Viscosity solutions — Problem sheet 4

Problem 21. Let \mathcal{A} be a family of affine functions over \mathbb{R}^n . Prove that sup \mathcal{A} is a convex.

Problem 22. Let $\Omega \subseteq \mathbb{R}^n$ an open domain and $f : \Omega \to \mathbb{R}$ be convex. Prove that f is locally Lipschitz continuous.

Instruction (if needed): To show Lipschitz continuity near $x_0 \in \Omega$, let $B_{2r}(x_0) \subseteq \Omega$ be an open ball with $x, y \in B_r(x_0)$ and define $z := x + \alpha(x - y)$ with $\alpha = r/(2|x - y|)$. Show $x = (1 + \alpha)^{-1}z + \alpha(1 + \alpha)^{-1}y$ and use this result to first estimate $f(x) - f(y) \leq (\alpha + 1)^{-1}(f(z) - f(y))$ and then establish the Lipschitz bound. Prove the estimate for |f(x) - f(y)| by interchanging the roles of x, y.

Problem 23. Prove the inclusion

$$\bigcap_{j=1}^{\infty}\bigcup_{k=j}^{\infty}K_{\delta,\rho}^{1/k}\subseteq K_{\delta,\rho}$$

claimed in the proof of Jensen's lemma.

Problem 24. Let $X \in \mathbb{S}^{n \times n}$, $a, b \in \mathbb{R}^n$, and $\varepsilon > 0$. As usual, $||X|| = \max |\sigma(X)|$ is the spectral norm of X (natural matrix norm w.r.t. the Euclidean scalar product).

(i) Prove

$$y^{\top}Xy = z^{\top}Xz + (y-z)^{\top}X(y-z) + 2(y-z)^{\top}Xz$$

(ii) Prove that any $a, b \in \mathbb{R}$ satisfy $2ab \leq \varepsilon^{-1}a^2 + \varepsilon b^2$. (Hint: binomial formula.)

(iii) Prove

$$y^{\top}Xy \le z^{\top}Xz + ||X|| ||z-y|^2 + \varepsilon^{-1}|z-y|^2 + \varepsilon|Xz|^2.$$

(iv) Prove

$$y^{\top}Xy \le z^{\top}(X + \varepsilon X^2)z + (\varepsilon^{-1} + ||X||)|z - y|^2.$$