in the format (19) for a given
orthogonal basis (y;); C Z" of R™. Additionally, suppose that there is ¢ > 0 such that

n
Z laji(z)| < ajj(x) —c  for all j.
k=1
J#k
Then, the operator can be written in the format of Lemma 3.70 and, thus, there exists a
consistent positive finite difference method Ly, with Ao, = c.

Proof. We use elementary algebraic manipulations and infer

n

n
A=Y ag; =Y lak)y; ©y;
j=1 k=1
k#j
n

+ % > Uage] + @) (w5 + vr) © (g5 + vi) + i > (lajkl = ajr) vy — vk) © (v — ve).

Jk=1 Jk=1
k#j k#j
This shows that the conditions of Lemma 3.70 are satisfied with M < 2max; |y;|oo- O

We now show that the construction carries over to general uniformly positive definite
coefficients. In order to keep the technicalities to a minimum, we confine ourselves to the
case n = 2 of two space dimensions.

Theorem 3.72. Let n = 2. Suppose the coefficient A is uniformly positive definite with the
bounds

M < A(x) < AT forallxz € Q

for constants 0 < X\ < A < co. Then there exists a consistent and positive finite difference
operator L. The stencil size can be chosen proportional to A/\.

Proof. Let {1, 2} C [\, A] denote the eigenvalues of A with a corresponding orthonormal
pair of eigenvectors 1, ps so that

2
A=) "N @ ;.
j=1

We approximate the directions of ¢; with the directions provided by the grid. In Figure 4 it
is illustrated that such a vector y; may have a large norm. It will be shown in Problem 50
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Yy

¥j

Figure 4: To achieve aligned directions of ¢; and a vector y; matching with the grid, the
stencil has to be sufficiently large.

that there is some C' > 0 such that for any s > 0 (to be chosen later) there exist orthogonal
y1,y2 € Z* with

1 C

o0

We abbreviate §; := y;/|y;|. and expand A as follows

2 2
A= "N @+ Y Ni(e @ ¢ — i @ §j).
j=1 j=1

Since the vectors y; ® yx span S?*2, there exists a the matrix B € R?*? such that the second
part can be written as

2
Aj(e; ® 05 — 1 ® ;) = ZZBjkﬂj ® Y-

2
=1 j=1k=1

J
Therefore, A is of the form (19) with a;r = (6;s\; + Bjr)/(|y;] [yx|). Essentially we have
shown that in the (y1,y2) coordinate system the matrix A is the sum of the diagonal matrix
<)E)1 /\02) and B. We want to establish diagonal dominance of A, so we need to bound the
entries of B. To this end, let 21, 25 be a pair of normalized vectors in R?2. We use elementary
manipulations to deduce

2
21 Y N (05 @05 — 55 @ 0) w2 = |2 Y ANy @ (95 — 1) + (5 — ) © )
j=1 J

= Z/\j(fﬂl'¢j(¢j—§j)‘x2+w1'(%—?Jj)??j '1’2)
j

We then use the spectral bound A; < A and the bounds |21 - ¢;| <1 and |§; - 22| < 1 which
we obtain from the normalization of these vectors and Cauchy’s inequality and bound the
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right-hand side of the foregoing expression by
CS A (o = )2 + Loy — 3)l2) = 4le; — Gl
J
The equivalence of vector norms in R? reads as |- |2 < v/2| - | (see Problem 49) and we
therefore altogether obtain with the above bound (20) on ¢; — ; that

2
o _ 4v/2A
D il @95 — G5 @ 0) | w2| < AV2A|p; — ile < —
j=1
We therefore have established
|Bjr| < 4V2A/s.
The coefficients a,j therefore satisfy the following bounds
Aj+ Bjj A —4v2A /s
lyil? ly;1?
B, 4v/2A
LI VoA ik
sl lyel = slyjl [yl
We now adjust the parameter s such that the diagonal dominant structure from Lemma 3.71
is satisfied. From the above estimates we see for

Qjj =

Qi =

Z |(Ijk| < a5 —C for all ]
k=1
J#k

to hold, it is sufficient that

—C

\yg\ PATRRE
Jsﬁk
holds for all j and some ¢ > 0, or, equivalently,

12
74\[2 ‘y] |yj‘ cs

|yk| A

In order to achieve this estimate, we choose s := 64A/\ and c := \/(4(Cs)?) . Noting that
the ratio |y;|/|yk| is bounded from above by 2v/2 (use Problem 49 and (20)), we then have

4[2

We further have from the deﬁnltlon of ¢ and (20)

e MO eyl
2 A 2 A
so that in summary the desired bound is achieved. We have thus shown that A has the
diagonally dominant structure from Lemma 3.71. From (20) we see that the stencil size is
not larger than C's. O

‘|yJ’< SAV2-2.2V2 =320 /N = 5 — 5/2.
Yk

= —QCs\yjIQ/)\
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Synopsis of §12.

Starting from the diagonal dominant case we have shown that it there exist positive and
consistent FDM discretizations of the model problem. The proofs are constructive and
provide details for actual numerical methods.
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Problems to §12

Problem 49. Show that |z]s < /n|z|s for any z € R™.

Problem 50. Let (1, ¢2) be an orthonormal basis of R2. Show that there exists a universal
constant C' > 0 such that, given any s > 0, there exist orthogonal vectors yi,y2 € Z? such

that
i

1 Cs
_ S —
|y;] s

and — < |yjloo < Cs.

g 2

(o)

Problem 51. Consider the unit square 2 = (0,1)2. Derive and implement a FDM of stencil
size m = 2 for the equation

A:D?>u=finQ and wu=0ondN
with
_ [cos¢p —sing -
= (Sinqﬁ > for ¢ = /6.

cos ¢

under homogeneous Dirichlet boundary conditions. Close to the boundary, use modified
stencils as in the subsequent figure.

Figure 5: Modified stencil near the boundary.
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§13 Discrete Alexandrov estimate (week 5)

We will define a discrete notion of convexity and prove a fundamental estimate bounding
the negative part of a grid function. In what follows, we use the disjoint splitting

Q=0 ual.

Here, ! are the points z € §, such that F,[vp](z) only depends on vy [y] for points y € Q.
Loosely speaking, €27 are the interior gridpoints that are at least a stencil-width distant from
the boundary. We then set QF :=Q;, \ Q7.

Definition 3.73. The function v, € X}, is a convex nodal function if at any interior z € Q{L
there exists a supporting hyperplane, that is a vector p € R" such that

un(y) > vp(z) +p-(y—z) forally € Q.
We collect all supporting hyperplanes at z in a set called the discrete subdifferential.
Definition 3.74. Given v, € X}, and z € Qj,, we define by
Opvn(z) == {p € R™ : Vo € Qp vp(z) > vp(2) +p- (x — 2)}
the discrete subdifferential.

Assume we are given R > 0 such that Q C Br(0). We use the following convention on
the negative part v, := max{0, —vy} of vj. Given any nodal function v;, with v;, > 0 on QE,
we extend the negative part or v, by 0 to the grid points

Brp:=BrN{he:ecZ"}
in Br(Q) \ Q.
Definition 3.75. Given vj, € X}, we define the discrete convexr envelope of —v; as
Ly (vp)(x) := sup{L(x) : L affine and L(z) < —wv, (2) for all z € Br}
We note I',(vy)(2) < vp(2) in all nodes z.

Definition 3.76. Let v, € X}, with v, > 0 on QhB. The lower nodal contact set of vy, is
defined as

Cy (vp) = {z € Qf : Tp(vp)(2) = vp(2)}.

Lemma 3.77 (finite difference Alexandrov estimate). Let v, € X}, satisfy vy, > 0 on Qf.
Then there exists a constant C' > 0, only depending on n, such that

1/n

supv, <CR Z L™ (OnTn(vn)(2))
Q2 2€C, (vp)

where L™ denotes the n-dimensional Lebesque measure.
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Proof. Let us first reduce the statement to a statement on the discrete convex envelope
Iy (vp). If 2, € By is a grid point where the supremum is attained, i.e., SUPBy, , Uy = Up, (24),
there exists a horizontal plane touching vy at z, from below. In other words, there is a
constant function L = v, with v, > L in all grid points z. By definition, the discrete convex
envelope therefore satisfies at any z € Br, that

Pn(vn)(2) > L(z) = L(z:) = va(24),

which implies the converse estimate supp,, , I's(vn)™ < vy, (24) for the negative part. Trivially

we have from the definition of I'y, that I',(vy,) < vj, and in particular supv, < supI'j(vp)”.
Thus

supv, = sup v, = sup I'p(vp)” =supLp(vy)”
Q BRr,n BRr.n Br

(recall that I'y,(vp,) is a function defined not only at the grid points). It therefore suffices to

prove
1/n

spTy(un)” <CR| 30 £L'@Tuw)E) | (21)

2€C; (vn)

Let as above z. € Bgry, be a grid point with supg,, v,” = v, (2«). Since vy, > 0 on b,
we can choose 2z, € Q to be an interior point. We define M := suppg, I'n(vn)~ and define a
cone K(x) with vertex z, (defined above) by the relations

K(z)=—-M and Kl|p, B, =0.

If p € Baar)(0), we have that L(z) := —M +p- (v — 2.) < K(x) for any z € Bg.
In other words, L is a supporting plane of K at z, and thus p € 0,K(z.). Therefore
BM/(2R) - ahK(Z*) whence

on (M/R)" = L"(Bayar)) < £™(0n K (24))-
In the remaining part of the proof we will show the relation

0K (2) C | OnTh(vn)(2). (22)
2€C;

Once this has been shown, we can deduce with the previous estimate the inequality

n(M/R) < LMOK (2) < L™ | | OnTh(vn)(2) | < Zze - " (0T h(vn)(2))

z2€C,;

2

which implies (21) and therefore proves the assertion.
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To prove (22), we must show that any supporting plane L of K at z. can be shifted
(by adding a constant) to a supporting plane L of I';(vy,) at some y € C, (vp). Since, by
assumption, vy, > 0 on QF and K(z,) = L(z.) = vj(24), the nodal function v, — L satisfies

vn(2e) — L(2:) = K(2) = L(2.) =0 and v, —L>K—L>0o0n QP

and, hence, v, — L attains a non-positive minimum at some z € NQ}IL (recall that z, € Q{L)
Thus, L(z) := L(2) + vp(x) — L(x) satisfies L < vy on Bgj, and L(x) = vy (x). Comparing
with the definition of I',(v,) we obtain L < T'y(vp,) < vp,, which shows that L is a supporting
hyperplane of I'y(vs) at = and that z is a contact node, x € C} (vp,). This proves (22). [

Synopsis of §13.

We have formulated basic notions of discrete/nodal convexity and proved the discrete Alex-
androv estimate for grid functions.
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Problems to §13

Problem 52. Prove that the nodal interpolant of a convex function is a convex nodal
function.

Problem 53. Let v, € X}, be a convex nodal function with v, < 0. Prove that v,(z) =
Ty (vp)(z) for all z € QF.

Problem 54. Let v, € Xj,. Prove that I',(v,) = 0 on 0Bpg.

Problem 55. Let wy;, and v, with wy, < vp, be convex nodal functions with wp(zx) = vp(24)
at some z, € Q. Prove Opwp(z4) C Opvp(24).

Problem 56. Let w;, and v, be convex nodal functions. Prove that dwp(z) + Oup(z) C
O(vp, + wp)(2) for all z € Qf. Here we use the notation A+ B ={a+b:a € A b€ B}.
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§14 Finite difference ABP estimate and stability analysis (week 6)

Recall the discrete ellipticity constant Agp.
The following theorem is known as discrete Alexandrov—Bakelman—Pucci (ABP) estim-
ate.

Theorem 3.78 (discrete ABP estimate). Let £y, be a finite difference operator of the format
(18) and of positive type. Let gn € X}, be given and let up, € Xy, be a grid function satisfying

Lpup < fin Q{L and up = gn on QE.
Then

1/n

- - MR n n
supuy <supgy +Cy— | 3 h"(f7(2))
o o0 o\ e un)

)

for the stencil size M and a constant C = C(n) only depending on the space dimension n.

Proof. Without loss of generality, we may assume that up > 0 on Qf , since otherwise we
can consider up + maxgp g, - We will furthermore restrict our attention to the interesting
case of maxg, u;, > 0, since otherwise nothing needs to be shown.

Let z € C; (up) be a point in the contact set and let y € S be a vector from the stencil.
Since I'y, (uy,) is convex, the second-order difference with respect to y satisfies 557,11“ n(up) > 0.
From the positivity of £, (and hence nonnegative coefficients a,(z)), the contact property
Tp(up)(z) = un(z), and T'p(up) < up, we thus obtain

0 < ay(2)8, 5 n(un)

_ ay(z)Th(Uh)(Z + hy) — QFh(;:Qh)(z) + D (up)(y — hy) < ay ()32 pun(2).

Taking the sum over the stencil and using Lpup < f leads to

0 < ay(2)8, ,Ta(un) <Y ay(2)67 1 Thlun) < f(2) < f1(2).
y'es

n

Let now {y;}7_; C S be the orthogonal set from Definition 3.68 (positivity). We expand

557,11“;Z (up) in the above inequality and use a,;, > Ao (see Definition 3.68) and obtain after
elementary manipulations

5 aTn(m)(2) = 6, ,T(un) 2)

Ao, . = Xonby 5 Th(un)(z) < ay;(2)6; ,Talun)(2) < f7(2)
so that "
0, nTn(un)(z) <0, 1, Ta(un)(z) + EF(Z)
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Let p € Op'pun(z) be any element in the discrete subdifferential. From the definition we
have I'y,(up)(z &+ hy;) > Ti(up)(z) £ hp - y;. This implies

8, nTn(un)(2) < p-y; <67 Tulun)(2).

The combination with the foregoing estimate shows
0y 1 Tnlun)(2) < pryj <67 3 Tnlun)(2) <6, Tnlun)(2) + —f"(2)
and thus, with k := 5y_j pLn(un)(2),

h
E<p-y; <k+ )\—er(z) for any p € Op'n(up)(2) and any of the vectors y;.
0,h

Since the g; := y;/|y;| form an orthonormal basis of R", we obtain with the bound |y;| <
vnM for the stencil size M that p-g; < /nMhf*(z)/Xop. This means that any p €
T (up)(2) is contained in a box of side length \/nMhfT(z)/ Ao n, which yields the following
bound on the Lebesgue measure

n £+
Ln (8hFh uh <\/ﬂanh Jj\n( ) .
0,h

Summation over all contact points yields
> LM@OnTn(un)(2) < VRMT> hn‘};n( "
2€€; (up) weC (up) 0P
We combine this estimate with Lemma 3.77 and obtain the assertion of the theorem. 0
As a consequence of Theorem 3.78, any uy, satisfying

Lpup < fin QF and  wy, = g, on QF. (23)

satisfies the stability estimate
1/n

R
max |uy| < max|gp| + C— h"
ol Smgelnl +O3 | 3w

)

Since for finite-dimensional linear problems uniqueness of solutions implies existence, we
deduce that there exists a unique solution to the finite difference system (23).

Synopsis of §14.
We have proven the discrete ABP estimate and deduced stability of the FDM.
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