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VARIATIONAL FORMULATION AND NUMERICAL ANALYSIS OF
LINEAR ELLIPTIC EQUATIONS IN NONDIVERGENCE FORM

WITH CORDES COEFFICIENTS∗
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Abstract. This paper studies formulations of second-order elliptic partial differential equations
in nondivergence form on convex domains as equivalent variational problems. The first formulation
is that of Smears and Süli [SIAM J. Numer. Anal., 51 (2013), pp. 2088–2106], and the second
one is a new symmetric formulation based on a least-squares functional. These formulations enable
the use of standard finite element techniques for variational problems in subspaces of H2 as well
as mixed finite element methods from the context of fluid computations. Besides the immediate
quasi-optimal a priori error bounds, the variational setting allows for a posteriori error control with
explicit constants and adaptive mesh-refinement. The convergence of an adaptive algorithm is proved.
Numerical results on uniform and adaptive meshes are included.
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1. Introduction. Let Ω ⊆ Rd be an open, bounded, convex polytope for d ∈
{2, 3}. This article deals with the numerical approximation of strong solutions u ∈
H1

0 (Ω) ∩H2(Ω) to the second-order elliptic partial differential equation (PDE)

(1) L(u) = f in Ω u = 0 on ∂Ω,

where f ∈ L2(Ω) is a given square-integrable function and the operator L has nondi-
vergence form. More precisely, it is given through

(2) L(v) := A : D2v :=
d∑

j,k=1

Ajk∂
2
jkv for any v ∈ V := H1

0 (Ω) ∩H2(Ω).

In the case that the coefficient A satisfies certain smoothness assumptions, it is known
that (1) can be converted into a second-order equation in divergence form through
the product rule. If A is merely an essentially bounded tensor, such a reformulation
is not valid and variational formulations of (1) are less obvious. It is proved in [21]
that the unique solvability is assured through the Cordes condition [6, 16] described
in section 2 below. The first fully analyzed numerical scheme suited for L∞ Cordes
coefficients was suggested and analyzed in [21] and belongs to the class of discon-
tinuous Galerkin methods. It was successfully applied in [22, 23] to fully nonlinear
Hamilton–Jacobi–Bellman equations. Further works on discontinuous Galerkin meth-
ods for nondivergence form problems [9, 10] focus on error estimates in W k,p norms
for the case of continuous coefficients. Other approaches include the discrete Hessian
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method of [14] and the two-scale method of [19]. The latter work is based on the
integro-differential approach of [4] and focuses on L∞ error estimates.

This paper studies variational formulations of (2) for the case of discontinuous
coefficients satisfying the Cordes condition. The formulation seeks u ∈ V such that

(A : D2u, τ(∇v))L2(Ω) = (f, τ(∇v))L2(Ω) for all v ∈ V,

where the operator τ : H1(Ω;Rd) → L2(Ω) acts on the test functions. In this work,
two possible options are discussed. The choice τ = τNS := γ div • (for the function
γ defined in (5) below) leads to the nonsymmetric formulation of [21]. The second
possibility is τ = τLS := A : D• which results in a symmetric problem that turns out
to be the Euler–Lagrange equation for the minimization of the functional ‖A : D2v−
f‖2L2(Ω). The superscripts NS and LS stand for “nonsymmetric” and “least-squares,”
respectively, owing to the properties of the individual method. The variational formu-
lations naturally allow the use of C1-conforming finite element methods [5]. Since C1

finite elements are sometimes considered impractical, alternative discretization tech-
niques are desirable. We apply the recently proposed mixed formulation [11] to the
present problem. Its formulation involves function spaces similar to those employed
for the Stokes equations. In the sense of the least-squares functional, the minimization
problem is restated as the minimization of ‖A : Dφ − f‖2L2(Ω) over all vector-valued

H1 functions with vanishing tangential trace subject to the constraint that rotφ = 0.
While the continuous formulations are equivalent, the latter can be discretized with
H1-conforming finite elements in the framework of saddle-point problems [2, 11]. In
the discrete formulation, the structure of the differential operator requires the incorpo-
ration of an additional stabilization term. This is mainly due to the fact that L(v) in
the L2 norm is bounded from below by the norm of the Laplacian Δv rather than the
full Hessian tensor D2v. This is also the reason why the application of nonconforming
schemes is not as immediate as for the usual biharmonic equation. Indeed, noncon-
forming finite element spaces may contain piecewise harmonic functions, and thus, it
is not generally possible to bound the piecewise Laplacian from below by the piecewise
Hessian unless further stabilization terms are included. For example, the divergence
theorem readily implies that three out of the six local basis function of the Morley finite
element [5] are harmonic. The conforming and mixed finite element formulations pre-
sented here lead to quasi-optimal a priori error estimates and give rise to natural a pos-
teriori error estimates based on strong L2 volume residuals where on any element of the
finite element partition the residual reads ‖A : D2uh−f‖2L2(T ) for the conforming finite

element solution uh (with an analogous formula for the mixed discretization). Since
this residual equals ‖A : D2(uh−u)‖2L2(T ), it immediately leads to reliable and efficient

estimates with explicit constants (depending solely on the data). This error estimator
can be employed for guiding a self-adaptive refinement procedure. This work focuses
on h-adaptivity and does not address a local adaptation of the polynomial degree as
in [21]. For the suggested class of discretizations, the convergence of the adaptive al-
gorithm can be proved. Since the proof utilizes a somehow indirect argument (similar
to that of [17]), no convergence rate is obtained. The performance of the adaptive
mesh-refinement procedure is numerically studied in the experiments of this paper.

The remaining parts of this article are as follows: section 2 revisits the unique
solvability results of [21] and presents the variational formulations; section 3 presents
the a priori and a posteriori error estimates for finite element discretizations. The
convergence analysis of an adaptive algorithm follows in section 4. Numerical exper-
iments are presented in section 5. The remarks of section 6 conclude the paper.
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Standard notation on function spaces applies throughout this article. Lebesgue
and Sobolev functions with values in Rd are denoted by L2(Ω;Rd), H1(Ω;Rd), etc.
The d× d identity matrix is denoted by Id×d. The inner product of real-valued d× d

matrices A, B is denoted by A : B =
∑d

j,k=1 AjkBjk. The Frobenius norm of a d× d

matrix A is denoted by |A| := √
A : A; the trace reads trA. For vectors, |·| refers to

the Euclidean length. The rotation (often referred to as curl v or ∇ ∧ v) of a vector
field v is denoted by rot v. The union of a collection X of subsets of Rd is indicated
by the symbol ∪ without index and reads ∪X := {x ∈ Rd : x ∈ X for some X ∈ X}.

2. Problem setting and variational formulations. This section lists some
conditions for the unique solvability of (1) and proceeds with the variational formu-
lations. Throughout this article it is assumed that the coefficient A ∈ L∞(Ω;Rd×d)
is uniformly elliptic, that is, there exist constants 0 < α1 ≤ α2 < ∞ such that

(3) α1 ≤ inf
ξ∈Rd,|ξ|=1

ξ∗Aξ ≤ sup
ξ∈Rd,|ξ|=1

ξ∗Aξ ≤ α2 almost everywhere in Ω.

Assume furthermore that there exists some ε ∈ (0, 1] such that

(4) |A|2/(trA)2 ≤ 1
/
(d− 1 + ε) almost everywhere in Ω.

Assumption (4) is called the Cordes condition [6, 16, 21]. Define the function γ by

(5) γ := tr(A)
/|A|2.

While in the planar case, d = 2, the Cordes condition is implied by (3); it is an
essential condition for d ≥ 3 and its absence may lead to ill-posedness of the PDE (1)
[16, 20]. The uniform ellipticity (3) implies that γ is uniformly bounded from below
by some positive constant γ0 [21]. The following result can be found in [16, 21].

Lemma 2.1. Let A ∈ L∞(Ω;Rd×d) satisfy (3) and (4). Then, almost everywhere
in Ω, the following estimate holds for any B ∈ Rd×d,

|(γA− Id×d) : B| = |γA : B − trB| ≤ √
1− ε |B|

as well as |γA− Id×d| ≤
√
1− ε.

Proof. See, e.g., the proof of [21, Lemma 1].

The triangle inequality shows that A almost everywhere satisfies for any B ∈ Rd×d

(6) γ|A : B| ≥ | trB| − |(γA− Id×d) : B|.
The space of H1 vector fields with vanishing tangential trace reads

(7) W := {v ∈ H1(Ω;Rd) : the tangential trace of v on ∂Ω vanishes}.
For the analysis of the formulations below, it it is useful to note that, on convex
domains, the following estimate holds [7, Thm. 2.3]:

(8) ‖Dw‖2L2(Ω) ≤ ‖ rotw‖2L2(Ω) + ‖ divw‖2L2(Ω) for any w ∈ W

(on polytopes even with equality). For any w ∈ W with rotw = 0, the combination
of (6) for B = Dw with Lemma 2.1 and (8) results in

(9) ‖γA : Dw‖L2(Ω) ≥ (1 −√
1− ε) ‖ divw‖L2(Ω) ≥ (1−√

1− ε) ‖Dw‖L2(Ω).
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Similar calculations (already carried out in [21]) with Lemma 2.1 and (8) prove for
any w ∈ W with rotw = 0 that

(10)
(A : Dw, γ divw)L2(Ω) = ‖ divw‖2L2(Ω) + ((γA− Id×d) : Dw, divw)L2(Ω)

≥ (1−√
1− ε)‖ divw‖2L2(Ω) ≥ (1−√

1− ε)‖Dw‖2L2(Ω).

We proceed with the description of the variational setting. Define the space
V := H1

0 (Ω) ∩H2(Ω). An application of (8) shows that the L2 norm of the Hessian
of any v ∈ V is controlled by the norm of the Laplacian [7, 13, 21]

(11) ‖D2v‖L2(Ω) ≤ ‖Δv‖L2(Ω) for any v ∈ V.

Define the operators τNS, τLS : H1(Ω;Rd) → L2(Ω) by

τNS(φ) := γ div φ and τLS(φ) := A : Dφ for any φ ∈ H1(Ω;Rd).

As mentioned in the introduction, each of these operators corresponds to a specific
choice of test functions in a variational formulation and thus constitutes a class of
numerical methods. The variational problem seeks u ∈ V such that

(12) (A : D2u, τ(∇v))L2(Ω) = (f, τ(∇v))L2(Ω) for all v ∈ V

for τ = τNS (the nonsymmetric formulation of [21]) or τ = τLS (the least-squares
formulation proposed here). The lower bound (10) with w = ∇v implies that (12) is
coercive for τ = τNS. The lower bound (9) with w = ∇v implies for any v ∈ V that

‖γ‖2L∞(Ω)(A : D2v, τLS(∇v))L2(Ω) ≥ ‖γA : D2v‖2L2(Ω) ≥ (1−√
1− ε)2‖D2v‖2L2(Ω).

Thus, (A : D2•, A : D2•)L2(Ω) is an inner product on V with

‖A : D2v‖L2(Ω) ≥ c(γ, ε)‖D2v‖L2(Ω) for any v ∈ V,(13)

where c(γ, ε) := (1 −√
1− ε)/‖γ‖L∞(Ω).(14)

This yields well-posedness of (12) for τ = τLS. The following result proves the equiv-
alence of (1) and (12).

Proposition 2.2. Let τ = τNS or τ = τLS. A function u ∈ V solves (1) strongly
in L2(Ω) if and only if it solves the variational form (12).

Proof. For the choice τ = τNS, the assertion was proved in [21, proof of Thm. 3],
and it remains to consider the case τ = τLS. It is immediate that (1) implies (12). For
the converse direction it is enough to note that (12) is the Euler–Lagrange equation
of the convex minimization problem

(15) u ∈ argmin
v∈V

‖A : D2v − f‖2L2(Ω).

Since (3) and (4) imply that (1) is uniquely solvable on convex domains [21], this
establishes the equivalence.

Formulation (12) is variational and thus suited for approximation with the finite
element method (FEM). Standard finite elements will be discussed in subsection 3.1.
Since the construction of H2-conforming finite elements is rather cumbersome, mixed
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formulations appear as an attractive alternative. To state the mixed formulation
recently proposed in [11], recall the definition of W from (7) and define the space

Q :=

{
{q ∈ L2(Ω) :

´
Ω
q dx = 0} if d = 2,

{q ∈ L2(Ω;R3) : div q = 0 in Ω and q · ν|∂Ω = 0 on ∂Ω} if d = 3.

Here ν denotes the outer unit normal of the domain Ω. Define the bilinear forms
aτ : W ×W → R (for τ = τNS or τ = τLS) and b : W ×Q → R by

aτ (v, z) := (A : Dv, τ(z))L2(Ω) for any (v, z) ∈ W ×W,

b(v, q) := (rot v, q)L2(Ω) for any (v, q) ∈ W ×Q.

The mixed formulation of (12) is to seek (u,w, p) ∈ H1
0 (Ω)×W ×Q such that

(∇u − w,∇z)L2(Ω) = 0 for all z ∈ H1
0 (Ω),(16a)

aτ (w, v) + b(v, p) = (f, τ(v))L2(Ω) for all v ∈ W,(16b)

b(w, q) = 0 for all q ∈ Q.(16c)

For the analysis of the well-posedness of (16b)–(16c), recall estimate (10) for
τ = τNS and (9) for τ = τLS, which imply that the form aτ is coercive on the subspace
of W consisting of rotation-free vector fields, namely, for all v ∈ W with rot v = 0,

(17)
(1−√

1− ε)‖Dv‖2L2(Ω) ≤ aτNS(v, v) ≤ ‖A‖L∞(Ω)‖γ‖L∞(Ω)‖Dv‖2L2(Ω),

c(γ, ε)2‖Dv‖2L2(Ω) ≤ aτLS(v, v) ≤ ‖A‖2L∞(Ω)‖Dv‖2L2(Ω).

Since there exists a constant β > 0 such that the following inf-sup condition is valid,

(18) β ≤ inf
q∈Q\{0}

sup
v∈W\{0}

b(v, q)
/
(‖Dv‖L2(Ω)‖q‖L2(Ω)),

problem (16b)–(16c) (and thus (16)) is uniquely solvable [2]. The stability (18) (em-
ployed in [11]) is based on a regularized decomposition given in [15], which is stronger
than the classical Helmholtz decomposition [12].

Proposition 2.3. Let τ = τNS or τ = τLS. Problems (12) and (16) are equivalent
in the following sense. If u ∈ V solves (12), then there exists p ∈ Q such that
(u,∇u, p) solves (16). If, conversely, (u,w, p) ∈ H1

0 (Ω)×W ×Q solves (16), then u
belongs to V and solves (12) with w = ∇u.

Proof. The proof is essentially contained in [11]. For completeness, it is sketched
here. It is easily verified that w := ∇u is rotation-free, i.e., rotw = 0. By (18) there
exists a Lagrange multiplier p ∈ Q such that system (16) is satisfied. Let, conversely,
w satisfy (16b)–(16c). Since rotw = 0 and Ω is convex, there exists a potential
φ ∈ H1

0 (Ω) with ∇φ = w. By (16a), the difference u − φ satisfies the homogeneous
Laplace equation with zero Dirichlet conditions, and hence u = φ and w = ∇u.

Remark 1. It is not difficult to see that the Lagrange multiplier p equals zero in
the continuous setting. This property will not be preserved by typical discretizations.

Remark 2. In the case that the operator L has the form (2), the system (16)
decouples into a Stokes-type problem plus the postprocessing for the primal vari-
able. For more general equations involving zeroth-order terms, see the comments in
section 6.
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3. Finite element discretization. This section presents conforming and mixed
finite element discretizations and their error analysis for the problems of section 2.

3.1. Conforming discretization. The variational formulation (12) immedi-
ately allows stable discrete formulations with conforming finite elements. Let Vh ⊆ V
be a closed subspace. The discrete problem is to seek uh ∈ Vh such that

(19) (A : D2uh, τ(∇vh))L2(Ω) = (f, τ(∇vh))L2(Ω) for all vh ∈ Vh

for τ = τNS or τ = τLS. Although the discrete solution uh depends on the choice of τ ,
this dependence will not be indicated by an additional index on uh. The same applies
to the mixed scheme below. The following result states the error analysis.

Proposition 3.1. Problem (19) is uniquely solvable. The error u − uh for the
solution u ∈ V to (12) and the discrete solution uh ∈ Vh to (19) satisfies

‖D2(u − uh)‖L2(Ω) ≤ c(γ, ε)−1‖A‖L∞(Ω) inf
vh∈Vh

‖D2(u− vh)‖L2(Ω).

Globally, the following reliable a posteriori error estimate holds:

c(γ, ε)‖D2(u− uh)‖L2(Ω) ≤ ‖A : D2uh − f‖L2(Ω).

Furthermore, for any open subdomain ω ⊆ Ω, the following local efficiency is valid:

‖A : D2uh − f‖L2(ω) ≤ ‖A‖L∞(ω)‖D2(u − uh)‖L2(ω).

Proof. For τ = τNS, the a priori result follows from combining Céa’s lemma [3]
with the lower bound (10). For τ = τLS, it follows with (13) and similar arguments.
Therein, the symmetry of the formulation allows the use of equivalence of norms,
which implies the stated constant while a general Céa-type estimate would result in
the square of that constant. The reliability result follows from the lower bound (10)
and (9) for τ = τNS and τ = τLS, respectively, and the fact that f = D2u in the L2

sense. The latter fact also proves the efficiency estimate.

Several instances of finite-dimensional piecewise polynomial conforming subspaces
Vh are known [5]. In the numerical experiments of section 5, the performance of the
Bogner–Fox–Schmit (BFS) finite element under adaptive mesh-refinement based on
the a posteriori error estimator of Proposition (3.1) is empirically studied.

3.2. Mixed discretization. The conformity assumption Vh ⊆ H2(Ω) requires
C1 continuity and results in rather complicated local constructions. An alternative
discretization is based on the formulation (16) and mixed Stokes-type finite elements
[11]. Suppose that Wh ⊆ W and Qh ⊆ Q are closed subspaces that satisfy for some
positive constant β̃ that

(20) β̃ ≤ inf
qh∈Qh\{0}

sup
vh∈Wh\{0}

b(vh, qh)
/
(‖Dvh‖L2(Ω)‖qh‖L2(Ω)).

Since, in general, the property b(vh, qh) = 0 for all qh ∈ Qh does not imply that
rot vh = 0, the argument (8) is not applicable and coercivity of a on the kernel of b
requires stabilization. The proposed stabilization is as follows. Define the constant

cτλ(γ, ε) :=

⎧⎨⎩
√
1− λ2+1−ε

2λ if τ = τNS,
1−√

1−ε
‖γ‖L∞(Ω)

√
1+λ

= c(γ, ε)/
√
1 + λ if τ = τLS
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for a given parameter λ > 0 which in the case τ = τNS is subject to the additional
constraint |λ− 1| < √

ε. It should also be noted that in the case τ = τNS the constant
cτλ(γ, ε) is independent of γ. The notation, however, is maintained for the sake of a
unified presentation. Define furthermore the stabilization parameter

στ
λ(γ, ε) :=

⎧⎪⎨⎪⎩
√
cτλ(γ, ε)

2 + (1 − ε)/(2λ) =
√
1− λ/2 if τ = τNS,√

cτλ(γ, ε)
2 + (1+1/λ)(1−ε)

(1+λ)‖γ‖2
L∞(Ω)

if τ = τLS.

Define the enriched bilinear form ãτ for any v, z ∈ W through

ãτ (v, z) := aτ (v, z) + στ
λ(γ, ε)

2(rot v, rot z)L2(Ω).

Let Sh ⊆ H1
0 (Ω) be a closed subspace. The discrete mixed system seeks (uh, wh,

ph) ∈ Sh ×Wh ×Qh such that

(∇uh − wh,∇zh)L2(Ω) = 0 for all zh ∈ Sh,(21a)

ãτ (wh, vh) + b(vh, ph) = (f, τ(vh))L2(Ω) for all vh ∈ Wh,(21b)

b(wh, qh) = 0 for all qh ∈ Qh.(21c)

The following proposition states well-posedness and error estimates for (21) in
the case τ = τNS.

Proposition 3.2. Let τ = τNS. For any λ > 0 such that |λ − 1| ≤ √
ε, prob-

lem (21) admits a unique solution (uh, wh, ph) ∈ Sh ×Wh ×Qh. It satisfies the error
estimate

‖D2u−Dwh‖L2(Ω) ≤ C(λ, γ, ε, τ) inf
vh∈Wh

‖D2u−Dvh‖L2(Ω),

where C(λ, γ, ε, τ) = 4cτλ(γ, ε)
−2β̃−1(‖γ‖L∞(Ω)‖A‖L∞(Ω) + στ

λ(γ, ε)
2). Moreover the

following reliable a posteriori error estimate holds for any μ > 0 with μ‖γ‖2L∞(Ω) ≤
2cτλ(γ, ε)

2,√
cτλ(γ, ε)

2 − 2−1μ‖γ‖2L∞(Ω)‖D2u−Dwh‖L2(Ω)

≤
√
(2μ)−1‖A : Dwh − f‖2L2(Ω) + στ

λ(γ, ε)
2‖ rotwh‖2L2(Ω).

For any open subdomain ω ⊆ Ω we have the efficiency√
(2μ)−1‖A : Dwh − f‖2L2(ω) + στ

λ(γ, ε)
2‖ rotwh‖2L2(ω)

≤
√
(2μ)−1‖A‖2L∞(ω) + στ

λ(γ, ε)
2‖D2u−Dwh‖L2(ω).

Proof. Let v ∈ W . The argument from the first line of (10) together with
Lemma 2.1 and (8) leads to

(A : Dv, γ div v)L2(Ω)

= ‖ div v‖2L2(Ω) + ((γA− Id×d) : Dv, div v)L2(Ω)

≥ ‖ div v‖2L2(Ω) −
√
1− ε‖ div v‖L2(Ω)

√
‖ div v‖2L2(Ω) + ‖ rotv‖2L2(Ω).
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For any λ > 0, the Young inequality bounds the right-hand side from below by(
1− λ/2− (1 − ε)/(2λ)

)‖ div v‖2L2(Ω) − (1− ε)/(2λ)‖ rotv‖2L2(Ω).

Elementary calculations with the foregoing two displayed expressions therefore lead,
after adding cτλ(γ, ε)

2‖ rotv‖2L2(Ω), to the coercivity

(22) cτλ(γ, ε)
2‖Dv‖2L2(Ω) ≤ ãτ (v, v) for any v ∈ W.

The constant cτλ(γ, ε)
2 is positive if and only if |λ−1| < √

ε. This and (20) yield well-
posedness. The a priori error estimate follows from the mixed finite element theory
[2]; see [2, Thm. 5.2.2] for the precise constant. In particular, the best-approximation
error of p does not appear in the error bound because that term equals zero due
to p = 0. The proof of the reliability estimate employs the coercivity (22), the L2

identity A : D2u = f , as well as the Cauchy and Young inequalities with an arbitrary
parameter μ > 0,

cτλ(γ, ε)
2‖D(∇u− wh)‖2L2(Ω)

≤ ãτ (∇u− wh,∇u− wh) ≤ (2μ)−1‖A : Dwh − f‖2L2(Ω)

+ 2−1μ‖γ‖2L∞(Ω)‖D(∇u− wh)‖2L2(Ω) + στ
λ(γ, ε)

2‖ rotwh‖2L2(Ω).

This implies the stated reliability. The efficiency follows from A : D2u = f in L2.

The following proposition states well-posedness and error estimates for (21) in
the case τ = τLS.

Proposition 3.3. Let τ = τLS. For any λ > 0, problem (21) admits a unique
solution (uh, wh, ph) ∈ Sh ×Wh ×Qh. It satisfies the error estimate

‖D2u−Dwh‖L2(Ω) ≤ C(λ, γ, ε, τ) inf
vh∈Wh

‖D2u−Dvh‖L2(Ω),

where

C(λ, γ, ε, τ) = 2

√
‖A‖2L∞(Ω) + στ

λ(γ, ε)
2

cτλ(γ, ε)

⎡⎣β̃−1 +

√
‖A‖2L∞(Ω) + στ

λ(γ, ε)
2

cτλ(γ, ε)

⎤⎦ .

Moreover the following reliable a posteriori error estimate holds:

cτλ(γ, ε)‖D2u−Dwh‖L2(Ω) ≤
√
‖A : Dwh − f‖2L2(Ω) + στ

λ(γ, ε)
2‖ rotwh‖2L2(Ω).

For any open subdomain ω ⊆ Ω we have the efficiency√
‖A : Dwh − f‖2L2(ω) + στ

λ(γ, ε)
2‖ rotwh‖2L2(ω)

≤
√
‖A‖2L∞(ω) + στ

λ(γ, ε)
2‖D2u−Dwh‖L2(ω).

Proof. The estimate (6) and Lemma 2.1, the relation (8), and the triangle in-
equality prove for any v ∈ W that

‖ div v‖L2(Ω) ≤ ‖γA : Dv‖L2(Ω) +
√
1− ε‖Dv‖L2(Ω)

≤ ‖γ‖L∞(Ω)‖A : Dv‖L2(Ω) +
√
1− ε (‖ div v‖L2(Ω) + ‖ rotv‖L2(Ω)).
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With the constant c(γ, ε), this is equivalent to

c(γ, ε)‖ div v‖L2(Ω) ≤ ‖A : Dv‖L2(Ω) +
√
1− ε/‖γ‖L∞(Ω)‖ rot v‖L2(Ω).

Taking squares on both sides and using the Young inequality, one arrives at

c(γ, ε)2‖ div v‖2L2(Ω)

≤ (1 + λ)‖A : Dv‖2L2(Ω) + (1 + 1/λ)(1− ε)/‖γ‖2L∞(Ω)‖ rot v‖2L2(Ω).

Adding c(γ, ε)2‖ rotv‖2L2(Ω) and dividing by (1 + λ) leads with (8) to

cτλ(γ, ε)
2‖Dv‖2L2(Ω) ≤ ‖A : Dv‖2L2(Ω) + στ

λ(γ, ε)
2‖ rot v‖2L2(Ω).

Hence, ã satisfies the coercivity

cτλ(γ, ε)
2‖Dv‖2L2(Ω) ≤ ã(v, v) for any v ∈ W.

As in the proof of Proposition 3.2, this and the stability condition (20) establish
the unique solvability and the a priori error estimate with the constant from [2,
Thm. 5.2.2]. The proof of the a posteriori bounds is immediate.

Remark 3. The a posteriori bounds in Propositions 3.1, 3.2, 3.3 are fully explicit.
The evaluation of integrals of the L∞ coefficient A may, however, be computationally
challenging in practice; cf. the numerical experiments in section 5.

Remark 4. Clearly, an a priori error estimate for the difference p − ph in the
L2 norm in the fashion of Propositions 3.2, 3.3 can also be obtained. Since, in this
context, the Lagrange multiplier is not of particular interest, its analysis not included
in the proposition. Moreover, using (20) and the fact that p = 0, it can be shown
that the error is bounded from above by some constant times the suggested error
estimator.

Remark 5. In three space dimensions, subspaces of Q must satisfy a pointwise
divergence-free constraint. In [11] the spaceQh of divergence-free lowest-order Raviart–
Thomas fields was used. This spaceQh consists exactly of all piecewise constant vector
fields that are continuous in the inter-element normal directions and whose normal
component vanishes on the boundary ∂Ω. Another approach could be to further soften
the formulation by enforcing the divergence-free constraint in a weak manner. This
would involve an additional Lagrange multiplier also arising in the error estimates.

4. An adaptive algorithm and its convergence. This section is devoted to
the description of an adaptive algorithm for the discretization methods from section 3
and the proof of its convergence.

4.1. Assumptions on the discrete spaces. Let T denote a set of admissible
shape-regular partitions refined from some initial mesh T0 of Ω. The partitions may
consist of triangles/tetrahedra or quadrilaterals/hexahedra. Shape-regularity is meant
in the sense that (i) there exist positive constants c and C such that for any T ∈ T

and any T ∈ T, cmeas(T ) ≤ diam(T )d ≤ Cmeas(T ) and (ii) any two neighboring
elements T,K ∈ T satisfy c ≤ diam(T )/ diam(K). This property is respected by many
refinement routines like newest-vertex bisection [1], but also refinements involving
hanging nodes are allowed as long as the number of hanging nodes per interface stays
uniformly bounded. The shape-regularity implies that there is some α > 0 such



746 DIETMAR GALLISTL

that any T ∈ T ∈ T and any refined element T̂ � T in a refined partition T̂ satisfy
meas(T̂ ) ≤ αmeas(T ). The discretization spaces from section 3.1 (resp., section 3.2)
are labelled with the partitions in T and are denoted by V (T) (resp., W (T) and Q(T))
rather than Vh, etc., in section 3. The spaces are assumed to be nested on refined
triangulations. It is assumed that T contains sufficiently many refinements so that
for any T ∈ T and any δ > 0 there is some refinement T̂ ∈ T such that for any
T ∈ T̂ the diameter satisfies diam(T ) ≤ δ. It is furthermore assumed that there exist
a stable, projective, quasi-local quasi-interpolation operator, i.e., there is a constant
C such that for any T ∈ T there is a linear idempotent map IT : V → V (T) (resp.,
IT : W → W (T) for the mixed method) such that, for any T ∈ T, the estimate
(23)
‖D2ITv‖L2(T ) ≤ C‖D2v‖L2(ωT ) for any v ∈ V

(resp., diam(T )−1‖z − ITz‖L2(T ) + ‖DITz‖L2(T ) ≤ C‖Dz‖L2(ωT )

for any z ∈ W )

holds, where ωT denotes the element-patch of T , i.e., the union of all elements of
T sharing a point with T . (This assumption can be relaxed by requiring ωT to be
some surrounding domain with finite overlap property.) Since this quasi-interpolation
is a stable projection, it is also quasi-optimal. It is assumed that for any sequence
(T	)	 of partitions with maxT∈T�

diam(T ) → 0 as � → ∞, the spaces V (T	) (resp.,
W (T	)) are dense in V (resp., W ). This implies that, for any v ∈ V , the quasi-
interpolation IT�

v converges to v in the H2 norm (resp., in the H1 norm). These
requirements are met for most of the known H2 conforming finite elements based on
piecewise polynomials. It is, however, important to note that not all H2 conforming
finite elements lead to nested spaces. The Argyris FEM and the Hsieh–Clough–Tocher
FEM [5], for example, do not satisfy this property. A positive example is the BFS
FEM [5] used in the numerical experiments below. In the case of mixed methods, the
discretizations of W need only be H1 conforming, and quasi-interpolation operators
for such spaces are well-established. Their existence is typically assured through the
shape-regularity. In addition, the mixed finite element spaces are assumed to satisfy
Assumption 1 stated below.

4.2. Adaptive algorithm and convergence proof. The algorithm departs
from an initial mesh T0 and runs the following loop over the index � = 0, 1, 2, . . . .

Solve. Solve the discrete problem (19) (resp., (21)) with respect to the mesh T	

and the space V (T	). Denote the solution by u	 (resp., (w	, p	)).
Estimate. Compute, for any T ∈ T	, the local error estimator contributions η2	 (T )

= ‖A : D2u	 − f‖2L2(T ) (resp., η
2
	 (T ) = ‖A : Dw	 − f‖2L2(T ) + στ

λ(γ, ε)
2‖ rotw	‖2L2(T )).

Mark. Choose some (any) subset M	 ⊆ T	 satisfying T ∈ M	 for at least one
T ∈ T	 with η2	 (T ) = maxK∈T�

η2	 (K).
Refine. Compute a refined admissible partition T	+1 of T	 such that at least all

elements of M	 are refined.

Remark 6. In view of the different weights in the error estimators of Proposi-
tions 3.2–3.3, it is worth mentioning that one can choose different weights for the
contributions of η	(T ). This is, however, of minor importance for the convergence
analysis.

This adaptive algorithm is formulated in a fairly general way (see also [17]); it ad-
mits various existing marking procedures, for instance, the maximum marking or the
Dörfler marking [8]. The refinement step typically involves some minimality condi-
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tion on the refined partition to gain efficiency. In section 5 an instance of an adaptive
algorithm with more details is presented. However, the present form of the algorithm
suffices for convergence. A similar argument was used by [17]. The difference is that
the residuals in the present error estimator are strong L2 residuals. This has the effect
that no data oscillations enter the convergence analysis. The main reason is that the
efficiency proof does not require the usual techniques employing bubble functions [24].

Consider the sequence (T	)	 produced by the adaptive algorithm. The convergence
proofs employ the subset K ⊆ ∪	≥0T	 of never refined elements defined by

K :=
⋃
	≥0

⋂
m≥	

Tm.

The set was already utilized in [17]. It is the set of elements that are never refined
once they are created. Accordingly, for any � ≥ 0, the partition T	 can be written as
the following disjoint union

(24) T	 = K	 ∪ R	 for K	 := K ∩ T	 and R	 := T	 \K	.

By definition, every element of R	 is eventually refined and the measure of those
children that do not belong to K is reduced by a factor α. Hence, for any ε > 0 there
exists some �0 ≥ 0 such that, for all � ≥ �0,

(25) max
T∈R�

meas(T ) < ε.

The following result proves the convergence of the adaptive conforming scheme. More
details on the arguments employed here can be found in, e.g., [17, 18].

Proposition 4.1. Let τ = τNS or τ = τLS. Let the admissible partitions T and
the discrete spaces V (T) for any T ∈ T satisfy the assumptions from the beginning
of this section. Then the sequence u	 ∈ V (T	) produced by the adaptive algorithm
converges to the exact solution u ∈ V , i.e., ‖D2(u− u	)‖L2(Ω) → 0 as � → ∞.

Proof. The sequence (u	)	 converges in V to some limit u
 (because the u	 are
in particular the Galerkin approximations of the variational problem posed on the
closure of the union of the nested spaces V (T	), � ≥ 0), i.e.,

‖D2(u
 − u	)‖L2(Ω) → 0 as � → ∞.

It is not a priori known that u
 = u, since it is not clear whether the global mesh-size
converges to zero in all regions of the domain Ω. Recall decomposition (24) of T	 in
never refined (K	) and eventually refined (R	) elements. The local efficiency of the
error estimator (Proposition 3.1) and the triangle inequality prove for any T ∈ T	

that

η2	 (T ) ≤ 2‖A‖2L∞(Ω)

(‖D2(u− u
)‖2L2(T ) + ‖D2(u
 − u	)‖2L2(T )

)
.

Since ‖D2(u
 − u	)‖L2(T ) → 0 as � → ∞, one concludes with (25) that for any ρ > 0

there exists some �̃0 ≥ 0 such that, for all � ≥ �̃0,

max
T∈K�

η2	 (T ) ≤ max
T∈R�

η2	 (T ) < ρ.

(If this was not the case, the properties of the marking step would imply that even-
tually an element in K	 is refined, which contradicts its membership in K	.) In
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conclusion, for any T ∈ K, ‖A : D2u	 − f‖L2(T ) → 0 as � → ∞. In order to
conclude convergence in L2(∪K), observe that

∑
T∈K meas(T ) ≤ meas(Ω), that is,

the series on the left-hand side converges. Thus, the measure of (∪K) \ (∪Km) be-
comes arbitrary small for sufficiently large m. Given δ > 0, the dominated con-
vergence theorem therefore implies that, for sufficiently large m0 and all m ≥ m0,
‖A : D2u
 − f‖L2((∪K)\(∪Km))) ≤ δ/2. The elementwise convergence and u	 → u
 in

H2(Ω) therefore imply that, for some sufficiently large �̂0 > 0, it holds that

‖A : D2u	 − f‖L2(∪K)

≤ ‖A : D2u	 − f‖L2(∪Km0)
+ ‖A : D2(u	 − u
)‖L2((∪K)\(∪Km0))

+ ‖A : D2u
 − f‖L2((∪K)\(∪Km0))
≤ δ for all � ≥ �̂0.

Hence, ‖A : D2u	 − f‖L2(∪K) → 0 as � → ∞.
The L2 identity A : D2u = f , the definition of τ and (10) imply

∑
T∈T�

η2	 (T )

{
≤ ‖A‖2

L∞(Ω)

1−√
1−ε

(A : D2(u− u	), τ(∇(u − u	)))L2(Ω) if τ = τNS,

= (A : D2(u− u	), τ(∇(u − u	)))L2(Ω) if τ = τLS.

Thus, with a constant c > 0 (depending on the choice of τ), the Galerkin orthogonality,
the Cauchy inequality, and the L2 identity A : D2u = f lead, for any � ≥ 0, to

c
∑
T∈T�

η2	 (T ) ≤ (A : D2(u − u	), τ(∇(u − u	)))L2(Ω)

= (A : D2(u − u	), τ(∇(u − IT�
u)))L2(Ω)

≤ ‖A : D2u	 − f‖L2(∪K)‖τ(∇(u − IT�
u))‖L2(∪K)

+ ‖A : D2u	 − f‖L2(∪R�)‖τ(∇(u − IT�
u))‖L2(∪R�).

The convergence A : D2u	 → f in L2(∪K) and the convergence of the quasi-interpo-
lation show that both summands on the right-hand side converge to zero. Since by
Proposition 3.1 the error estimator is reliable, the proof is concluded.

The convergence proof of the mixed scheme requires a mild structural hypothesis
on the discrete spaces. Let � ∈ N and T ∈ K	 and consider the first-order neighbor-
hood and its triangulation defined by

ωT,K := int(∪{K ∈ K : T ∩K �= ∅}) with T(ωT,K) := {K ∈ K : T ∩K �= ∅}.
The shape-regularity assumption assures that there exists n(�, T ) ≥ � such that
T(ωT,K) ⊆ Km holds for all m ≥ n(�, T ). This means that, eventually, all neigh-
bors of T belong to K. Define the spaces W (T(ωT,K)) of functions in W (Tm) with
support in ωT,K and Q(T(ωT,K)) of functions from Q(Tm) that are restricted to ωT,K.

Assumption 1. All � ∈ N and all T ∈ K	 satisfy the following: if q ∈ Q(T(ωT,K))
fulfils (rot v, q)L2(ωT,K) = 0 for all v ∈ W (T(ωT,K)), then (rot v, q)L2(ωT,K) = 0 holds

for all v ∈ H1
0 (ωT,K;Rd).

Assumption 1 basically states that a full-rank condition like (20) remains true on
element patches. It is, however, a purely algebraic and thus weaker condition. As will
turn out in the proof of Proposition 4.2, the assumption could be further relaxed by
allowing other suitable overlapping neighborhoods. In two space dimensions, Assump-
tion 1 (or a relaxed version with larger patches) is satisfied by many (if not all) known
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finite elements for the Stokes problem. In particular, pairings whose stability proof is
based on the design of a Fortin operator or the macroelement technique are included.
Pathological situations in which an element T does not have enough neighbors (e.g.,
all vertices on lie on ∂K) can only occur if T meets the boundary ∂Ω (due to the
shape-regularity). Hence, such situations are excluded if the class T of triangulations
is chosen properly. In three dimensions, where the problem significantly differs from
the Stokes equations, the pairing from [11], which is based on face-bubble stabiliza-
tion, satisfies Assumption 1. In all these cases, the verification of Assumption 1 is
independent of any a priori knowledge about the sets K	. The next result proves the
convergence of the adaptive mixed scheme.

Proposition 4.2. Let τ = τNS or τ = τLS. Let the admissible partitions T

and the discrete spaces W (T), Q(T) for any T ∈ T satisfy the assumptions from
the beginning of this section as well as Assumption 1. Then the sequence (w	, p	) ∈
W (T	) × Q(T	) produced by the adaptive algorithm converges to the exact solution
(w, p) ∈ W ×Q. In particular, ‖D2u−Dw	‖L2(Ω) → 0 as � → ∞.

Proof. Similarly as in the proof of Proposition 4.1, one can show that there exists
a limit (w
, p
) ∈ W×Q such that ‖D(w
−w	)‖L2(Ω)+‖p
−p	‖L2(Ω) → 0 as � → ∞.
Consider again the set K and the decomposition (24). The local efficiency of the
error estimator (Propositions 3.2 and 3.3) and the triangle inequality prove for some
constant C > 0 (depending on the choice of τ) and any T ∈ T	 that

η2	 (T ) ≤ C
(‖D(w − w
)‖2L2(T ) + ‖D(w
 − w	)‖2L2(T )

)
.

As in the proof of Proposition 4.1, one obtains

‖A : Dw	 − f‖L2(∪K) + ‖ rotw	‖L2(∪K) → 0 as � → ∞.

Similarly as in the proof of Proposition 4.1, the coercivity of ãτ shows that there
exists a constant c > 0 (depending on the choice of τ) such that with the L2 identity
A : Dw = f and the quasi-interpolation IT�

the following split is valid:

(26)

c
∑
T∈T�

η2	 (T ) ≤ (A : D(w − w	), τ(w − IT�
w))L2(Ω)

+ (A : D(w − w	), τ(IT�
w − w	))L2(Ω) + στ

λ(γ, ε)
2‖ rotw	‖2L2(Ω).

The first term on the right-hand side of (26) can be shown to converge to zero with
the techniques from Proposition 4.1 because locally it consists of products of error
estimator and interpolation error contributions. Using the discrete equations (21b)–
(21c) and A : Dw = f , the remaining terms of (26) are transformed into

(27) στ
λ(γ, ε)

2(rotw	, rot IT�
w)L2(Ω) + (rot IT�

w, p	)L2(∪R�) + (rot IT�
w, p	)L2(∪K�).

Since rot IT�
w = rot(IT�

w − w), the first and second term can again be shown to
converge to zero: the first term is an elementwise product of error estimator and
interpolation error contributions, while the second one is controlled by the inter-
polation error on the elements of R	. The last term of (27) can be rewritten as
(rot IT�

w, p	 − p
)L2(∪K�) + (rot IT�
w, p
)L2(∪K�) and, since p	 → p
 in L2, it remains

to estimate the term (rot IT�
w, p
)L2(∪K�).

For the analysis of this term, it is useful to note that, for any connected component
ω̃ of ∪K \ ∂(∪K), the function p
|ω̃ satisfies (rot v, p
)L2(ω̃) = 0 for all v ∈ H1

0 (Ω;R
d)
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with support in ω̃. For the proof of this claim, let ω ⊆ ∪K	 \ ∂(∪K	) be a connected
component of ∪K	 \ ∂(∪K	). It is not difficult to see that ω is an open subset of one
of the connected components of ∪K\∂(∪K). Let K	(ω) denote the set of all elements
of K	 whose interior has a nonempty intersection with ω. It is easily verified that
the limit (w
, p
) satisfies ãτ (w
, v	) + b(v	, p
) = (f, τ(v	))L2(Ω) for all � ≥ 0 and all
v	 ∈ W (T	) supported in ω. The fact that A : Dw
 = f and rotw
 = 0 in the L2

sense on ∪K show that (rot v	, p
)L2(Ω) = 0. Assumption 1 and an overlap argument

prove that (rot v, p
)L2(ω̃) = 0 for any v ∈ H1
0 (ω̃;R

d) with compact support inside ω̃,
which implies the claim.

Let μ ∈ W 1,∞(ω) denote a positive cutoff function with values in the interval
[0, 1] taking the value 1 on all elements of K	(ω) that do not meet the boundary
Γω := ∂(∪K	) \ ∂Ω, that vanishes on Γω, and that satisfies, for some constant C
and for any element T ∈ K	(ω) touching Γ that ‖∇μ‖L∞(T ) ≤ C diam(T )−1. The
boundary conditions of μ, the identity rotw = 0, and the product rule lead to

|(rot(IT�
w), p
)L2(ω)|

= |(rot((1 − μ)(w − IT�
w)), p
)L2(ω)|

≤
∑

T∈K�(ω)
T∩Γω �=∅

(‖ rot(w − IT�
w)‖L2(T ) + C diam(T )−1‖w − IT�

w‖L2(T )

) ‖p
‖L2(T ).

Using the Cauchy inequality and (23), this term can be shown to converge to zero be-
cause by the shape-regularity the measure of the elements in T	 meeting the boundary
∂(∪K	)\∂Ω converges to zero as � → ∞. In conclusion, the error estimator converges
to zero, and so does the error.

5. Numerical results. This section presents numerical experiments in two space
dimensions for the choice τLS, that is, the least-squares method.

5.1. Numerical realization. This subsection describes the employed finite el-
ement methods and the used adaptive algorithm.

5.1.1. Conforming scheme. The H2-conforming method used here is the BFS
finite element [5]. Let T be a rectangular partition of Ω, where one hanging node
(that is a point shared by two or more rectangles which is not vertex to all of them)
per edge is allowed. The finite element space Vh is the subspace of V consisting of
piecewise bicubic polynomials. It is a second-order scheme with expected convergence
of O(h2) for H4-regular solutions on quasi-uniform meshes with maximal mesh-size
h. For the error in the H1 and the L2 norm, the corresponding convergence order is
O(h3) and O(h4), respectively.

5.1.2. Mixed scheme. As a mixed scheme, the Taylor–Hood finite element [2]
is used. For a regular triangulation of T of Ω, the space Wh is the subspace of W
consisting of piecewise quadratic polynomials while Qh is the subspace of Q consisting
of piecewise affine and globally continuous functions. It is a second-order scheme
with expected convergence of O(h2) for H3-regular solution w (meaning that u is H4-
regular) on quasi-uniform meshes. For the error ‖w −∇uh‖L2(Ω), the corresponding
convergence order is O(h3). The computation of the primal variable uh is performed
with a standard finite element method based on piecewise quadratics. The predicted
convergence order in the L2 norm is O(h3).
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5.1.3. Adaptive algorithm. For any element T ∈ T the error estimators of
Propositions 3.1 and 3.3 are abbreviated as follows:

η2conf(T ) = ‖A : D2uh − f‖2L2(T ),

η2mixed(T ) = ‖A : Dwh − f‖2L2(T ) + στ
λ(γ, ε)

2‖ rotwh‖2L2(T ).

Furthermore set ηconf :=
√∑

T∈T η2conf(T ), ηmixed :=
√∑

T∈T η2mixed(T ). The follow-

ing adaptive algorithm is a concrete instance of the procedure outlined in section 4.
It is based on the Dörfler marking [8] for some parameter 0 < θ ≤ 1. In the following,
η	 refers to ηconf or ηmixed, depending on the used method. Departing from an initial
mesh T0 it runs the following loop over the index � = 0, 1, 2, . . . .

Solve. Solve the discrete problem with respect to the mesh T	.
Estimate. Compute the local error estimator contributions η2	 (T ), T ∈ T	, for the

discrete solution.
Mark. Mark a minimal subset M ⊆ T	 such that θη2	 ≤ ∑

T∈M η2	 (T ).
Refine. Compute a refined admissible partition T	+1 of T	 of minimal cardinality

such that all elements of M are refined.
For rectangular meshes, the local refinement splits every rectangle in four con-

gruent subrectangles while further local refinements assure the property of only one
hanging node per edge. On triangular meshes, newest-vertex bisection [1] is employed.

5.2. Setup. In all numerical experiments the domain is the square Ω = (−1, 1)2.
The parameter λ for the stabilization in the mixed scheme is chosen as λ = 1. All
convergence history plots are logarithmically scaled. The errors are plotted against the
number of degrees of freedom ndof, that is, the space dimension of Vh, respectively,
of Wh × Qh. In the adaptive computation, the parameter θ is chosen θ = 0.3. The
coefficient A reads

A =
[

2 x1x2/(|x1| |x2|)
x1x2/(|x1| |x2|) 2

]
.

The requirements of section 2 are met with ε = 3/5, ‖γ‖L∞(Ω) = 2/5, and ‖A‖L∞(Ω) =

2, so that c(γ, ε) = 5/2−√
5/2 > 0.91886. Three test cases are considered.

5.3. Experiment 1. In the first experiment the known smooth solution u(x) =
x1x2(1 − exp(1 − |x1|)(1 − exp(1 − |x2|) from [21] is considered. The convergence
history is displayed in Figure 1 for the conforming BFS discretization and in Figure 2
for the mixed Taylor–Hood method. The convergence rates are of optimal order,
that is, O(ndof−1) for the approximation of the Hessian and O(ndof−3/2) for the
approximation of the gradient. With the BFS element, u is approximated at the
optimal rate O(ndof−2). The mixed method gives the rate O(ndof−3/2), which is
optimal for the used quadratic FEM. Since the solution in this example is smooth and
the discontinuities of the coefficient match with the initial meshes, uniform refinement
leads to the same rates as adaptive refinement. In the case of a nonmatching initial
triangulation, uniform mesh refinement leads to reduced convergence rates as shown
in Figure 3, whereas the adaptive BFS and Taylor–Hood schemes seem to behave
optimally. The initial rectangular mesh is the square subdivided in four rectangles
meeting at (0.1, 0.2). The initial triangular mesh is created by inserting a “criss”
diagonal in each of those four rectangles. A more challenging example is given below.

5.4. Experiment 2. The known singular solution reads in polar coordinates as

u(r, θ) =

{
r5/3(1− r)5/2 sin(2θ/3)5/2 if 0 < r ≤ 1 and 0 < θ < 3π/2,

0 else.
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Fig. 1. Convergence history in the smooth Experiment 1 for the BFS finite element.
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Fig. 2. Convergence history in the smooth Experiment 1 for the Taylor–Hood finite element.
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Fig. 3. Convergence history in the smooth Experiment 1 with nonmatching initial mesh. Left:
BFS method; cf. Figure 1 for a legend. Right: BFS method; cf. Figure 2 for a legend. In both plots,
the dotted line indicates O(ndof−0.3) (unlike in Figures 1 and 2).
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Fig. 4. Convergence history in the singular Experiment 2 for the BFS finite element.
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Fig. 5. Convergence history in the singular Experiment 2 for the Taylor–Hood finite element.

The Sobolev smoothness of u near the origin (0, 0) is strictly less than H8/3. Also
near the boundary of the sector {(r, φ) : 0 < r < 1, 0 < θ < 3π/2} the regularity is
reduced. The singularities in Experiment 2 lead to the suboptimal convergence rates
of uniform refinement, displayed in the convergence history of Figure 4 for the BFS
FEM and Figure 5 for the Taylor–Hood element. In both cases, the adaptive method
converges at optimal rate. The graph of the solution computed with the adaptive
BFS element and the adaptively generated meshes are displayed in Figure 6. In both
cases, the refinement is pronounced in the regions where the solution is singular: the
origin and the curved sector boundary.

5.5. Efficiency indices for Examples 1–2. The efficiency indices are defined
by ηconf/‖D2(u − uh)‖L2(Ω) for the conforming discretization and by ηmixed/‖D2u−
Dwh‖L2(Ω). Propositions 3.1 and 3.3 and the values of ‖A‖L∞(Ω) and c(γ, ε), cτλ(γ, ε),
and στ

λ(γ, ε), predict that the efficiency index ranges in the interval [0.91886, 2] for
the conforming discretization and in [0.45943, 2.2186] for the mixed method. The
efficiency indices for Experiments 1–2 with matching initial meshes are shown in
Figure 7. For the conforming discretization they range from 1.6 to 2, while for the
mixed scheme they lie between 1.5 and 2.2.
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Fig. 6. Experiment 2. Surface plot of the discrete BFS solution (left) and adaptive meshes.
Middle: BFS, 6017 vertices, 23,584 degrees of freedom, � = 26. Right: Taylor–Hood, 4518 vertices,
40,238 degrees of freedom, � = 18.
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Fig. 7. Efficiency indices (estimator/error) for the error estimators in Experiments 1–2
(BFS=Bogner–Fox–Schmit, TH=Taylor–Hood) with matching initial meshes.

5.6. Experiment 3. This is an example with right-hand side f = 1, where the
exact solution is unknown. The used coefficient is A ◦ ϕ, that is, A is concatenated
with the nonlinear transform ϕ(x1, x2) = (x1 + 1/3 , x2 − 1/3 + (x1 + 1/3)1/3). The
coefficient is not aligned with the initial meshes and has a sharp discontinuity interface
near the point (−1/3,−1/3+ (1/3)1/3). Figure 8 displays the sign pattern of its off-
diagonal entries. In Experiment 3, the meshes are not aligned with the discontinuous
coefficient. The convergence history is shown in Figure 9 for the BFS method and
the Taylor–Hood method. Since the exact solution is not known, the error estimators
are plotted. In both cases, uniform refinement leads to the suboptimal convergence
rate of O(ndof−0.35). The adaptive methods converge at a better rate. Still, it is
suboptimal of rate O(ndof−1/2). This may be due to underintegration. Indeed, a
Gaussian quadrature rule is used, which is not accurate for discontinuous function,
and the adaptive method behaves like a first-order scheme. The adaptive meshes from
Figure 8 show strong refinement toward the jump of the coefficient.

6. Conclusive remarks. The variational formulation of [21] as well as the new
least-squares formulation of elliptic equations in nondivergence form can be discretized
with conforming and, more importantly, mixed finite element technologies in a direct
way. This allows for quasi-optimal error estimates and a posteriori error analysis.
The proven convergence of the adaptive algorithm can be observed in the numerical
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Fig. 8. Experiment 3 with the nonmatching coefficient. Sign pattern of the off-diagonal entries
of the coefficient A (left) and adaptive meshes. Middle: BFS, 4808 vertices, 18,716 degrees of
freedom, � = 33. Right: Taylor–Hood, 5848 vertices, 51,956 degrees of freedom, � = 28.
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Fig. 9. Convergence history for the BFS and the Taylor–Hood FEM for Experiment 3 with the
nonmatching coefficient.

experiments, and, as an empirical observation, appears to be quasi-optimal, provided
the quadrature is accurate enough. The following remarks conclude this paper.

(a) On the choice of the variational formulation. The least-squares method is
presented as an alternative approach to the nonsymmetric formulation of [21]. While
the symmetry of the discrete problem is certainly a favorable property, a straight-
forward generalization to, e.g., Hamilton–Jacobi–Bellman equations (as presented in
[22, 23] for the nonsymmetric formulation) is less obvious. This is due to the fact that
the nonlinear operator in that problem does not have sufficient smoothness proper-
ties that would allow an analysis of a direct least-squares procedure. Alternatively,
the least-squares method could be applied to the linear problems from a semismooth
Newton algorithm. However, as semismoothness on the operator level does not hold
in general (cf. [22, Rem. 1]), an analysis of this method requires further investigation.

(b) Nonconvex domains. The least-squares formulation may still be meaningful
on nonconvex domains, but the solution will generally not coincide with that of (1).

(c) Nonconforming schemes. Nonconforming finite elements for fourth-order prob-
lems [5] have the advantage to be much simpler than their conforming counterparts.
Since discrete analogues of (11) or (8) may not be satisfied without further stabiliza-
tion terms, their application would require further modifications.

(d) Lower-order terms. Equations in nondivergence form including lower-order
terms can be equally well treated in the proposed framework; see also [22]. The
least-squares formulation can be derived from the minimization of the functional ‖A :
D2u + b · ∇u + cu − f‖L2(Ω) for data b and c > 0. For the mixed system (16) this
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leads to a coupling of (16a) and (16b)–(16c). The Cordes condition with lower-order
terms [22] reads as follows: there exists α > 0 such that(|A|2 + |b|2/(2α) + (c/α)2

) /
(trA+ c/α)2 ≤ 1/(d+ ε).

More details on this Cordes condition are given in [22].
(e) Space dimensions higher than d = 3. The main arguments of this work are

valid for any space dimension d ≥ 2. Also the mixed formulation can be formulated
in any dimension, provided it is posed in the space satisfying the constraint rotw = 0,
which in higher dimensions is understood as Dw = (Dw)∗. For the design of a
numerical method, it remains to identify the space Q of multipliers.

Acknowledgments. The author thanks Prof. Ch. Kreuzer for a helpful discus-
sion and the anonymous referees who helped to significantly improve the presentation.
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[6] H. O. Cordes, Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen
zweiter Ordnung in mehr als zwei Variablen, Math. Ann., 131 (1956), pp. 278–312.

[7] M. Costabel and M. Dauge, Maxwell and Lamé eigenvalues on polyhedra, Math. Methods
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