Viscosity solutions — Problem sheet 3

Problem 15. Prove that uniform ellipticity implies degenerate ellipticity.

Problem 16 (properties of Pucci's operators I). Let $0 < \lambda \leq \Lambda$ and $M \in \mathbb{S}^{n \times n}$. Let the eigenvalues of M be denoted by $\alpha_1, \ldots, \alpha_n$. Prove that

$$\mathcal{P}^{-}(M,\lambda,\Lambda) = \lambda \sum_{\alpha_{j} > 0} \alpha_{j} + \Lambda \sum_{\alpha_{j} < 0} \alpha_{j} \quad \text{and} \quad \mathcal{P}^{+}(M,\lambda,\Lambda) = \Lambda \sum_{\alpha_{j} > 0} \alpha_{j} + \lambda \sum_{\alpha_{j} < 0} \alpha_{j}.$$

Problem 17 (properties of Pucci's operators II). Let $M, N \in \mathbb{S}^{n \times n}$. Prove

1. $\mathcal{P}^{-}(M) \leq \mathcal{P}^{+}(M)$

2.
$$\mathcal{P}^{-}(M, \lambda', \Lambda') \leq \mathcal{P}^{-}(M, \lambda, \Lambda)$$
 and $\mathcal{P}^{+}(M, \lambda', \Lambda') \geq \mathcal{P}^{-}(M, \lambda', \Lambda')$ if $\lambda' \leq \lambda \leq \Lambda \leq \Lambda'$

- 3. $\mathfrak{P}^{-}(M) = -\mathfrak{P}^{+}(-M)$
- 4. $\mathfrak{P}^{\pm}(\alpha M) = \alpha \mathfrak{P}^{\pm}(M)$ if $\alpha \geq 0$
- 5. $\mathcal{P}^+(M) + \mathcal{P}^-(N) \le \mathcal{P}^+(M+N) \le \mathcal{P}^+(M) + \mathcal{P}^+(N)$
- 6. $\mathcal{P}^-(M) + \mathcal{P}^-(N) \le \mathcal{P}^-(M+N) \le \mathcal{P}^-(M) + \mathcal{P}^+(N)$
- 7. $\lambda \|N\| \leq \mathcal{P}^{-}(N, \lambda, \Lambda) \leq \mathcal{P}^{+}(N, \lambda, \Lambda) \leq n\Lambda \|N\|$ if $N \geq 0$
- 8. \mathcal{P}^- and \mathcal{P}^+ are uniformly elliptic with ellipticity constants λ , $n\Lambda$.

Problem 18. For matrices $A, B \in \mathbb{R}^{n \times n}$ we define the Frobenius inner product $A : B = \sum_{j,k=1}^{n} A_{jk}B_{jk}$. Prove that $A : B = \operatorname{tr}(AB^{\top})$ and $x^{\top}Ay = A : x \otimes y$ for $x, y \in \mathbb{R}^{n}$. (Recall $x \otimes y = xy^{\top}$.)

Problem 19 (Hamilton–Jacobi–Bellman operator). Let \mathcal{A} be an index set and $0 < \lambda \leq \Lambda$ be given. Let, for any $\alpha \in \mathcal{A}$, $A_{\alpha} : \Omega \to \mathbb{S}^{n \times n}$ be measurable and bounded $0 < \lambda I \leq A_{\alpha} \leq \Lambda I$ uniformly in Ω ; and let $f_{\alpha} \in L^{\infty}(\Omega)$. Prove that the operator

$$F(x, D^2u(x)) = \inf_{\alpha \in \mathcal{A}} \left(\operatorname{tr}(A_{\alpha}D^2u(x)) - f_{\alpha}(x) \right)$$

is uniformly elliptic.

Problem 20. Prove Ishii's lemma under the assumption $w_1, w_2 \in C^2(\overline{\Omega})$.