Research Article

Dietmar Gallistl, Mira Schedensack and Rob P. Stevenson

A Remark on Newest Vertex Bisection in Any Space Dimension

Abstract

With newest vertex bisection, there is no uniform bound on the number of n-simplices that need to be refined to arrive at the smallest conforming refinement \mathcal{T}^{\prime} of a conforming partition \mathcal{T} in which one simplex has been bisected. In this note, we show that the difference in levels between any $T^{\prime} \in \mathcal{T}^{\prime}$ and its ancestor $T \in \mathcal{T}$ is uniformly bounded. This result has been used in [2, Lemma 4.2] by Carstensen and the first two authors.

Keywords: Newest-Vertex Bisection, Adaptive Mesh-Refinement, n-Simplices
MSC 2010: 65N50, 65Y20, 65N30

[^0]
1 Newest Vertex Bisection

From [3, 5, 6], we recall the generalization to $n \geq 2$ dimensions of the newest vertex bisection algorithm. A tagged simplex $\left(z_{0}, \ldots, z_{n} ; \gamma\right)$ is an $(n+2)$-tuple of vertices $z_{0}, \ldots, z_{n} \in \mathbb{R}^{n}$, which do not lie on an $(n-1)$ dimensional hyperplane, and of a type $\gamma \in\{0, \ldots, n-1\}$. The mapping dom : $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \times\{0, \ldots, n-1\} \rightarrow 2^{\mathbb{R}^{n}}$ extracts the corresponding (closed) simplex $\operatorname{dom}\left(z_{0}, \ldots, z_{n} ; \gamma\right):=\operatorname{conv}\left\{z_{0}, \ldots, z_{n}\right\}$ from a tagged simplex $\left(z_{0}, \ldots, z_{n} ; \gamma\right)$. For convenience, for a tagged simplex T we often denote dom $(T) \operatorname{simply}$ as T.

The bisection of a tagged simplex $\left(z_{0}, \ldots, z_{n} ; \gamma\right)$ generates the two tagged simplices

$$
\begin{aligned}
& \left(z_{0}, \frac{z_{0}+z_{n}}{2}, z_{1}, \ldots, z_{\gamma}, z_{\gamma+1}, \ldots, z_{n-1} ;(\gamma+1) \bmod n\right) \\
& \left(z_{n}, \frac{z_{0}+z_{n}}{2}, z_{1}, \ldots, z_{\gamma}, z_{n-1}, \ldots, z_{\gamma+1} ;(\gamma+1) \bmod n\right)
\end{aligned}
$$

(By convention, the finite sequences $\left(z_{\gamma+1}, \ldots, z_{n-1}\right)$ and $\left(z_{1}, \ldots, z_{\gamma}\right)$ are void for $\gamma=n-1$ and $\gamma=0$, respectively.) The edge $\operatorname{conv}\left\{z_{0}, z_{n}\right\}$ of the original simplex that has been cut is known as its refinement edge. The two new tagged simplices are called the children of the tagged simplex $\left(z_{0}, \ldots, z_{n} ; \gamma\right)$, and any child of some child of a tagged simplex is called grandchild.

Let \mathcal{T}_{0} be an initial, conforming triangulation of a polyhedral bounded Lipschitz domain $\Omega \subseteq \mathbb{R}^{n}$ into tagged n-simplices. This means that the corresponding set of simplices $\left\{T: T \in \mathcal{T}_{0}\right\}$ covers the domain $\bar{\Omega}$, and that two distinct simplices $T=\operatorname{conv}\left\{y_{0}, \ldots, y_{n}\right\}$ and $T^{\prime}:=\operatorname{conv}\left\{z_{0}, \ldots, z_{n}\right\}$ from \mathcal{T}_{0} are either disjoint or share exactly one surface (e.g., an edge or side) in the sense that there exist $0 \leq j_{1}<\cdots<j_{N} \leq n$ and $0 \leq k_{1}<\cdots<k_{N} \leq n$ for some $N \in\{1, \ldots, n\}$ such that

$$
T \cap T^{\prime}=\operatorname{conv}\left\{y_{j_{1}}, \ldots, y_{j_{N}}\right\}=\operatorname{conv}\left\{z_{k_{1}}, \ldots, z_{k_{N}}\right\} .
$$

We will exclusively consider partitions of tagged simplices that are descendants of \mathcal{T}_{0}, meaning that they can be created by recurrent bisections of individual simplices in the triangulation starting from \mathcal{T}_{0}. Such partitions are uniformly shape regular in the sense that for any simplex T from any of these partitions

$$
\operatorname{meas}(T)^{1 / n} \simeq \operatorname{diam}(T) \simeq 2^{-\ell(T) / n}
$$

only dependent on \mathcal{T}_{0}. Here $\ell(T)$ denotes the level of T, being the number of bisections that are needed to create T from a simplex T^{\prime} in \mathcal{T}_{0}. Note that $\ell(T)=\operatorname{meas}(T) /$ meas $\left(T^{\prime}\right)$.

Here and in the following, by $C \lesssim D$ we will mean that C can be bounded by a multiple of D, only dependent on the initial triangulation \mathcal{T}_{0}. Furthermore, $C \gtrsim D$ is defined as $D \leqq C$, and $C \simeq D$ as $C \leqq D$ and $C \gtrsim D$.

In view of applications in adaptive finite element methods, more specifically we will restrict our considerations to those triangulations that in addition are conforming. The set of all conforming descendants of \mathcal{T}_{0} will be denoted by \mathbb{T}.

Using the uniform shape regularity and conformity, one easily shows the following result.
Lemma 1.1. There exist constants $C, c>0$ such that
(a) for any $T, T^{\prime} \in \mathcal{T} \in \mathbb{T}$ with $T \cap T^{\prime} \neq \emptyset$, it holds that $\left|\ell(T)-\ell\left(T^{\prime}\right)\right| \leq C$;
(b) for any $T, T^{\prime} \in \mathcal{T} \in \mathbb{T}$ with $\ell(T)>\ell\left(T^{\prime}\right)+C$, it holds that $\operatorname{dist}\left(T, T^{\prime}\right) \geq c 2^{-\ell\left(T^{\prime}\right) / n}$.

2 Matching Condition

Note that, given a tagged simplex $T=\left(z_{0}, \ldots, z_{n} ; \gamma\right)$, the tagged simplex

$$
T_{R}:=\left(z_{n}, z_{1}, \ldots, z_{\gamma}, z_{n-1}, z_{n-2}, \ldots, z_{\gamma+1}, z_{0} ; \gamma\right)
$$

with $\operatorname{dom}\left(T_{R}\right)=\operatorname{dom}(T)$ has the same children as T. Two tagged simplices T, T^{\prime} are called neighbors, if they share a common ($n-1$)-dimensional hyper-surface. Two neighboring tagged simplices T and T^{\prime} are called reflected neighbors, if the ordered sequence of vertices of either T or T_{R} coincides with that of T^{\prime} on all but one position; for graphical illustrations cf. [5].

We will impose the following condition on \mathcal{T}_{0}.
Definition 2.1 (Matching condition). All simplices in \mathcal{T}_{0} are of the same type γ. Any two neighboring tagged simplices $T=\left(y_{0}, \ldots, y_{n} ; \gamma\right)$ and $T^{\prime}=\left(z_{0}, \ldots, z_{n} ; \gamma\right)$ in \mathcal{T}_{0} satisfy the following conditions.
(a) If $\operatorname{conv}\left\{y_{0}, y_{n}\right\} \subseteq T \cap T^{\prime}$ or $\operatorname{conv}\left\{z_{0}, z_{n}\right\} \subseteq T \cap T^{\prime}$, then T and T^{\prime} are reflected neighbors.
(b) If $\operatorname{conv}\left\{y_{0}, y_{n}\right\} \nsubseteq T \cap T^{\prime} \neq \emptyset$ and $\operatorname{conv}\left\{z_{0}, z_{n}\right\} \nsubseteq T \cap T^{\prime}$, then any two neighboring children of T and T^{\prime} are reflected neighbors.

The matching condition guarantees that all uniform refinements of \mathcal{T}_{0} are conforming [5, Theorem 4.3], and it is actually needed for this property to hold. For completeness, with a uniform refinement of \mathcal{T}_{0} we mean a descendant of \mathcal{T}_{0} in which all simplices have the same level.

3 Refinements

We equip \mathbb{T} with a partial ordering by defining, for $\mathcal{T}, \mathcal{T}^{\prime} \in \mathbb{T}, \mathcal{T} \leq \mathcal{T}^{\prime}$ when \mathcal{T}^{\prime} is a refinement of \mathcal{T}. With this partial ordering, (\mathbb{T}, \leq) is a lattice, i.e., for any $\mathcal{T}, \mathcal{T}^{\prime} \in \mathbb{T}$, the smallest common refinement $\mathcal{T} \vee \mathcal{T}^{\prime}$ and greatest common coarsening $\mathcal{T} \wedge \mathcal{T}^{\prime}$ in \mathbb{T} are well-defined. A characterization of both these partitions is given in the following remark.

Remark 3.1. For $\mathcal{T}, \mathcal{T}^{\prime} \in \mathbb{T}, T \in \mathcal{T}$ and $T^{\prime} \in \mathcal{T}^{\prime}$ with $T \subseteq T^{\prime}$, it holds that $T^{\prime} \in \mathcal{T} \wedge \mathcal{T}^{\prime}$ and $T \in \mathcal{T} \vee \mathcal{T}^{\prime}$, see, e.g., [4, Lemma 4.3].
For $\mathcal{T} \in \mathbb{T}$, and a set $\mathcal{M} \subseteq \mathcal{T}$ (the set of simplices 'marked for refinement'), let

$$
\mathcal{T}^{\prime}:=\operatorname{refine}(\mathcal{T}, \mathcal{M})
$$

denote the smallest partition in \mathbb{T} with $\mathcal{T} \leq \mathcal{T}^{\prime}$ and $\mathcal{M} \cap \mathcal{T}^{\prime}=\emptyset$. The uniform refinement $\overline{\mathcal{T}}$ of \mathcal{T}_{0} consisting of all simplices with level equal to $1+\max _{T \in \mathcal{T}} \ell(T)$ satisfies $\mathcal{T} \leq \overline{\mathcal{T}}$ and $\mathcal{M} \cap \overline{\mathcal{T}}=\emptyset$. Consequently, \mathcal{T}^{\prime} is well-defined as the greatest common coarsening of the finite, non-empty set $\{\tilde{\mathcal{T}} \in \mathbb{T}: \mathcal{M} \cap \tilde{\mathcal{T}}=\emptyset, \mathcal{T} \leq \tilde{\mathcal{T}} \leq \tilde{\mathcal{T}}\}$.

The following result was proved in [5, Theorems 5.1-5.2].
Lemma 3.2. Let $T \in \mathcal{T} \in \mathbb{T}$ and $\mathcal{T}^{\prime}:=\operatorname{refine}(\mathcal{T},\{T\})$. If $T^{\prime} \in \mathcal{T}^{\prime}$ is newly created by the call refine $(\mathcal{T},\{T\})$, i.e., $T^{\prime} \in \mathcal{T}^{\prime} \backslash \mathcal{T}$, then
(a) $\ell\left(T^{\prime}\right) \leq \ell(T)+1$,
(b) $\operatorname{dist}\left(T^{\prime}, T\right) \lesssim 2^{-\ell\left(T^{\prime}\right) / n}$.

We are ready to show that for $T \in \mathcal{T} \in \mathbb{T}$, the difference in levels of any $K^{\prime} \in \operatorname{refine}(\mathcal{T},\{T\})$ and its ancestor $K \in \mathcal{T}$ is uniformly bounded.

Theorem 3.3. Let $T \in \mathcal{T} \in \mathbb{T}$ and $\mathcal{T}^{\prime}=\operatorname{refine}(\mathcal{T},\{T\})$. Let $K \in \mathcal{T}$ and $K^{\prime} \in \mathcal{T}^{\prime}$ with $K^{\prime} \subseteq K$. Then it holds that

$$
\ell\left(K^{\prime}\right)-\ell(K) \lesssim 1
$$

Proof. If $\ell\left(K^{\prime}\right)=\ell(K)$, the assertion is trivially valid. Hence, assume that $\ell(K)+1 \leq \ell\left(K^{\prime}\right)$, i.e., K^{\prime} is newly created by the call. Recall the constant C from Lemma 1.1.

Case 1. If $\ell(T) \leq \ell(K)+C$, then by Lemma 3.2 (a), it holds that $\ell\left(K^{\prime}\right) \leq \ell(T)+1 \leq \ell(K)+C+1$.
Case 2. If $\ell(T)>\ell(K)+C$, then Lemma 1.1 (b) implies that $\operatorname{dist}(T, K) \gtrsim 2^{-\ell(K) / n}$, whence

$$
\operatorname{dist}\left(T, K^{\prime}\right) \geq 2^{-\ell(K) / n}
$$

On the other hand, Lemma 3.2 (b) states that

$$
\operatorname{dist}\left(K^{\prime}, T\right) \lesssim 2^{-\ell\left(K^{\prime}\right) / n}
$$

The foregoing two inequalities imply

$$
2^{-\ell(K) / n} \lesssim 2^{-\ell\left(K^{\prime}\right) / n}
$$

and so $\ell\left(K^{\prime}\right)-\ell(K) \lesssim 1$.
Remark 3.4. In dimension $n=2$, given $\mathcal{T} \in \mathbb{T}$, the triangulation \mathcal{T}^{\prime} defined by replacing each $T \in \mathcal{T}$ by its four grandchildren is conforming and so belongs to \mathbb{T}. We conclude that for any $T \in \mathcal{T}$, it holds that refine $(\mathcal{T},\{T\}) \leq \mathcal{T}^{\prime}$ giving an easy proof of Theorem 3.3 in this case. Moreover, it yields the additional information that this theorem is valid in this situation with $\ell\left(K^{\prime}\right)-\ell(K) \leq 2$.

This argument does not apply in $n>2$ dimensions. Replacing any $T \in \mathcal{T} \in \mathbb{T}$ by its level n-descendants generally does not yield a conforming partition. Indeed, already for $n=3$, in the partition formed by the level 3 descendants of a tagged tetrahedron T of type 0 or 1 , all the edges of T have been cut exactly once, but for a tagged tetrahedron T of type 2, this partition still contains one of the original edges.

The following corollary generalizes Theorem 3.3 to the case that refine is called with a set of marked elements.

Corollary 3.5. Let $\mathcal{M} \subseteq \mathcal{T} \in \mathbb{T}$ and $\mathcal{T}^{\prime}=\operatorname{refine}(\mathcal{T}, \mathcal{M})$. Let $K \in \mathcal{T}$ and $K^{\prime} \in \mathcal{T}^{\prime}$ with $K^{\prime} \subseteq K$. Then it holds that

$$
\ell\left(K^{\prime}\right)-\ell(K) \lesssim 1 .
$$

Proof. It holds that

$$
\mathcal{T}^{\prime}=\bigvee_{T \in \mathcal{M}} \operatorname{refine}(\mathcal{T},\{T\})
$$

i.e., \mathcal{T}^{\prime} is the smallest common refinement of the triangulations refine $(\mathcal{T},\{T\})$ for $T \in \mathcal{M}$. From Remark 3.1, we infer that for any $K^{\prime} \in \mathcal{T}^{\prime}$, there exists a $T \in \mathcal{M}$ with $K^{\prime} \in \operatorname{refine}(\mathcal{M},\{T\})$. Thus, Theorem 3.3 proves the assertion.

Remark 3.6. Corollary 3.5 accomplishes the proof of [2, Lemma 4.2]. It is furthermore required in [1, p. 1201] for the constant $C_{\text {son }}$ in equation (2.8) of [1] to be finite.

Funding: The first and second named authors were supported by the DFG Research Center Matheon and the Berlin Mathematical School.

References

[1] C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014), 1195-1253.
[2] C. Carstensen, D. Gallistl and M. Schedensack, Discrete reliability for Crouzeix-Raviart FEMs, SIAM J. Numer. Anal. 51 (2013), 2935-2955.
[3] J. M. Maubach, Local bisection refinement for n-simplicial grids generated by reflection, SIAM J. Sci. Comput. 16 (1995), 210-227.
[4] R. H. Nochetto, K. G. Siebert and A. Veeser, Theory of adaptive finite element methods: An introduction, in: Multiscale, Nonlinear and Adaptive Approximation, Springer, Berlin (2009), 409-542.
[5] R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp. 77 (2008), 227-241.
[6] C. T. Traxler, An algorithm for adaptive mesh refinement in n dimensions, Computing 59 (1997), 115-137.

Received April 22, 2014; accepted April 27, 2014.

[^0]: Dietmar Gallistl, Mira Schedensack: Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany, e-mail: gallistl@math.hu-berlin.de, schedens@math.hu-berlin.de
 Rob P. Stevenson: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248,
 1090 GE Amsterdam, Netherlands, e-mail: r.p.stevenson@uva.nl

