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1 Introduction

Nonconforming finite element methods (FEMs) are of high interest in computational fluid dynamics where
they provide stable low-order discretisations with favourable local mass conservation properties. Especially
for eigenvalue problems, the nonconforming discretisation is even more attractive because it allows for a
convenient computation of guaranteed lower eigenvalue bounds [16]. In many practical situations the eigen-
values of interest form an eigenvalue cluster where all eigenfunctions have to be discretised simultaneously
in adaptive algorithms. This paper applies and generalises the technique of the recent work [33] to the non-
conforming P, discretisation of the Laplace and Stokes eigenvalue problems and proves optimal convergence
rates of the simultaneous adaptive FEM computation for the eigenfunctions in the cluster. Optimal conver-
gence rates for adaptive FEMs for eigenvalue problems were established in [15, 26] for simple eigenvalues and
in [25] for multiple eigenvalues for conforming finite elements and in [14] for the nonconforming discretisation
of the first eigenvalue of the Laplacian. The main difference to the analysis of those results is the additional
difficulty that the cluster width should not enter the error estimates as an additive term. Consider an open
bounded polyhedral Lipschitz domain Q ¢ R? for d > 2 and a simplicial triangulation T,. Let W be the in-
variant subspace spanned by the eigenfunctions of an eigenvalue cluster and let W, describe the linear hull
of the corresponding nonconforming P, (7,) eigenfunctions. The adaptive algorithm is driven by the explicit
residual-based error estimator contributions of all discrete eigenfunctions in the cluster. The main results of
this paper state that the error quantities
sup igvaelllw = Velllne

weW Ve
fwl=1

(in the case of the Laplace eigenproblem —Au = Au) and

172

(llw = vellixe + I p(w) - p(up)I?)

sup inf
wew v, €W,
lwl=1
(in the case of the Stokes eigenproblem —Au+(Dp)" = Au; divu = 0) decay as (card(T,) — card(T,)) ™, provided
all eigenfunctions belong to the approximation class 2, (resp. Ql(sfmk"'s). Here, ||-| denotes the L* norm and ||l xc
denotes the nonconforming energy norm (i.e., the L* norm of the piecewise derivative). Although one can
prove using the techniques of [32] or the different approach of [5] that those error quantities also control the
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square root of the eigenvalue error, this paper merely studies the approximation of the space W. An important
methodological tool is the higher-order L? control for the eigenfunction approximations which is proven by
means of conforming companion operators. Operators of this kind were introduced in [14, 41] in the two-
dimensional case and are generalised in this paper to higher space dimensions d > 2. The resulting L* error
estimates compare the L? error directly with the energy error and therefore do not employ any a priori results
of the eigenfunction approximation.

The proofs for optimal convergence rates of adaptive FEMs were initiated in [22, 46] and extended to
nonconforming FEMs for the Poisson equation [3, 42] and the Stokes equations [2, 20, 39]. These approaches
were recently unified in the axiomatic approach of [12]. The convergence of adaptive FEMs for eigenvalues was
proven in [10, 35, 36]. The optimality results [15, 26, 34] concern simple eigenvalues and conforming FEMs
while [14] establishes optimality for the nonconforming discretisation of the first Laplace eigenvalue. The
first optimality analysis for an adaptive algorithm for multiple eigenvalues [25] based on conforming FEMs
introduced a simultaneous bulk criterion for all discrete eigenfunctions of the multiple eigenvalue. In [33]
this marking strategy was proven to lead to optimal convergence rates in the case of eigenvalue clusters. The
results of this paper establish a corresponding result for the nonconforming P, FEM and the first optimality
result for the Stokes eigenproblem.

The remaining parts of this paper are organised as follows. Section 2 describes an abstract framework for
the discretisation of eigenvalue clusters. Section 3 introduces the notation on triangulations and presents the
conforming companion operators for the nonconforming P, FEM in any space dimension. Section 4 is devoted
to the analysis of the adaptive FEM for the eigenvalues of the Laplacian. Section 5 studies the adaptive FEM
approximation of the eigenvalues of the Stokes system.

Throughout the paper standard notation on Lebesgue and Sobolev spaces is employed. The integral mean
is denoted by f The notation a < b abbreviates a < Cb for a positive generic constant C that may depend on
the domain Q and the initial triangulation T, but not on the mesh-size or the eigenvalue cluster of interest.
The notation a =~ b stands fora < b < a.

2 Approximation of Eigenvalue Clusters

Let (V, a(-,-)) be a separable Hilbert space over R with induced norm |||, and let b(:, -) be a scalar product on
V with induced norm |||, such that the embedding (V, [|-|,) < (V,|ll,) is compact. This paper is concerned
with eigenvalue problems of the form: Find eigenpairs (A, u) € R x V with |Ju[, = 1 such that

a(u,v) = Ab(u,v) forallveV. (2.1)

It is well known from the spectral theory of selfadjoint compact operators [23, 40] that the eigenvalue problem
(2.1) has countably many eigenvalues, which are real and positive with +co as only possible accumulation
point. Suppose that the eigenvalues are enumerated as

0<A <A, <A<

and let (u;,u,,u,,...) be some b-orthonormal system of corresponding eigenfunctions. For any j € N, the
eigenspace corresponding to A is defined as

E(A;) = fuev| (A}, u) satisfies (2.1)} = span{u; | k e Nand A, = }tj}.

In the present case of an eigenvalue problem of (the inverse of) a compact operator, the spaces E(A ;) have
finite dimension. The discretisation of (2.1) is based on a family (over a countable index set I) of separable
(not necessarily finite-dimensional) Hilbert spaces V, with scalar products ayc(-, -) and byc(-, -) on V + V, with
induced norms ||-[|, xc and [l nc such that ayc and by coincide with a and b when restricted to V:

anclyxy =a and  byclyyy = b.
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The discrete eigenvalue problem seeks eigenpairs (A,, u,) € R x V, with [Ju,ll, ¢ = 1 such that
anc(Up, V) = Apbyc(ug,v,)  forallv, € V,.
The discrete eigenvalues can be enumerated
0<Ap; <Apy<Apz<eee

with corresponding byc-orthonormal eigenfunctions (u,,, u,,, 4,3, ...). For a finite cluster of eigenvalues
Apits -+ > Ay Of length N € N, define the index set J := {n + 1,...,n + N} and the spaces

W = span{u]- |je]} and W,:= span{ue’j | jeT}

The eigenspaces E(A ;) may differ for different j € J.
Assume that the cluster is contained in a compact interval [A, B] in the sense that

Ajljeltu{rg;l el je]} c[AB]

This implies

sup max maxfA; A, A, A} < B/A.
(’E? Gik)e? i ej> e, k)

Although in the applications in this paper dim(V,) will be finite-dimensional, the analysis in this section
admits the case dim(V,) € N U {oo}. Let J¢=11,..., dim(V,)} \ J denote the complement of J. Assume that
the cluster is separated from the remaining part of the spectrum in the sense that there exists a separation
bound

Ak

M := sup sup max ————— < 0. (H1)
T e kT gy = Al

Given f € V, letu € V denote the unique solution to the linear problem
a(u,v) = b(f,v) forallveV.
The quasi-Ritz projection R,u € V, is defined as the unique solution to
anc(Rett, vp) = byc(fovp) forallv, € V.
Let P, denote the by-orthogonal projection onto W, and define
A,pi=P,oR,.

For any eigenfunction u € W, the function A ,u € W, is regarded as its approximation. This approximation
does not depend on the basis of W,. Notice that A ,u is neither computable without knowledge of u nor nec-
essarily an eigenfunction.

The following result is essentially contained in the textbook [48] and in [10] for a conforming finite ele-
ment discretisation of the Laplace eigenvalue problem. The proof presented here extends the arguments of
[48] to a more abstract situation.

Proposition 2.1. Any eigenpair (A, u) € R x W of (2.1) with ||ull, = 1 satisfies
IR,u — A pully e < Mjllu— Roullync
and
e = Poullyne < lu— Apullyne < (1 + Mp)llu — Roullync-

Proof. Set v, := R,u — A ,u and recall dim(V,) € IN U {oo}. Since the eigenfunctions (g | j=1,...,dim(V,))
form a byc-orthonormal system of V, and v, is byc-orthogonal on W, there exist coefficients («; | j € J¢) such
that

2 2
Up = Z ol j and Z o = lvell ne-
jeJ® jeJ®
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The definition of R, and the symmetry show that
(/\e)j — A)ch(Reu, uf,j) = Ach(u - Reu, ue’j).
This and the orthogonality of v, and A ,u lead to
A
||Ue||§,Nc = ch<Re”7 Z “j“e,;‘) = ch(” - Reu, Z “jm”e,j)-

jEIc je]c e,j
The Cauchy inequality, the estimate (H1) and the by.-orthogonality of the discrete eigenfunctions therefore
show

lvellone < Mjllu = Reullyne-

The second claimed chain of inequalities follows from the projection property of P, and the triangle inequality.
O

The following algebraic identity applies frequently in the analysis. It states the important property that, al-
though A ,u is no eigenfunction in general, A ,u satisfies an equation that is similar to an eigenfunction prop-
erty.

Lemma 2.2. Any eigenpair (A,u) € R x V of (2.1) satisfies
anc(A i, vp) = Ay (Pou, vp)  for allv, € V,.
In other words, R, and P, commute, P, e R, = R, o P,.

Proof. The proof is given in [33, Lemma 2.2] and repeated here for convenient reading. The representation of
A pu in terms of the byc-orthonormal basis (u, ;) ;c; reads as

Apu= Z ajug i Witha; = byc(Reu, u, ;) forall j € J.
j€l
The symmetry of ay and by proves for any j € J that
(x] = ch(Reu, ue’j) = A;jjaNc(Reu, ue’j) = A;)IJ/\ch(u, ue)j).

Therefore, the discrete eigenvalue problem reveals

anc (A gt vp) = Z “j/\e,ijc(“e,y vp) = A Z b (buc (s, ”e,j)”e,j’ V) = Abc (P, Up). O
j€J j€J
The following result states a comparison of seminorms for the eigenfunctions. The application in the subse-
quent sections will be the equivalence of error estimators.

Lemma 2.3. Suppose that
&= ma]x||uj —Aujlyne < VI+1/2N) -1 forall eI (H2)
je

Then, both (P,u Dies and (A pu Djer form a basis of W,. For any w, € W, with |w,|l, ¢ = 1, the coefficients of the
representation w, = Y, ;.; B;Ppu; and we = Y .; y;A pu; are controlled as

max { Z|ﬂj|2, Zlyjlz} <2+4N for N = card(J).
Jjel Jjel
For any ¢ € I, any seminorm p, on'V, satisfies
NN oo Puy)’ < (BIAY Y po(Ag jutg )* < (B/AY (2N +4N) Y py(A;Pyut;)*
il jer il
and

NTYY pp(Agu))? < (B/A) Y pplug j)* < (B/A) (2N +4N%) Y py(A u;)’.
j€J Jj€l €]

Proof. The proof follows from [33, Lemma 5.1, Proposition 5.2]. O



DE GRUYTER D. Gallistl, Nonconforming AFEM for Eigenvalue Clusters = 513

3 The Nonconforming P, Finite Element Space

This section introduces the necessary notation on regular simplicial triangulations and recalls some elemen-
tary facts on the nonconforming P, finite element space. It furthermore generalises the companion operators
from [14] to higher space dimensions.

3.1 Notation on Regular Triangulations

Let T, be a regular simplicial triangulation of Q in the sense of [47], i.e., UT, = Q and any two elements of T,
are either disjoint or share exactly one k-dimensional face for k < d (e.g., a vertex or an edge). Throughout
this paper, any regular triangulation of Q) is assumed to be admissible in the sense that it is regular and a
refinement of T, created by the refinement rules of [47] with proper initialisation of the refinement edges [47].
The set of all admissible refinements is denoted by T. Given a triangulation T, € T, the piecewise constant
mesh-size function h, := hy, is defined by hyly := by := meas(T)"/“ for any simplex T € T,.

The set of (d - 1)-dimensional hyper-faces (e.g., edges for d = 2 or faces for d = 3) of T, is denoted by F,
while the interior (d — 1)-dimensional hyper-faces are denoted by F,(Q2). Let every F € F, be equipped with a
fixed normal vector v. Given F € 5,(Q), F = 0T, Nn0T_ shared by two simplices (T,,T_) € Té, and a piecewise
smooth function v, define the jump of v across F by

[v]g = UIT+ -y .

For hyper-faces F < 0Q on the boundary, [v]; := v|; denotes the trace. For a simplex T, the set of (d - 1)-
dimensional hyper-faces belonging to T is denoted by F(T).

The set of piecewise polynomial functions of degree < k with respect to 7, is denoted by P,(7,). The L*
projection onto P,(T,) is denoted by Hf}e = H’g. The k-th order oscillations of a given function f € L*(Q) is
defined as

0sci (£, T¢) 1= Ihe(1 - 1) fll 2 .

The piecewise action of a differential operator is indicated by the subscript NC, i.e., the piecewise versions of
D and div read as Dy = Dyc(,) and divye = divyg €.8., (Dycv)ly = D(vly) for any T € T,. The dependence
on T, in the notation is dropped whenever there is no risk of confusion.

3.2 Nonconforming Finite Element Space and Companion Operator

The nonconforming P, finite element space, sometimes referred to as Crouzeix—Raviart finite element space
[24], reads as

69%(1,(7 ) = {v, € P1(T,) | v, is continuous in the interior hyper-faces’ midpoints and
vanishes in the midpoints of hyper-faces on the boundary}.

Let, throughout this subsection, V, := V(7,) := QSR(I)(‘I pandV := H(}(Q). Given an admissible refinement
Tosm € T(T,) of T,, define the operator 57 : V + V,,,, — V, by

J(v - mev) ds=0 forallFeJF,andallveV+V,,,.
F

Note that me is indeed well-defined for functions in 69%(1)(7 2+m)- A (piecewise) integration by parts proves the

projection property DycJs" = TI9D, i.e.,

JDNCJe@mv dx = JDU dx forallT e T,andallveV+V,,,. (3.1)
T T
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The proof of the approximation and stability property
17" @ = 3502y + 1Dy = T 0)ll2ry < 11 = TI)Dycllieery (3.2)

foranyv € V +V,,,, and any T € T, follows from the discrete Friedrichs inequality [9, Theorem 10.6.12] and
a scaling argument.

The remaining parts of this subsection present conforming companion operators. The idea behind these
operators is to design for a nonconforming finite element function v, some conforming companion J,,,v, € V
with certain conservation properties. For d = 2, operators of this kind have been constructed in [14] and
independently in [41]. The following result extends [14] to any dimension d > 2.

Proposition 3.1 (companion operator in any space dimension). Given any v, € V, there exists some J;, v, €
P4:1(Tp) NV such that v, - J;,,v, is L* orthogonal onto the space P,(T,) of piecewise constants, it enjoys the
integral mean property

I, (D (ve = Jai10e)) = 0, (3.3)

and it satisfies the approximation and stability property
Iry" We = Jas1v)llzza) + IDxc (e = vl < Ilflei‘?"DNc(ve —V)l@)- (34)

Proof. The design follows in three steps.
Step 1. The operator J, : V, — P;(T,) NV acts on any function v, € V, by averaging the function values at
each interior vertex z, i.e.,

Jv(2) = card(Ty(2))™" Y wplrlz) forallz € Ny(Q)

TeT,(z)

where T,(z) := {T € T, | z € T} is the set of simplices that contain the vertex z. This operator is also known
as enriching operator in the context of fast solvers [8]. The proof of the approximation property

||hE1(Ue - ]1Ue)||L2(Q) s Iglei‘gluDNc(Ue - U)"LZ(Q) (3.5)

isincluded in [11, Theorem 5.1] for d = 2. A generalisation to higher dimensions is outlined in the proof of [13,
Theorem 4.9]. This and an inverse estimate [9] imply the stability property

IDxc(ve = T10p)ll12(q) < min]| Dyc(vp = 0)l12(q)- (3.6)
vev

Step 2. Given any hyper-face F = conviz,,...,z;} with nodal P, conforming basis functions ¢,,...,¢; €
P,(T,) NV, the quadratic edge-bubble function

2d— (d-1)
1)| H J

is supported on the patch of F (that is the union of simplices which F belongs to) and satisfies ][ popds =1
For any function v, € V, the operator J, : V, —» P,(T,) NV acts as

Jave := J1vp + Z (Jt(ve - J1v,) ds)bF

FeF,(Q) &

An immediate consequence of this choice reads as

{]dvg ds = ][vg ds forall F € F,.
F F
An integration by parts shows the integral mean property of the gradients I1)DJ,; = Dy, i.e.,

J D] v, dx = J Dycvpdx forallT € T,.
T T
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Let T € T, with F € J(T). The scaling ||bg| 2o < hi/ % and the Holder and trace inequalities [30] show

| ¥ (][(ve— ]lve)ds)bF <HIDP Y |][(v€— lee)dsl
FEF(T) g LX(T) FEF(N)' &
<h Y o - Nl
FeJ(T)

< hr'lve = Tivellpzery + 1Dyc(ve = 10l ry-
This, the triangle inequality and the properties (3.5)-(3.6) yield
Iy (e = Jave)ll2y < min|[Dyc(ve = v)ll12()- (37)
The stability property of J,; follows with an inverse estimate [9]
IDxc(e = Tave) 2y < Ihz" (0 = Javpl 2 < Ilflei‘glllDNc(ve =Vl

Step 3. On any simplex T' = conv{z,,...,z4,;} with nodal basis functions ¢, ..., ¢,,,, the volume bubble
function is defined by

2d +1)
b, = 24D p "o, € Hin(r))
Y

and satisfies § by dx = 1. Define

Jar1Ve = Jave + z (][(Ue = Jave) dx)"T-

TeT, T
The difference v, - J;,,v, is L*-orthogonal to all piecewise constant functions. Since b, vanishes onall F € 7,

J4+1 enjoys the integral mean property I19DJ,;,,; = Dyc. The H6lder inequality and (3.7) imply

-d/2 —(d-2)/2 __.
H(ve - ]dve)dxl < hiP g = Jvell gy < hp ! min| Dy (ve = v)ll2(0).
T

?"2)/ ? and the triangle inequality prove the stability property

The scaling | Dbr|;2q) = h
IDxnc (e = Janvelllizo) < minlDyc (v = 0)lzq)-
A piecewise Poincaré inequality proves the approximation property

71 .
”hg (Ue - ]d+1v€)||L2(Q) < fglél‘;l”DNc(Ue - U)||L2(Q)- O

4 Eigenvalues of the Laplacian

This section studies the adaptive nonconforming FEM approximation of the Laplace eigenproblem. Section 4.1
presents L and best-approximation estimates for the linear Poisson problem. Section 4.2 introduces the dis-
cretisation of the eigenvalue problem. A ‘theoretical’ (i.e., non-computable) error estimator and its discrete
reliability are analysed in Section 4.3. Sections 4.4 and 4.5 present the practical AFEM and prove contraction
and optimal convergence rates.

4.1 Nonconforming FEM for the Poisson Model Problem

This subsection revisits the nonconforming P, discretisation of the linear Poisson equation. Let V := Hé (Q)
be equipped with the scalar products

a(v,w) := (Dv, Dw)prqy and  b(v,w) := (v, W)
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and induced norms |[v]| := a(v, v)*/? and |lv|| := b(v, v)"/?. Given f € L*(Q), the weak formulation of the Poisson
problem —-Au = f under homogeneous Dirichlet boundary conditions reads as

a(u,v) = b(f,v) forallveV. (4.0)
The nonconforming finite element discretisation is based on the space V, := ¢} (T,) and the scalar product
anc (Vg wy) = (DycUps DncWe) 2y for all (v, wy) € V(‘,2
with norm ||| lyc := axc(- ) and seeks u, = R,u € V, such that
anc (g, vp) = b(f,v,) forallv, € V,. (4.2)

A posteriori and a priori error estimates as well as best-approximation properties for this problem are well-
studied in the literature [6, 21, 28, 37]. Error estimates in the L?> norm require a modification of the usual
duality argument for conforming finite element methods. The following proposition establishes an L* error
estimate. The main ingredient is the use of the companion operator J,,,. For d = 2, this result was first ob-
tained in [14] and [18]. A similar approach has independently been developed in [41] for d = 2. The result
presented here compares the L* error directly with the energy error and therefore uses no a priori results of
the eigenfunction approximation. This is important as the L* control will usually lead to higher-order terms
which can be absorbed for ||i]|,, < 1.

Let 0 < s < 1 indicate the elliptic regularity index of the Poisson problem —Au = f with homogeneous
Dirichlet boundary conditions in the sense that [Jul| -y < C(s) fll 2(q)-

Proposition 4.1 (L* error estimate for the linear problem). The exact solution u to (4.1) and the discrete solu-
tion u, to (4.2) satisfy

Nl = waell < Mgl llie = vaelllnc-

Proof. Lete := u —u, and let z € V denote the solution of
a(z,v) = ble,v) forallveV.
Recall the companion operator ], from Proposition 3.1. Since IT)(u, — J,,1,) = 0, it holds that

lel® = b7 441110 — s €) + bl — Jgyy14p)

= b(J g ttp — tp, (1 — Hg)e) +a(z, u— ] u,p).
Piecewise Poincaré inequalities and (3.4) lead to
b(Jathe — tigs (1 = TTp)e) < 12, llellic.

Since e is perpendicular to the conforming finite element functions in P, (7)NV and since IT) Dy (1t — J 1,1 1) =
0, the Scott-Zhang quasi-interpolation z € P,(7) NV of z [45] satisfies

a(z,u = Jaue) = acle 2) + anc(e = Jgiates 2)

= anc(e z — z¢) + anc(up = Jatp 2 = Zc)-
The Cauchy inequality and (3.4) imply
ayc(e, z — z¢) + anc(up = Jyiittes 2 = 2¢) < llelllnclllz = zclline-
Standard a priori error estimates [9] and the elliptic regularity imply
llz = zclll < ko lig, Izl gpiesay < IgllE, lell.
The combination of the above estimates proves

llell < Ao lie, Melllnc- O
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The next result states a best-approximation property in any space dimension. It generalises some recent re-
sults of the medius analysis [7, 21, 37] to arbitrary space dimensions. The result is stated with a refined oscil-
lation term osc, (f, T,). This will be important for the analysis of eigenvalue problems.

Proposition 4.2 (best-approximation property). The solutionu € V to (4.1) with right-hand side f € L*(Q) and
the discrete solution u, € V, to (4.2) satisfy

lle = welline < (1 = T9)Dull + ose, (f, T).

Proof. The projection property (3.1) of the nonconforming interpolation operator Jem

theorem show that

and the Pythagoras

2 CR 112 CR_ 2
”lu - Me|||NC = ”lue - jg u”lNC + ”lu - jg u"lNc-

Since ||u - .’ngulul\]C =1 - H?)Du", it remains to estimate the first term on the right-hand side. Set ¢, :=
up — meu. The properties of the companion operator from Proposition 3.1 show that

CR
— Jf

lleze ”|||12\1c = anc(up — 1, 9) = b(f, 90 ~ Jaa9e) + (1~ HS)D“’ DycUgi = 1>‘Pe)L2(Q)-

The approximation and stability properties (3.4) show that this is bounded by
(I 1 + 111 = TI) Dul)) el

The efficiency ||k, fI| < (1 - H‘})Dull + osc, (f, T,) in the spirit of [49] follows from arguments similar to those
of [33, Proposition 3.1]. This concludes the proof. O

4.2 Discretisation of the Laplace Eigenvalue Problem

The Laplace eigenvalue problem seeks eigenpairs (A, u) € R x V with |Ju| = 1 such that
a(u,v) = Ab(u,v) forallveV. (4.3)

The finite element discretisation based on a regular triangulation T, seeks discrete eigenpairs (A,,u,) € RxV,
with [lu,|| = 1 and
anc (g, vp) = Apb(up,vp) forallv, € V. (4.4)

Adopt the notation of Section 2 with exact and discrete eigenvalues
0<A1£A2S"' al’ld O</\€,15"'SA€,dim(V6)

and their corresponding b-orthonormal systems of eigenfunctions

(upupus,...) and  (UgysUpps - - o5 U dim(v,))-

Recall the definitions of Section 2: The set J = {n + 1,...,n + N} describes the eigenvalue cluster of interest
and W := span{u iljel} and W, := span{u, il je€Jtare the exact and discrete invariant subspaces (not
necessarily eigenspaces) related to the cluster. In the present situation, the quasi-Ritz projection R, maps the
solution u € V of the linear problem (4.1) to the solution R,u of the discrete linear problem (4.2). With the L?
projection Py, := P, onto Wy let Ay, := A, := Py o R,.

The remaining parts of this subsection prove an L? error estimate as well as a best-approximation result.

Proposition 4.3 (L* error control). Provided ||k, < 1, any eigenpair (A, u) € R x W with ||ul = 1 satisfies
lu — Poull < llu = Agull < (1 + Mp)llu— Roull < Cp2(1 + M)k} Ml — A pulllne

for some constant C;. and the separation constant M; from (H1) (Section 2).
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Proof. Note that R,u solves (4.2) with right-hand side f := Au. The combination of Proposition 2.1 with Propo-
sition 4.1 and Proposition 4.2 yields

= Pyl < llu = A gull < (1 + M)l l5g (Il = A guallige + 05, (Aus, T)).
Provided ||hll, < 1, the oscillation term can be absorbed. O

Proposition 4.4 (best-approximation property). Provided |hyll,, < 1, any eigenpair (A,u) € R x W of (4.3)
with ||ul| = 1 satisfies
Nl = A pulllne < 11 = T Dul.

Proof. The triangle inequality proves for the quasi-Ritz projection R,u that
e = A pulline < Nl — Reulllne + IRpu — A pullle.
Set ¢, := R,u — A ,u. The definition of R, and the discrete problem (cf. Lemma 2.2) prove that
IR,u — A pullc = anc(Rout — A g, @) = Ab(u — Pyut, ).

Hence, the Cauchy and discrete Friedrichs inequalities [9, Theorem 10.6.12] and the L* control from Proposi-
tion 4.3 prove that
lRyu — A pulllge < AL+ M)k lIE Ml — A puallle-

The combination of the foregoing estimates with Proposition 4.2 results in
lle = A puilllne < 11 = TI)Dull + A1+ M)lihglI5 llu — A pulllge + ose; (A, Tp).

If |yl < 1is sufficiently small, the higher-order terms on the right-hand side can be absorbed. O

4.3 Theoretical Error Estimator and Discrete Reliability

The analysis relies on a theoretical, non-computable error estimator that does not depend on the choice of
the discrete eigenfunctions. This idea was first presented in [25]. Given an eigenpair (A, u), the error estimator
includes the elementwise residuals in terms of P,u and A ,u. More precisely, define, for any T € T,

uy (T, A u) = W APl 2y + Y B A pul 6l 7oy
Fed(T)

and, for any subset X < T,

WA pu) =Y wp(TAuy) and  pp(K) = ) pp(K, A u)).
TeX j€J

The following shorthand notation for higher-order terms will be frequently used in the remaining parts
of this section. For (¢,m) € lNé define (with the constant C;. from Proposition 4.3)

Tom = holli AL + M;)Cpa \/IIIu = Aull? + lllu — Ay, ulll. (4.5)
The theoretical error estimator satisfies the following discrete reliability.

Proposition 4.5 (discrete reliability). There exists a constant C,,; =~ 1 solely dependent on T, with ||k, < 1
such that any eigenpair (A, u) € R x W of (4.3) with |lu| = 1 satisfies

20A pypts = A guill® < Coa (15T \ Tppps A1) +75,,).

Proof. Letuv,,,, denote the best-approximation (with respect to the norm ||-|l|yc) of A pu in V,,,,,. The Pythago-
ras theorem reads as

2 2 . 2
(A g = A Duilline = A gt = Vormlline + » ml\f} llwespm — A ettlllye-

etm =V etm
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The second term has been estimated in [13, Theorem 3.1] by means of the jumps of A ,u. For the analysis of
the first term, let ¢,,,, := A 4,,,14 — V.- The projection property (3.1) of the nonconforming interpolation and
the discrete eigenvalue problems (cf. Lemma 2.2) reveal that

NA gt = Vsl = anc (A pum = A p)th Ppyr)

= Ab((Ppyy = Po)tts Ppn) + Ab(Poty (1= 357y,

The L? error estimate from Proposition 4.3 and the approximation and stability property (3.2) conclude the
proof. O

The reliability of the error estimator is an immediate consequence.
Proposition 4.6 (reliability and efficiency). Provided |hyl,, < 1, any eigenpair (A,u) € R x W of (4.3) with

lul = 1 satisfies
llu = A gulllae < Copis (Tps Ay 1a). (4.6)

For some constant C 4 = 1, it holds that
te(Tps A u)” < Colll — A pullly- (4.7)
Proof. The reliability
2lu = A gullRe < Cora(tg(Tos Ao ) + NglZ A (1 + M) lllu — A gulllyc)

follows from the discrete reliability on a sequence of meshes T,,,, with |h,,,,l., — 0 and the a priori con-
vergence result of Proposition 4.4. Provided the initial mesh is sufficiently fine, the higher-order terms on the
right-hand side can be absorbed. The efficiency

25(Tp L) < Co(1+ Akl (1 + M)Cpa) e — A il

follows from the triangle inequality and the L? error control from Proposition 4.3 combined with the standard
arguments of [49]. The assumption ||, < 1 implies

iy (Tps A 11) < Coeelllu — A pulllye- O

4.4 Adaptive Algorithm and Contraction Property

This subsection presents the adaptive algorithm and proves the contraction property.
For any simplex T € T,, the explicit residual-based error estimator consists of the sum of the residuals of
the computed discrete eigenfunctions (u, ;) ;e

2 2 2 -1 2
np(T) := Z(hT||Ae,jue,j||L2(T)+ > I ||[ue,j]F||LZ(F)).
jeJ FeJ(T)

Let, for any subset X ¢ 7,

m(K) = Y ().
TeX
For simple eigenvalues this type of error estimator was introduced in [29]. The adaptive algorithm is driven
by this computable error estimator and runs the following loop.

Algorithm 4.7 (nonconforming AFEM for the Laplace eigenproblem).

Input: Initial triangulation T, bulk parameter 0 < 6 < 1.

for¢=0,1,2,...
Solve. Compute discrete eigenpairs (A, ;, uy ;) jc; Of (4.4) with respect to T,.
Estimate. Compute local contributions of the error estimator (;ﬁ(T))TGTe.
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Mark. Choose a minimal subset M, ¢ T, such that 67;(T,) < 17(M,).
Refine. Generate T,,, := refine(T,, M,) with the refinement rules of [47].
end for
Output: Triangulations (7,), and discrete solutions ((A,, i Ue, j) je e

The first important observation is that, by Lemma 2.3, the non-computable error estimator u,(M,) satisfies
the bulk criterion

é#e(%) < up (M)

for the modified bulk parameter
6:= ((B/A)*2N* +4N*) "0 < 1. (4.8)

The following proposition states the error estimator reduction property.

Proposition 4.8 (error estimator reduction for u,). Provided the assumptions (H1) and (H2) (see Lemma 2.3)
hold, there exist constants 0 < p, < 1 and 0 < K < oo such that T, and its one-level refinement T,,, generated
by Algorithm 4.7 and any eigenfunction u € W with |lul| = 1 and eigenvalue A satisfy (with r,, from (4.5))

U (Terns Mo t0) < pupig(Tpn A a) + K(IIA gy = A gullie + ol )-
Proof. The standard techniques of [22, 46] and the bulk criterion (4.8) lead to a constant K such that
U (Teers 1) < pyty(Tp A1) + ROIIA gyt = A guille + gai A(Peyy — Pp)ull).

The triangle inequality for the term ||,,, A(P,,, — P,)ull and the L* error control from Proposition 4.3 prove the
result. O

The next technical result is needed for the reduction of the volume contribution of the error estimator. In-
equalities of this type were previously utilised in [42] for d = 2 for the linear Poisson problem and in [13] for
boundary value problems for d > 2.

Lemma 4.9 (control of the volume contribution). Provided ||k, < 1, any triangulation T, € T and any ad-
missible refinement T ,,,,, of T, satisfy for any 0 < 8 < oo and any eigenpair (A, u) € R x W of (4.3) with |lu| = 1
that

WPy mAPesmtll 2y + (1 4+ 871 = 27D RA Pl 2 07, 3y < 20+ OhglZ 75, + (1 + ) IB APl 72 -
Proof. The triangle and Young inequalities prove for any 0 < § < co that
1A Pemtl iy < (1+ ) m APyt = Pty + (1 + 8™ gy APeutlf2 .

The relation k¢, < h?/20n T, \ T,,,, proves

+m =
IAPu g,y < (1= 27204 (I APty — Vg Aot ).
The preceding two displayed formulas together with Proposition 4.3 prove the result. O

In the case of nonconforming discretisations of eigenvalue problems, the Galerkin orthogonality is violated
at two points. First, the nonlinearity leads to a perturbation of the right-hand side. Furthermore, the non-
conforming finite element functions are not admissible test functions in the continuous problem and, thus,
additional techniques enter the analysis. The notion of “quasi-orthogonality” traces back to [17].

Proposition 4.10 (quasi-orthogonality). Under the hypothesis ||h,ll, < 1 there exists a constant Cyo Such that
any eigenpair (A, u) € Rx W of (4.3) with |lu| = 1, any T, € T, and any admissible refinement 7, ,,, of T, satisfy

2anc(W = A gyt A gyt — A gu)| < qu(”hZAPZI"”LZ(UTQ\‘IeW) + "e,m)|||“ = A gt
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Proof. Some algebraic manipulations with the projection property (3.1) of the nonconforming interpolation
and the discrete eigenvalue problems (cf. Lemma 2.2) reveal

anc (1= A gym)tts (A gy — A p)ut)

R CR
€+m(1 - A€+m)u) - aNC(Afu’ jf (1 - A£+m)u)

= Ab(Pyy ity T5 o (1 = A gy )tt) = Ab(Ppta, IETH (1 = A py)ut)

¢+m

= Ab(Pyu, (152 = ISP (1 = A gy )tt) + AD((Pyy — Po)it, Tyon (1= A gy p)th).

C+m

= anc(A gomtss I

Since 57} vl = I57 0|y forall T € T, N T, the first term of the right-hand side can be controlled with (3.2)
as

Ab(Pyu, (jgﬁn - jgm)(l ~Npm)tt) < "hé’/\Peu"Lz(Ui}}\iT“m)”DNC(l - A€+m)u”L2(u‘J'e\‘J'e+m)'
For the second term, the discrete Friedrichs inequality [9, Theorem 10.6.12] and the stability of Jf% reveal
AD((Pyypy = Pt Ty (1= A gy)t) < A(Pesy = Pl = A gl

The triangle inequality and Proposition 4.3 control the term A||(P,,,, — P,)ull by r,,, from (4.5). This concludes
the proof. O

The following contraction property implies the convergence of the adaptive algorithm.

Proposition 4.11 (contraction property). Under the condition ||hyll,, < 1, there exist0 < p, < 1and 0 < 3,y <
oo such that, for any eigenpair (A, u) € RxW with |[u]l = 1, the term &, = 5 (T,, A, u) + Bllu—A pulllfc + Yl Poul®
satisfies

£, <p& foralle e N,.

Proof. Throughout the proof, the following shorthand notation applies:
e, = lu—-Apullne,  €prr = llu = Apyullne #3 = H?(Te,/\, u), I/‘?H = .‘4§+1(Te+1’/\’ u).

The error estimator reduction from Proposition 4.8 and elementary algebraic manipulations plus the
quasi-orthogonality (Proposition 4.10) lead to

2 2 2 2 2 2
Howr + Kepy < prigp + K(ee +2a(u = A g, (Mg = Apyy)u) + "h0||oor€,l)
< Pln"‘; + K(eg + qu(||he/\Pe”||L2(u7e\‘IM) + 7)€ + ||ho||f>o”fr,1)-
This and the Young inequality for any 0 < ¢ < 1 lead to
2 2 2 2 2 2 2 .2
Hpo + K(1 = Cyoe/2)e,,, < prg + K(ep + Coo/e(lnAPpull 270\, 3+ 1e0) + Iollers,)-
The reliability (4.6) proves for any 0 < { < oo that this is bounded by
2 2 2 2 2 2 2
(p1 + KCCqp)ptp + K((1 = Q)eg + qu/f(||heAPe”"L2(u7e\7e+m) +151) + Iholls e, )-

Lemma 4.9 states for any 0 < 8 < co and ¢; := (1 — 27%/%) that

2 .2
20Uty | APl Wiy APy, ul?

hoAPul? <
” e/v e "LZ(u(‘J’e\‘J’M)) ¢ ¢ (1+8’1)Cd

Altogether,

Coolltpi1 APy, ull?

2 2 [ + +
He + K<(1 — Cgot/2)€p,y + W)
CoollieAPull® )

< (py + KUCL it + K((l = O)eg + (e Cgo 1+ 205, /) + Wl )y + =
d
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Define

2 2592 2,2 -1 28"ho||<2>o 2
t(hy, &, 0) := Cyllhplli, A~ (1 +M]) Ci:K\| ¢ qu 1+ — + kgl )-
d

Recall the definition (4.5) of r, ;. The reliability (4.6) implies
K (&7 Cyo(1 +208llhg 112, /) + Ihol12, )72, < t(hg, & 8)(pip + pig, )
This and the fact that ||, AP,ul* < Mﬁ together with the foregoing estimates prove

Coollhgei AP, ul? )

(1= t(hyr &, 82y, + K((l - Coptl e+~ o5

2 2 2 qu 2
< (py + K(CLy + gy, 0) + Ke)il + K((l —Qed+ ( - s)llhe/\Peull )
&c

d
Hence, for
K(l - Cq08/2) Kqu
F=az (e e8) VT el +0 eyl t(hy,e0))
and .
_ {pl + K{C3, + t(hy, &,8) + Ke 1-¢ (1+8)(Cy — ¢ cd)}
p, = max 1 - t(hy,2,0) . qus/z, Coo >
it follows that
2 2 2 2
tor + Py + Ve APy ull” < py(up + Be; + Yl APull).
Choose & := Cy,/(¢’¢;) and ¢ < 2(C_,. The choice of sufficiently small {, e and |lh|l, yields p, < 1. O

4.5 Optimal Convergence Rates

Let, for any m € N, the set of triangulations in T whose cardinality differs from that of T, by m or less be
denoted by
T(m) :={T € T | card(T) — card(T,)) < m}.

Define the seminorm

o . 0
u :=supm” inf ||(1-TI;)Du
luls, = sup m” _inf (1~ TI5)Dul

and the approximation class
A ::{U€V||U|Aa < oo}

Define the following alternative set, also referred to as approximation class
Ql?C’A ={ueV| |ulgpea < oo}

for

o .
Ulgnea == sup m°  inf |[|lu - Aqu
Julggea = sup mi® _inf I~ A gl

for the eigenfunction approximation A ;u with respect to a triangulation J. Proposition 4.4 proves that these
two approximation classes are equivalent in the sense that any eigenfunction u € W belongs to 2/, if and
only if it belongs to QLEC’A. The following theorem states optimality of Algorithm 4.7. The proof follows in the
remaining parts of this section.

Theorem 4.12 (optimal convergence rates). Provided the bulk parameter 0 < 1 and the initial mesh-size
ol < 1 are sufficiently small, Algorithm 4.7 computes sequences of triangulations (T,), and discrete eigen-
pairs ((Ag j, ug ;) jej), With optimal rate of convergence in the sense that, for some constant C,,

sup(card(T,) - card(To))™" Y llu; — A gus;ll3c < Cope 3. 114;15xca
CeN jeJ je€J ’
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Proposition 4.4 implies the following immediate consequence.

Corollary 4.13. Provided the bulk parameter 6 < 1 and the initial mesh-size ||h,|., < 1 are sufficiently small,
Algorithm 4.7 computes triangulations (T,), and discrete eigenpairs ((A,, > Ue, j) je 1)e With optimal rate of conver-
gence in the sense that

1/2
sup(card(T,) — card(T,))” sup inf [|w - v,llxc < (ij@g) ) O
£eN llwwe"‘;\/l ve€We i

The remaining part of this subsection is devoted to the proof of Theorem 4.12 which follows the methodol-
ogy of [22, 46] as in [33]. The optimality proof of this section is concerned with the simultaneous error of all
eigenfunction approximations. Consider

By = py(Tp) + B Y Iy — Agujliye +y Y IheA;Poul® forall € e N,
jeJ jel

for the parameters 8 and y from Proposition 4.11. The proof excludes the pathological case &, = 0. Choose
0<7< ZjellujlélNC,A/Eﬁ, and set &(£) := \/T E,. Let N(£) € N be minimal with the property

ZlujlélNC,A < 8(6)2 N(E)Za.
e

Let for a fixed ¢ € N, 7, € T denote the optimal triangulation of cardinality
card("fe) < card(T)) + N(€)

in the sense that the projection A := A 7, with respect to T, satisfies

Dl = Rujlije < NOT Y Jujlpes < e(0)? (4.9)
jeJ j€J

and define T, := T, ® T, as the overlay [22], that is, the smallest common refinement of T, and T,. The argu-
ments of [22, 33] lead to

- 1/(20)
card(T, \ T,) < N(0) < 2( Z|uj|;NC,A) (o,
e T

LetA := A 7, denote the projection with respect to ‘Te.

Lemma 4.14. Provided ||h|, < 1, it holds that

Dl = Auglic < e(0)”.
Jjel

Proof. Recall that by definition of the overlay [22] the triangulations T, and T, are nested. Hence, the best-
approximation result of Proposition 4.4 and (4.9) prove

e 2 e 2 2
Yl = Aulife < Yl - Kullifc < e(8)’. m
jeJ jel

Lemma 4.15 (key argument). Provided |hll., < 1, there exists C, = 1 such that
P‘g(%) = Cz!‘?(% \ Tp).
Proof. The triangle inequality and the Young inequality imply for any j € J that
llee; = A gl < 2l — Aujlie + 20Au; — A gl
Hence, the discrete reliability from Proposition 4.5 leads to
;= A gl < (2 + CraAiIhollze (1 + My)2Cr)lllu; = Al

+ szirelllillholliz(l + M])ZCIZ} ”lu] - Ae”j”llzqc + Cirel!’llz”(TZ \ ﬁg, Aj’ “j)'
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The term with |||u = A |||12\1c can be absorbed for sufficiently small |4, < 1. Therefore, Lemma 4.14 implies
for constants C; = 1 = C, and ||k, < 1 that

Yl = Agullife < Cie(@)” + Cuptg (T, \ T).
jel

Let C,, denote the constant of C; E‘Ze < Ceqyﬁ(%) (which exists by reliability). The efficiency (4.7), the definition
of &(¢) and the preceding estimates prove

Cottie(Te) < C3e(0)” + Cypiy(Tp \ Tp) < 7C o7 (Ty) + Capig(T, \ Tp).

For a sufficiently small choice of 7, the constant C, := (C_7 — TCeq)’IC4 is positive. O

The finish of the optimality proof follows the arguments of [22, 46]. The proof is identical to that of [33,
Lemma 7.3] and therefore omitted.

Lemma 4.16 (finish of the optimality proof). The choice
0 < 0 < 1/(C,(B/A)*(2N* + 4N?))

implies the existence of a constant C(o) such that

1/2 1/2
(card(T,) — card(Ty))"( Yl ~ Al ) < O Yl faes) O
el j€l

5 Eigenvalues of the Stokes System

This section studies the adaptive nonconforming FEM approximation of the Stokes eigenproblem. Section 5.1
presents new L? and best-approximation estimates for the linear Stokes equations. Section 5.2 introduces the
discretisation of the eigenvalue problem. A theoretical error estimator and its discrete reliability are analysed
in Section 5.3. Sections 5.4 and 5.5 present the practical AFEM and prove contraction and optimal convergence
rates. Whenever there is no significant modification compared to the case of the eigenvalues of the Laplacian,
the arguments are merely sketched.

5.1 Nonconforming Discretisation of the Stokes Equations

One important advantage of the nonconforming P, finite element method is that it provides a stable low-order
discretisation of the Stokes equations [24]. The strong form of the linear Stokes equations for a given force f
seeks the velocity field u and the pressure p such that

—Au+(Dp)" = f and divu=01inQ, uly, = 0.

Conforming finite elements satisfying the constraint divu = 0 pointwise a.e. are rather complicated, see [38,
44]. The nonconforming P, finite element satisfies the favourable local mass-conservation property for the
piecewise divergence.

Let V := [Hy(Q)]? and M := L(Q) := {g € L*(Q) | |, qdx = 0} and define the bilinear form

a(v,w) = (Dv, Dw)p2 () forall (v,w) € V2
with induced norm |||-|||. Furthermore define
b(v,q) = ~(divv,q)2q) forall (v,q) € VxM

and set c(-,-) = (-, )2y With |-l := [l 2(q)-
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Given f € [L%(Q)]%, the linear Stokes problem seeks (u, p) € V x M such that

a(u,v) + b(v, p) = c(f,v) forallv eV,

(5.1)
b(u,q) =0 forallg € M.

This mixed system can be reformulated as an elliptic problem. Let Z := {v € V | divu = 0} denote the space
of divergence-free vector fields. Problem (5.1) is equivalent to seeking u € Z such that
a(u,v) =c(f,v) forallvez (5.2)

and the pressure variable p plays the role of a Lagrange multiplier. The equivalence with (5.1) follows from the
Ladyzhenskaya lemma [1, 9] which states that the divergence operator div : V — M has a continuous right-
inverse. Note that (5.1) carries more information than (5.2) in the sense that the pressure variable p extracts
information from f € (L2(Q)]? even if f is zero as an element of the dual space Z*.

The nonconforming P, finite element discretisation of the linear Stokes equations is based on the non-
conforming finite element space V, := [Qi)%é(%)]d and M, := Py(T,) N L%(Q) and the bilinear forms

anc (v, wy) = (DycUp, DycWy)r2q)  for all (v, w,) € Ve2
with induced norm |[|-[lyc and
b (vps gp) = —(divie Vps Gp)12(q)  forall (vp, g,) € V, x M.
The nonconforming FEM seeks (u,, p,) € V, x M, such that

anc (e, Up) + byc (Vg pe) = c(f,v,) forall v, € V,,

(5:3)
bac (1, ge) = 0 forall g, € M,.
The well-posedness follows from the discrete inf-sup condition [4]
0<p< inf b (Ve ge) (5.4)

2 MO} yev,\ (o) Vel llgell”

Obviously, the discrete solution u, of (5.3) is piecewise divergence-free, divy u, = 0. The equivalent formu-
lation based on the space Z, := {v, € V, | divyc v, = 0} reads as

anc(up, vp) = b(f,v,) forallv, € Z,. (5.5)

Note that the nonconforming interpolation operator me maps the space Z onto Z,. This follows from
the projection property (3.1). It is well-established in the literature [27] and follows from the discrete inf-sup
condition (5.4) of the system (5.3) that the error in the pressure variable can be controlled as

2 = pell < llhe fIl + Nl — el (5.6)

The main difference with respect to the analysis of the Laplace operator is that the pressure variable enters
the analysis even if one considers the elliptic formulations (5.2) and (5.5). One reason is that the companion
operator J,,, from Proposition 3.1 does not map the space Z, on Z only. Also the efficiency error estimate of
the volume term |4, f|| leads to a pressure term on the right-hand side.

The following best-approximation result has been proved in [19] with techniques from the medius anal-
ysis [37] for the case d = 2:

Ip = pell + e = uglle < 1(1 = TE)pll + (1 = T)Dull + 0scy(f, T)-
The following result gives a generalisation to d > 2 space dimensions with a refined oscillation term.

Proposition 5.1 (best-approximation result). Let f € [L2(Q)]%. Then, the solution (u, p) € Vx M of (5.1) and
the discrete solution (u,, p,) € V, x M, of (5.3) satisfy

Nt = wllie + 12 = pell < (1 = T Dull + 11 = I1) pll + osc, (f, T).
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Proof. The projection property (3.1) of the nonconforming interpolation operator je@m and the Pythagoras

theorem show that

TR R
je - j{.’

2 2 2
e = welline = lMete = I, ullle + Ml ulllxc-

Since [lu - 35" ulllyc = l(1 = TI9)Dul, it remains to estimate the first term on the right-hand side. Set ¢, :=
up — meu. The properties of the companion operator from Proposition 3.1 and divycu, = 0 = divye Jew‘u
show that

R 2
ety = IS ull = e (utp — 1, @)

= c(f.@e — Ja19e) = buc(Pe — Jas1 9o (1 = HS)P) +((1- H?)Du, DyncUasr = D‘PZ)]}(Q)‘
The approximation and stability properties (3.4) show that this is bounded by
(M £+ 11 =TI pll + llatg = T " ullge) Mepelle-

The efficiency ||, fI < (1 - Hg)DuII + (1 - Hg) pll + osc,(f, T,) in the sense of [49] follows from arguments
similar to those of [33, Proposition 3.1]. This and (5.6) conclude the proof. O

Remark 5.2. One may ask whether possibly an estimate of the type
llu — upllne < (1 = 1)) Dull + oscillations

may be valid. To see that the estimate is indeed untrue, consider the case of a simply-connected domain Q
for d = 2 and the constant right-hand side f = (1, 1). Clearly, f is an irrotational vector field which implies
that there is a function v € H'(Q) such that f = Dy. The integration by parts therefore shows that

c(f,v)=0 forallve Z.

Hence, u = 0 and the right-hand side of the estimate equals zero, while the left-hand side equals |[|u,|l|xc- The
latter, however, is not zero because f does not represent the zero functional in the dual space Z;, although
itis zero in Z*. This is due to the fact that the integration by parts with functions v, € Z, leads to additional
jump terms.

The next result is an L* error estimate for arbitrary regularity of the solution. Let 0 < s < 1 indicate the elliptic
regularity of the problem (5.1) in the sense that [31, 43]

"u”H“S(Q) + ||P"H5(Q) < C(S)”f”LZ(Q)- (5.7)

Proposition 5.3 (L* error control for the linear Stokes problem). The exact solution (u, p) € VxM of the linear
problem (5.1) and its nonconforming finite element approximation (u,, p,) € V, x M, from (5.3) satisfy

e = il < Whelli, (e = waelllne + 1 = pell + oscyy (f Tp).

Proof. Let (z,q9) € V x M denote the solution of problem (5.1) with right-hand side e := u — u, and set v :=
u — J;,,u, for the companion operator J,,; from Proposition 3.1. Since 1'[2(u‘,f — J414e) = 0, it holds that

lell® = c(J4y 1ty — thpr€) + clesv) = (Jguqttp — thps (1 — Hg)e)Lz(Q) +a(z,v) + b(v, q).
Piecewise Poincaré inequalities and (3.4) lead to
(Jasathe = th, (1 = Hg)e)LZ(Q) S ”h0"(2>o”|e”|2NC'
The definition of v and divu = 0 = divy u, prove

a(z,v) +b(v, q) = ayc(e z) + agc((1 = Ja1)up> 2) + by (e — Jai1te» Q)- (5.8)
The projection property (3.1) of me and the continuous and discrete problems (5.1) and (5.3) followed by the
approximation and stability properties (3.2) of me show for the first term on the right-hand side of (5.8) that

ayc(e2) = al, 2) - anc(ue, 957 2) = (fiz =I5 D)) < I fIl(1 - TI9)D2).
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Recall that divy Jemz = divz = 0. The projection property (3.3) and the stability (3.4) of J,,, show for the
second term on the right-hand side of (5.8) that

anc((1 = J )t 2) = (Dnc(1 = J)ues (1= T1p)D2) g < Nl = uelllnc (1 = T1) Dz
Since Hg div(u, — J 4, u,) = 0, the third contribution of (5.8) satisfies
buc((p = J414e), q) = ch(”e — Janthe, (1 - Hg)‘l) < lup = Jaertelline 11 = Hg)qll.
The best-approximation property (3.4) of ], proves that [lu, — J 1, 1u.llne < llellyc- Altogether,
lel® < o lg, el + e FICL = TI)D2)] + llelllne (11 = Tl + (1 = T)Dzl)).
Standard a priori estimates [9] and the elliptic regularity (5.7) imply
I(1 = TI)D2) + (1 = Tl < llg 5 lell-
The combination of the above estimates proves
llell < koI5, (Mlellle + iFe 1
An efficiency estimate similar to that of [33, Proposition 3.1] proves
e Il < 11 = T)Dull + (1 = T pll + oscy 4 (£, T)-

This concludes the proof. O

Remark 5.4. Theright-hand side in Proposition 5.3 is also an upper bound for p-p, in the H' norm. Although
the proof is not difficult, it is not given here because the H™! error control is not required in the analysis of
this paper.

5.2 Discretisation of the Stokes Eigenvalue Problem

The Stokes eigenvalue problem seeks (A, u, p) € R x V x M with |lu| = 1 such that

a(u,v) + b(v, p) = Ac(u,v) forallv eV,

(5.9)
b(u,q) =0 forallg € M.

Although (A, u, p) is rather a triple than a pair, it is referred to as eigenpair and identified with the pair
(A, (4, p)). As in the foregoing section, an equivalent formulation reads as

a(u,v) = Ac(u,v) forallv e Z.
The nonconforming FEM seeks (u,, p,) € V, x M, with |[u,| = 1 such that

aNc(lfle, ‘Uf) + ch(‘Uta, pf) = Ae C(ue, Ue) for all Up € Vf’

(5.10)
bac(Ue, qp) = 0 forall g, € M,.

An equivalent formulation reads as
anc(Ue, V) = Apc(uy,vp) forallv, € Z,. (5.11)

The elliptic formulation on the spaces Z and Z, shows that this problem fits in the framework of Section 2
(where b from Section 2 is replaced by ¢) with exact and discrete eigenvalues

0</\ISA,2S“' and 0<Af,lg'.'g/\f,dim(ze)



528 —— D. Gallistl, Nonconforming AFEM for Eigenvalue Clusters DE GRUYTER

and their corresponding c-orthonormal systems of eigenfunctions

dim(Z

(uy, ty, ti5,...) € ZN  and (Ug,1>Ugps > Ugdim(z,) € Zelm( ),
The corresponding pressures are denoted by p;, p,,... and p,y, ..., Pegim(z,)> t€Spectively. Recall the defini-
tions of Section 2: The set ] = {n+1,...,n+ N} describes the eigenvalue cluster of interest and W := span{u il

jeJt € Zand W, = spanfu,; | j € J} ¢ Z, are the exact and discrete invariant subspaces (not nec-
essarily eigenspaces) related to the cluster. In the present situation, the quasi-Ritz projection R, maps the
solution u € Z of the linear problem (5.2) to the solution R,u € Z, of the discrete linear problem (5.5) with
discrete pressure p(R,u) € M, from (5.3). The L* projection onto W, is denoted by Py, := P,. Furthermore
Ag, == Ay = P, o R,. In view of Lemma 2.2, the discrete pressure p(A,u) € M, corresponding to A ,u is
defined via

anc(A i, 0p) + by (Vg p(A 1)) = Ac(Ppu,v,) forallv, € V,. (5.12)

It is not difficult to see that p(A ,u) is well-defined: Lemma 2.2 shows that A ,u solves the discrete source
problem (5.5) with right-hand side f = P,u. Hence, p(A ,u) is the discrete pressure (or Lagrange multiplier) of
(5.3).

The following result gives an L? error estimate for the eigenfunctions.

Proposition 5.5 (L* error estimate). Provided |h,|l,, < 1, there exists a constant C,. such that any eigenpair
(A, u, p) € Rx W x M of (5.9) with ||lu| = 1 satisfies

lu = Ppull < llu = A guill < Cra(1 + Mp)likg 5, (11 = T Dl + (1 = TTp) ).

Proof. Proposition 2.1 and the L? error estimate from Proposition 5.3 result in the following inequality for the
solution (R,u, p(R,u)) of (5.3) to the right-hand side f := Au,

llu = Poutll < lluw = A pull < (1 + Ml (Il = Reutlline + lp = p(Re)ll + oscy 3 (A, Tp)).
The best-approximation result for the linear Stokes problem (Proposition 5.1) therefore yields
e = A guil < (1+ Ml (11 = TI)Dull + (1 = T pll + ose; (Aus, T)).

If the initial mesh-size is sufficiently small, the discrete Friedrichs inequality [9, Theorem 10.6.12] allows to
absorb the oscillation terms on the right-hand side. O

The L? error control and the best-approximation of the quasi-Ritz projection from Proposition 5.1 result in the
following best-approximation property for the eigenfunction approximation.

Proposition 5.6 (best-approximation property). Provided the initial mesh-size is sufficiently fine |l < 1,
any eigenpair (A, u, p) € Rx W x M of (5.10) with |lul| = 1 satisfies

llu = A gullne + Ip = p(A )l < (1 = TI9) Dul| + [I(1 - TI) pll.

Proof. The L? control of Proposition 5.5 and the best-approximation result for the linear case of Proposition 5.1
enable the arguments from the proof of Proposition 4.4. The details are omitted for brevity. O

5.3 Theoretical Error Estimator and Discrete Reliability

The analysis relies on a theoretical, non-computable error estimator that does not depend on the choice of
the discrete eigenfunctions. Given an eigenpair (A, u), the theoretical error estimator includes the elementwise
residuals in terms of P,u and A ,u. More precisely, define, for any T € T,

Up (T, A u) = Hpl APl oy + ) B A gl el
FeJ(T)
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and, for any subset X ¢ T,,
,ug(fK,/\j,uj) = Z yg(T,Aj,uj) and yﬁ(fK) = z‘u{%(fK, )Lj, uj).
TeX jeJ
The following shorthand notation for higher-order terms will be frequently used in the remaining parts
of this section. For (¢,m) € N; define

Fom = IglE, (1 + Mp)Cra(lp = p(A )P + 1p = DA gt + ll = uplPi + Mt = agllZe) .

The following result states the discrete reliability for the theoretical error estimator. The discrete relia-
bility for the linear Stokes problem was first established in [20, 39]. The proof presented here is valid for the
eigenvalue problem and any space dimension.

Proposition 5.7 (discrete reliability). There exists a constant C4,, =~ 1 such that, for any eigenpair (A, u, p) €
R x W x M of (5.9) with ||ul| = 1, any admissible refinement T,,,, of T, € T and the respective discrete eigen-
function approximations A yu € V, and A ,,,,,u € V,,,, satisfy

1P pomtt) = P aDI® < A g1 = Al + 1He AP 207, + Tom (5.13)
and
2(1(A g1 = A Dulllie + 1PA pott) = PAA )I7) < Chra (U3 (To \ Towm) + 15,).

Proof. The discrete inf-sup condition (5.4) shows that there exists some ¢,,,, € V,,,,, With [l¢,,,,llxc = 1 such
that

ID(A g1mtt) = (A )l < b (Pesms PIA pimth) = P(A p11)).

The discrete eigenvalue problems on the levels € + m and € (recall Lemma 2.2 and (5.12)), some algebra and
the integral mean property (3.1) of the nonconforming interpolation operator me show that

b(@p1ms PA prmtt) = P(A p11))
= (AP = Pt @p.,) + c(APpus, (1 - jgm)¢€+m) = anc((A gy = At Ppn)-

Proposition 5.5 and the discrete Friedrichs inequality [9, Theorem 10.6.12] control the first term on the right-
hand side as

(M Py, = Po)thy Pp1n) < T

This, the approximation and stability properties (3.2) and the discrete Friedrichs inequality [9, Theorem
10.6.12] for ¢,,,,, prove (5.13).

Let v,,,,, denote the best-approximation with respect to the norm |[|-|y¢c of A ,u in V,,,,,. The Pythagoras
theorem

A g = A ullee = MA prpmtt = Vermlle + Mg = Apttllie (5.14)

proves together with (5.13) that

IP(A gy ptt) = POA DI + (A gy — A utlline

2 2 2
S WA g1t = Vermline + e = Apuilline + 1 APeull g p\7,,, ) + Fosm: (5.15)

Set dpym = A gyt — Upy - Elementary algebra and the projection property (3.1) show

2
A g1t = Vermlline = e (A erm¥ = Vesms Perm)

"R
= ane(A pomths Ppym) — Anc (A gty Tg B ).

The discrete eigenvalue problem (5.10) and the identity (5.12) show that this equals

R
anc(A piomth Perm) — anc(D o Iy bpim)

= APyt Gpm) = CAP1 T3 Bp) = B (B PAA ) + buc (T B PN p10)).
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Since the velocity approximations A ,u € W, and A ,,,,u € W,,,, are piecewise divergence-free, the projection
property of J5™* shows that

Bc@erm P pim)) = bucT” Geumo PA ¢10)) = e (Ve = A gtty PIA 1) = P(A g, 0)).
The combination of the foregoing three displayed formulae yields
A ¢ypts = U€+m”|12\IC
= Ac(Pytt = Potty G) + APyt b = Ty Peim) + B (Verm = A gths PIA gpt) = P(A o). (5.16)

Proposition 5.5 and the discrete Friedrichs inequality [9, Theorem 10.6.12] control the first contribution as

/\C(P€+m - Pfu’ ¢€+m) < re,mlll¢€+m|”NC’

The approximation and stability properties (3.2) of J5* and the fact that 15" ¢, ., I = @p,,l7 fOrall T € T,\ Ty,
prove for the second term of (5.16) that

R
APt b =T Porm) < "hf/\PL’u"LZ(Ung\fT“m)|”¢€+m”|NC'

Therefore, the combination of (5.15) and (5.16) and the Young inequality prove for some constant C = 1 that

DA gmtt) = (A )7 + A gyt — A gl
2 2 2 1 2 1 )
< C(lhe APl 2 o7\, + Pom + I0em = Agtilline) + 5”|¢€+m”|NC + §||P(Ae+m”) - pA )l

The Pythagoras theorem implies the stability [¢,, ., llnc < (A g4 — A pulllne- Hence, the terms on the right-
hand side with the prefactor 1/2 can be absorbed. The estimate

2 -1 2
vpem = Aguillic < Y D kg IIA il gl T
TeT\Tpym FET(T)

is proven in [13, Theorem 3.1] and bounds the second contribution on the right-hand side of (5.14). O

As in Section 4.3, the following reliability and efficiency are an immediate consequence of the discrete relia-
bility.
Corollary 5.8 (reliability and efficiency). Provided ||k, < 1, any eigenpair (A, u, p) € Rx W x M of (5.9) with

llull = 1 satisfies
llu = A gullie + Ip = p(A )P < Copto (Too A1)

and, for some constant C 4 = 1,
ue(To, ) < Coellu — A gullize + Ip = pA )I).

Proof. Let (T,,,, | m € N) be a sequence of nested refinements of T, with ||k, I, — 0asm — oo. The
a priori convergence results (for instance Proposition 5.6) and the discrete reliability prove the reliability. The
efficiency follows from the standard techniques of [49]. Higher-order terms are absorbed for ||A,ll, < 1. O

5.4 Adaptive Algorithm and Contraction Property

This section presents the adaptive algorithm and the contraction property.
For any simplex T € T, the explicit residual-based error estimator consists of the sum of the residuals of
the computed discrete eigenfunctions (u,, j) iess

7y (T) = Z(hénae,jue,jn;qﬁ y h;1||[ue,,-]F||iZ(F>)-

jeJ FeF(T)
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Let, for any subset X ¢ 7,

1e(X) =Y ny(T).
TeX

For the linear Stokes problem this type of error estimator without pressure contribution was introduced in
[27].
The adaptive algorithm is driven by this computable error estimator and runs the following loop.

Algorithm 5.9 (AFEM for the Stokes eigenvalue problem).

Input: Initial triangulation T, bulk parameter 0 < 6 < 1.

for¢=0,1,2,...
Solve. Compute discrete eigenpairs (A, > Ue j> Pe, j) jes of (5.11) with respect to T,.
Estimate. Compute local contributions of the error estimator (r,ﬁ(T))TETe.
Mark. Choose a minimal subset M, ¢ T, such that 6r;(T,) < 1;(M,).
Refine. Generate T, := refine(T,, M,) with the refinement rules of [47].

end for

Output: Triangulations (7,), and discrete solutions ((Ag j, t,j> Pe ) jes)e-

The proof of the contraction property follows in a similar way as for the eigenvalues of the Laplacian. The
error estimator reduction is identical to that of Proposition 4.8.

Proposition 5.10 (quasi-orthogonality). Under the hypothesis |||, < 1 there exists a constant C, such that
any eigenpair (A, u, p) € Rx W x M of (5.9) with |ull = 1, any T, € T and any admissible refinement T,,,, of T,
satisfy

Ranc — A ppptts A gt — A pu)] < qu(||he/\P£“||L2(utr€\tre+m) + 1ol — Ao tillne.
Proof. The nonconforming interpolation operator J?m maps functions from Z as well as functions from Z,, ,,
to the space Z,, i.e., it preserves the (piecewise) divergence-free property. Hence, the proof of Proposition 4.10
applies almost verbatim. The details are omitted. O

Note that the quasi-orthogonality is stated for the velocity approximations only. A quasi-orthogonality of the
pressure as in [39] is not needed in this analysis.

Proposition 5.11 (contraction property). Under the condition ||k, < 1, thereexist0 < p, < 1and 0 < f3,y <
oo such that, for any eigenpair (\,u,P) € R x W x M of (59) with |[u| = 1, the term &, = p; (T, A u) +
Bl — A pulll* + yllh, Pul* satisfies

£, <p& foralle e N,.
Proof. The proof essentially follows the steps from Proposition 4.11. The pressure variable only arises in
higher-order terms that are controlled by the error estimator. The details are omitted for brevity. O

5.5 Optimal Convergence Rates

This subsection establishes optimal convergence rates of Algorithm 5.9. For the linear Stokes problem, the
optimal convergence of AFEMs has been proven in [2, 20, 39].
Define the seminorm

(14, p)lggsiokes == sup m” _inf (|(1 = TI3)Dul| + (1 - 1) pll)
o N TeT(m)

me

and the approximation class
AN = {(0,9) € V x M | |(v, @)lgggones < 00}.

The set Qli“’kes does not depend on the finite element method and instead concerns the approximability of
the derivative and the pressure variable by piecewise constant functions. The following alternative set, also
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referred to as approximation class, is used for proving optimal convergence rates;

NC,Stokes
A, =

{(u, p) eVxM | |u|myc,510kes < OO}

for
|(u4, p)|m§zc,s“)kes == sup m’ vei%(f (e = A gulllye + Ip = p(A w)]).

melN m)
Proposition 5.6 establishes the equivalence of those two approximation classes in the sense that any eigen-
function (u, p) € W x M satisfies (u, p) € 25 if and only if (u, p) € AYS****, The following theorem states
optimality of Algorithm 5.9. The proof will be outlined in the remaining parts of this section.

Theorem 5.12 (optimal convergence rates). Provided the bulk parameter 0 < 1 and the initial mesh-size
Al < 1 are sufficiently small, Algorithm 5.9 computes sequences of triangulations (7,), and discrete eigen-
pairs ((Ag ;> ug j» Pe ;) jey)e With optimal rate of convergence in the sense that, for some constant C,,, it holds
that

sup(card(T,) - card(Ty))* Y (Hlu; = A g% + Ip; = pUA u)I) < Cope Y 1), ) s

eIN jeJ jeJ 7
Let for any w € W with the representation w = ) jey OjU; the corresponding pressure be defined as p(w) :=
Yje &;p;j- Foranyv, € W, withrepresentationv, = ) ;c; B;A pu; define p(v,) := ¥ ;; B;p(A ,u;). Proposition 5.6
implies the following immediate consequence.

Corollary 5.13. Provided the bulk parameter 6 < 1 and the initial mesh-size ||hll,, < 1 are sufficiently small,
Algorithm 5.9 computes triangulations (T,), and discrete eigenpairs (A, j ug,j> Py, j) jej)e With optimal rate of
convergence in the sense that

1/2
sup(card(T,) - card(Ty))” sup inf (llw - vell3c + I p(w) - p(v)I?)"”* < (Zuu,., pj)|;lStokes) .o
2eN "u!i)E"‘;Vl V€W, i o

The proof of optimal convergence rates is almost identical to that presented in Section 4.5. The only difference
is that the pressure term appears in certain estimates. The modifications are sketched in the remaining part
of this subsection.

Consider

Ep = tp(Tp) + B Y lluj — Apuliie +y Y Ihed ;Poul* foralle e N,
j€J jeJ
for the parameters $ and y from Proposition 5.11. Choose

2 =2
0<1< ZKMJ’ pj)|mgNC,Smkes/:‘0
j€l

and set &(£) := /7 E,. Let N(¢) € N be minimal with the property

Zl(”j> pj)lg[gqsmkes < 8(8)2 N(e)za-
j€J

Let ‘Te € T denote the optimal triangulation of cardinality
card(T,) < card(T,) + N(£)

in the sense that the projection A := A'ffe with respect to T, satisfies

Z](muj - Aujli® + llp; - p(Ru))I*) < N(€)*° Z]m]-@ycm < e(e)’ (5.17)
JE J€

and define T, := T, ® T, as the overlay. The arguments of [22, 33] lead to
~ 1/(20)
card(T, \ T,) < N(¢) < 2( ZlujI;lNC,S!okes) s(e)_l/g-
g e

LetA := A@ denote the projection with respect to 7.
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Lemma 5.14. Provided |hyll., < 1, it holds that

Y (lluj = Aujliye + Ip; — p(Au))l?) < e(e)’.
Jjel

Proof. As in the proof of Lemma 4.14, recall that by definition of the overlay [22] the triangulations T, and T,
are nested. Hence, the best-approximation result of Proposition 5.6 and (5.17) prove

Z](muj - Aujllfc + 1p; - pAupI?) < Zj(muj — Aujlliye + Ip; — p(Ru))l?) < e(e)’. m
JE JE

Lemma 5.15 (key argument). Provided |h|, < 1, there exists C, ~ 1 such that

Ue(Ty) < Copig (T \ Tp).

Proof. The discrete reliability from Proposition 5.7, the efficiency from Corollary 5.8 and the arguments of
Lemma 4.15 lead to the desired estimate. The details are omitted for brevity. O

The finish of the optimality proof is identical to that of [33, Lemma 7.3] and therefore omitted.

Lemma 5.16 (finish of the optimality proof). The choice
0 < 6 < 1/(C,(B/A)*(2N? + 4N*))

implies the existence of some constant C(o) such that

1/2

1/2
sup(cardcre)—card(%))"(Z(|||u,~—Aeu,-|||§c+||pj— P(Aeuj)llz)) sC(a)(ZKu,-, pj>|;§c,s‘om) . O

CeN jeJ jeJ
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