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COMPUTATION OF QUASI-LOCAL EFFECTIVE DIFFUSION
TENSORS AND CONNECTIONS TO THE MATHEMATICAL

THEORY OF HOMOGENIZATION∗

D. GALLISTL† AND D. PETERSEIM‡

Abstract. This paper aims at bridging existing theories in numerical and analytical homog-
enization. For this purpose the multiscale method of Målqvist and Peterseim [Math. Comp., 83
(2014), pp. 2583–2603], which is based on orthogonal subspace decomposition, is reinterpreted by
means of a discrete integral operator acting on standard finite element spaces. The exponential decay
of the involved integral kernel motivates the use of a diagonal approximation and, hence, a localized
piecewise constant coefficient. In a periodic setting, the computed localized coefficient is proved to
coincide with the classical homogenization limit. An a priori error analysis shows that the local
numerical model is appropriate beyond the periodic setting when the localized coefficient satisfies a
certain homogenization criterion, which can be verified a posteriori. The results are illustrated in
numerical experiments.

Key words. numerical homogenization, multiscale method, upscaling, a priori error estimates,
a posteriori error estimates

AMS subject classifications. 65N12, 65N15, 65N30, 73B27, 74Q05

DOI. 10.1137/16M1088533

1. Introduction. Consider the prototypical elliptic model problem

− divAε∇u = f,

where the diffusion coefficient Aε encodes microscopic features on some characteristic
length scale ε. Homogenization is a tool of mathematical modeling to identify reduced
descriptions of the macroscopic response of such multiscale models in the limit as ε
tends to zero. It turns out that suitable limits represented by the so-called effective
or homogenized coefficient exist in fairly general settings in the framework of G-, H-,
or two-scale convergence [37, 10, 31, 32, 3]. In general, the effective coefficient is
not explicitly given but is rather the result of an implicit representation based on
cell problems. This representation usually requires structural assumptions on the
sequence of coefficients Aε such as local periodicity and scale separation [6]. Under
such assumptions, efficient numerical methods for the approximate evaluation of the
homogenized model are available, e.g., the heterogeneous multiscale method (HMM)
[11, 1] or the two-scale finite element method [29].

In contrast to this idealized setting of analytical homogenization, in practice one is
often concerned with one coefficient A with heterogeneities on multiple nonseperable
scales and a corresponding sequence of scalable models can hardly be identified or may
not be available at all. That is why we are interested in the computation of effective
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representations of very rough coefficients beyond structural assumptions such as scale
separation and local periodicity. In recent years, many numerical attempts have
been developed that conceptually do not rely on analytical homogenization results for
rough cases. Among them are the multiscale finite element method [22, 13], metric-
based upscaling [34], hierarchical matrix compression [17, 19], the flux-norm approach
[8], generalized finite elements based on spectral cell problems [5, 12], the AL basis
[16, 38], rough polyharmonic splines [35], iterative numerical homogenization [26], and
gamblets [33].

Another construction based on concepts of orthogonal subspace decomposition
and the solution of localized microscopic cell problems was given in [28] and later
optimized in [21, 20, 14, 36]. The method is referred to as the localized orthogonal
decomposition (LOD) method. The approach is inspired by ideas of the variational
multiscale method [23, 24, 27]. As most of the methods above, the LOD constructs
a basis representation of some finite-dimensional operator-dependent subspace with
superior approximation properties rather than computing an upscaled coefficient. The
effective model is then a discrete one represented by the corresponding stiffness matrix
and possibly right-hand side. The computation of an effective coefficient is, however,
often favorable and this paper reinterprets and modifies the LOD method in this
regard.

To this end, we revisit the LOD method of [28]. The original method employs fi-
nite element basis functions that are modified by a fine-scale correction with a slightly
larger support. We show that it is possible to rewrite the method by means of a dis-
crete integral operator acting on standard finite element spaces. The discrete operator
is of nonlocal nature and is not necessarily associated with a differential operator on
the energy space H1

0 (Ω) (for the physical domain Ω ⊆ Rd). The observation scale
H is associated with some quasi-uniform mesh TH of width H. We are able to show
that there is a discrete effective nonlocal model represented by an integral kernel
AH ∈ L∞(Ω×Ω; Rd×d) such that the problem is well-posed on a finite element space
VH with similar constants and satisfies

sup
f∈L2(Ω)\{0}

‖u(f)− uH(f)‖L2(Ω)

‖f‖L2(Ω)
. sup
f∈L2(Ω)\{0}

inf
vH∈VH

‖u(f)− vH‖L2(Ω)

‖f‖L2(Ω)
+H2.

Based on the exponential decay of that kernel AH away from the diagonal, we propose
a quasi-local and sparse formulation as an approximation. The storage requirement
for the quasi-local kernel is O(H−d|logH|).

For an even stronger compression to O(H−d) information, one can replace AH by
a local and piecewise constant tensor field AH . It turns out that this localized effective
coefficient AH coincides with the homogenized coefficient of classical homogenization
in the periodic case provided that the structure of the coefficient is slightly stronger
than only periodic and that the mesh is suitably aligned with the periodicity pattern.
In this sense, the results of this paper bridge the multiscale method of [28] with
classical analytical techniques and numerical methods such as HMM. With regard to
the recent reinterpretation of the multiscale method in [25], the paper even connects
all the way from analytic homogenization to the theory of iterative solvers.

This new representation of the multiscale method turns out to be particularly
attractive for computational stochastic homogenization [15]. A further advantage of
our numerical techniques when compared with classical analytical techniques is that
they are still applicable in the general nonperiodic case, where the local numerical
model yields reasonable results whenever a certain quantitative homogenization cri-
terion is satisfied, which can be checked a posteriori through a computable model
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error estimator. Almost optimal convergence rates can be proved under reasonable
assumptions on the data.

The structure of this article is as follows. After the preliminaries on the model
problem and notation from section 2, we review the LOD method of [28] and introduce
the quasi-local effective discrete coefficients in section 3. In section 4, we present the
error analysis for the localized effective coefficient. Section 5 studies the particular
case of a periodic coefficient. We present numerical results in section 6.

Standard notation on Lebesgue and Sobolev spaces applies throughout this paper.
The notation a . b abbreviates a ≤ Cb for some constant C that is independent of
the mesh-size but may depend on the contrast of the coefficient A; a ≈ b abbreviates
a . b . a. The symmetric part of a quadratic matrix M is denoted by sym(M).

2. Model problem and notation. This section describes the model problem
and some notation on finite element spaces.

2.1. Model problem. Let Ω ⊆ Rd for d ∈ {1, 2, 3} be an open Lipschitz poly-
tope. We consider the prototypical model problem

(2.1) − div(A∇u) = f in Ω, u|∂Ω = 0.

The coefficient A ∈ L∞(Ω; Rd×d) is assumed to be symmetric and to satisfy the
following uniform spectral bounds:

(2.2) 0 < α ≤ ess inf
x∈Ω

inf
ξ∈Rd\{0}

ξ · (A(x)ξ)
ξ · ξ

≤ ess sup
x∈Ω

sup
ξ∈Rd\{0}

ξ · (A(x)ξ)
ξ · ξ

≤ β.

The symmetry of A is not essential for our analysis and is assumed for simpler nota-
tion. The weak form employs the Sobolev space V := H1

0 (Ω) and the bilinear form a
defined, for any v, w ∈ V , by

a(v, w) := (A∇v,∇w)L2(Ω).

Given f ∈ L2(Ω) and the linear functional

F : V → R with F (v) :=
ˆ

Ω
fv dx for any v ∈ V,

the weak form seeks u ∈ V such that

(2.3) a(u, v) = F (v) for all v ∈ V.

2.2. Finite element spaces. Let TH be a quasi-uniform regular triangulation
of Ω and let VH denote the standard P1 finite element space, that is, the subspace of
V consisting of piecewise first-order polynomials.

Given any subdomain S ⊆ Ω, define its neighborhood via

N(S) := int
(
∪{T ∈ TH : T ∩ S 6= ∅}

)
.

Furthermore, we introduce for any m ≥ 2 the patch extensions

N1(S) := N(S) and Nm(S) := N(Nm−1(S)).

Throughout this paper, we assume that the coarse-scale mesh TH belongs to a family of
quasi-uniform triangulations. The global mesh-size reads H:= max{diam(T ) : T∈TH}.
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Note that the shape-regularity implies that there is a uniform bound C(m) on the
number of elements in the mth-order patch, card{K ∈ TH : K ⊆ Nm(T )} ≤ C(m)
for all T ∈ TH . The constant C(m) depends polynomially on m. The set of interior
(d− 1)-dimensional hyper faces of TH is denoted by FH . For a piecewise continuous
function ϕ, we denote the jump across an interior edge by [ϕ]F , where the index F
will sometimes be omitted for brevity. The space of piecewise constant d× d matrix
fields is denoted by P0(TH ; Rd×d).

Let IH : V → VH be a surjective quasi-interpolation operator that acts as a H1-
stable and L2-stable quasi-local projection in the sense that IH ◦ IH = IH and that
for any T ∈ TH and all v ∈ V there holds

H−1‖v − IHv‖L2(T ) + ‖∇IHv‖L2(T ) ≤ CIH‖∇v‖L2(N(T )),(2.4)
‖IHv‖L2(T ) ≤ CIH‖v‖L2(N(T )).(2.5)

Since IH is a stable projection from V to VH , any v ∈ V is quasi-optimally approxi-
mated by IHv in the L2(Ω) norm as well as in the H1(Ω) norm. One possible choice
is to define IH := EH ◦ΠH , where ΠH is the L2 projection onto the space P1(TH) of
piecewise affine (possibly discontinuous) functions and EH is the averaging operator
that maps P1(TH) to VH by assigning to each free vertex the arithmetic mean of the
corresponding function values of the neighboring cells, that is, for any v ∈ P1(TH)
and any free vertex z of TH ,

(2.6) (EH(v))(z) =
∑
T∈TH

with z∈T

v|T (z)
/

card{K ∈ TH : z ∈ K}.

This choice of IH is employed in our numerical experiments.

3. Nonlocal effective coefficient. We introduce a modified version of the LOD
method of [28, 21] and its localization. We give a new interpretation by means of a
nonlocal effective coefficient and present an a priori error estimate.

3.1. A modified LOD method. Let W := ker IH ⊆ V denote the kernel of
IH . Given any T ∈ TH and j ∈ {1, . . . , d}, the element corrector qT,j ∈ W is the
solution of the variational problem

(3.1) a(w, qT,j) =
ˆ
T

∇w · (Aej) dx for all w ∈W.

Here ej is the jth standard Cartesian unit vector in Rd. The gradient of any vH ∈ VH
has the representation

∇vH =
∑
T∈TH

d∑
j=1

(∂jvH |T )ej .

Given any vH ∈ VH , define the corrector CvH by

(3.2) CvH =
∑
T∈TH

d∑
j=1

(∂jvH |T )qT,j .

We remark that for any vH ∈ VH the gradient ∇vH is piecewise constant and, thus,
CvH is a finite linear combination of the element correctors qT,j . It is readily verified
that, for any vH ∈ VH , CvH is the a-orthogonal projection on W , i.e.,

(3.3) a(w, vH − CvH) = 0 for all w ∈W.
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Clearly, by (3.3), the projection Cv ∈W is well-defined for any v ∈ V . The represen-
tation (3.2) for discrete functions will, however, be useful in this work.

The LOD method in its version from [28] seeks ūH ∈ VH such that

(3.4) a((1− C)ūH , (1− C)vH) = F ((1− C)vH) for all vH ∈ VH .

By (3.3), it is clear that this is equivalent to

(3.5) a(ūH , (1− C)vH) = F ((1− C)vH) for all vH ∈ VH .

A variant of this multiscale method employs a problem-independent right-hand side
and seeks uH ∈ VH such that

a((1− C)uH , (1− C)vH) = F (vH) for all vH ∈ VH

or, equivalently,

(3.6) a(uH , (1− C)vH) = F (vH) for all vH ∈ VH .

3.2. Localization of the corrector problems. Here, we briefly describe the
localization technique of [28]. It was shown in [28] and [21, Lemma 4.9] that the
method is localizable in the sense that any T ∈ TH and any j ∈ {1, . . . , d} satisfy

(3.7) ‖∇qT,j‖L2(Ω\Nm(T )) . exp(−cm)‖ej‖L2(T ), m ≥ 0.

The exponential decay from (3.7) suggests to localize the computation (3.1) of the
corrector belonging to an element T ∈ TH to a smaller domain, namely, the extended
element patch ΩT := N`(T ) of order `. The nonnegative integer ` is referred to as the
oversampling parameter. Let WΩT ⊆ W denote the space of functions from W that
vanish outside ΩT . On the patch, in analogy to (3.1), for any vH ∈ VH , any T ∈ TH ,
and any j ∈ {1, . . . , d}, the function q

(`)
T,j ∈WΩT solves

(3.8)
ˆ

ΩT
∇w · (A∇q(`)

T,j) dx =
ˆ
T

∇w · (Aej) dx for all w ∈WΩT .

Given vH ∈ VH , we define the corrector C(`)vH ∈W by

(3.9) C(`)vH =
∑
T∈TH

d∑
j=1

(∂jvH |T )q(`)
T,j .

A practical variant of (3.6) is to seek u(`)
H ∈ VH such that

(3.10) a(u(`)
H , (1− C(`))vH) = F (vH) for all vH ∈ VH .

This procedure is indispensable for actual computations and the effect of the trun-
cation of the domain on the error of the multiscale method was analyzed in [28] and
[21]. We will provide the error analysis for the method (3.10) in subsection 3.4.

3.3. Definition of the quasi-local effective coefficient. In this subsection,
we do not make any specific choice for the oversampling parameter `. In particular,
the analysis covers the case that all element patches ΩT equal the whole domain Ω.
We denote the latter case formally by ` =∞.
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We reinterpret the left-hand side of (3.10) as a nonlocal operator acting on stan-
dard finite element functions. To this end, consider any uH , vH ∈ VH . We have

a
(
uH ,

(
1− C(`)

)
vH

)
=
ˆ

Ω
∇uH · (A∇vH) dx−

ˆ
Ω
∇uH · (AC(`)∇vH) dx.

The second term can be expanded with (3.9) as
ˆ

Ω
∇uH · (A∇C(`)vH) dx

=
∑
T∈TH

d∑
k=1

(∂kvH |T )
ˆ

Ω
∇uH · (A∇q(`)

T,k) dx

=
∑

K,T∈TH

ˆ
K

∇uH ·

(
d∑
k=1

 
K

(A(y)∇q(`)
T,k(y)) dy (∂kvH |T )

)
dx

=
∑

K,T∈TH

|K| |T | ∇uH |K · (KT,K∇vH |T )

for the matrix K(`)
T,K defined for any K,T ∈ TH by

(K(`)
T,K)j,k :=

1
|T | |K|

ej ·
ˆ
K

A∇q(`)
T,k dx.

Define the piecewise constant matrix field over TH × TH , for T,K ∈ TH by

A(`)
H |T,K :=

δT,K
|K|

 
T

Adx−K(`)
T,K

(where δ is the Kronecker symbol) and the bilinear form a(`) on VH × VH by

a(`)(vH , zH) :=
ˆ

Ω

ˆ
Ω
∇vH(y) · (A(`)

H (x, y)∇zH(x)) dy dx for any vH , zH ∈ VH .

We obtain for all vH , zH ∈ VH that

(3.11) a(vH , (1− C(`))zH) = a(`)(vH , zH).

Remark 3.1 (notation). For simplices T,K ∈ TH with x ∈ T and y ∈ K, we will
sometimes write K(`)(x, y) instead of K(`)

T,K (with analogous notation for A(`)).

Next, we state the equivalence of two multiscale formulations.

Proposition 3.2. A function u
(`)
H ∈ VH solves (3.10) if and only if it solves

(3.12) a(`)(u(`)
H , vH) = F (vH).

Proof. This follows directly from the representation (3.11).

Remark 3.3. For d = 1 and IH the standard nodal interpolation operator, the
corrector problems localize to one element and the presented multiscale approach coin-
cides with various known methods (homogenization, multiscale finite element method
(MSFEM)). The resulting effective coefficient A(`)

H is diagonal and, thus, local. This
is no longer the case for d ≥ 2.
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3.4. Error analysis. This subsection presents an error estimate for the error
produced by the method (3.10) (and so by the method (3.12)). We begin by briefly
summarizing some results from [28].

Lemma 3.4. Let u ∈ V solve (2.3) and ūH ∈ VH solve (3.4). Then we have the
following properties:

(i) ūH coincides with the quasi interpolation of u, i.e., ūH = IHu.
(ii) The Galerkin orthogonality a(u− (1−C)IHu, (1−C)vH) = 0 for all vH ∈ VH

is satisfied.
(iii) The error satisfies ‖∇(u− (1− C)ūH)‖L2(Ω) . H‖f‖L2(Ω).

Proof. See [28] for proofs.

We define the following worst-case best-approximation error:

(3.13) wcba(A, TH) := sup
g∈L2(Ω)\{0}

inf
vH∈VH

‖u(g)− vH‖L2(Ω)

‖g‖L2(Ω)
,

where for g ∈ L2(Ω), u(g) ∈ V solves (2.3) with right-hand-side g. Standard interpo-
lation and stability estimates show that always wcba(A, TH) . H, but it may behave
better in certain regimes. For example, in a periodic homogenization problem with
some small parameter ε and some smooth homogenized solution u0 ∈ H2(Ω), the
best-approximation error is dominated by the best-approximation error of u0 in the
regime H .

√
ε where it scales like H2. By contrast, the error is typically not im-

proved in the regime
√
ε & H & ε. This nonlinear behavior of the best-approximation

error in the preasymptotic regime is prototypical for homogenization problems with
scale separation and explains why the rough bound H is suboptimal.

The following result states an L2 error estimate for the method (3.6). The result
is surprising because the perturbation of the right-hand side seems to be of order H
at first glance. In cases of scale separation the quadratic rate is indeed observed in
the regime H .

√
ε and cannot be explained by naive estimates.

Proposition 3.5. The solutions u ∈ V to (2.3) and uH ∈ VH to (3.6) for right-
hand-side f ∈ L2(Ω) satisfy the following error estimate:

‖u− uH‖L2(Ω)

‖f‖L2(Ω)
. H2 + wcba(A, TH).

Proof. Let f ∈ L2(Ω) \ {0} and let ūH ∈ VH solve (3.5). We begin by analyzing
the error eH := uH − ūH . Let z ∈ V denote the solution to

a(v, z) = (eH , IHv)L2(Ω) for all v ∈ V.

To see that the right-hand side is indeed represented by an L2 function, note that
IH is continuous on L2(Ω) and, hence, the right-hand side has a Riesz representative
ẽ ∈ L2(Ω) such that (eH , IHv)L2(Ω) = (ẽ, v)L2(Ω). In particular, z solves (2.3) with
right-hand-side ẽ. Its L2 norm is bounded with (2.5) as follows:

‖ẽ‖2L2(Ω) = (eH , IH ẽH)L2(Ω) . ‖eH‖L2(Ω)‖ẽ‖L2(Ω);

hence

(3.14) ‖ẽ‖L2(Ω) . ‖eH‖L2(Ω).
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We note that, for any w ∈W , we have a(w, z) = (eH , IHw)L2(Ω) = 0. Thus, we have
a(eH , Cz) = a(CeH , z) = 0. With (1− C)z = (1− C)IHz we conclude

(3.15) ‖eH‖2L2(Ω) = a(eH , z) = a(eH , (1− C)IHz).

Elementary algebraic manipulations with the projection IH show that

−CIHz = (1− IH)
(
(1− C)IHz − z

)
+ (1− IH)z.

The relation (3.15) and the solution properties (3.5) and (3.6), thus, lead to

(3.16) ‖eH‖2L2(Ω) = F (CIHz) = |F ((1− IH)((1− C)IHz − z)) + F ((1− IH)z)|.

We proceed by estimating the two terms on the right-hand side of (3.16) separately.
For the second term in (3.16), the L2-best-approximation property of IH and (3.14)
reveal

(3.17)
|F ((1− IH)z)| . ‖f‖L2(Ω)‖ẽ‖L2(Ω) inf

vH∈VH

‖z − vH‖L2(Ω)

‖ẽ‖L2(Ω)

. ‖f‖L2(Ω)‖eH‖L2(Ω)wcba(A, TH).

For the first term in (3.16), we obtain with the stability of IH and the Cauchy in-
equality that

|F ((1− IH)((1− C)IHz − z))| . ‖f‖L2(Ω)‖z − (1− C)IHz‖L2(Ω).

Let g̃ := z − (1− C)IHz and let ζ ∈ V denote the solution to

a(ζ, v) = (g̃, v)L2(Ω) for all v ∈ V.

As stated in Lemma 3.4(i), the function IHz ∈ VH is the Galerkin approximation to
z with method (3.4) with right-hand-side ẽ. We, thus, have by symmetry of a and
the Galerkin orthogonality from Lemma 3.4(ii) that

‖z − (1− C)IHz‖2L2(Ω) = a(ζ, z − (1− C)IHz)
= a(ζ − (1− C)IHζ, z − (1− C)IHz).

Continuity of a and Lemma 3.4(iii) reveal that this is bounded by

H2‖g̃‖L2(Ω)‖ẽ‖L2(Ω) = H2‖z − (1− C)IHz‖L2(Ω)‖ẽ‖L2(Ω).

Altogether, with (3.16),

‖eH‖L2(Ω)

‖f‖L2(Ω)
. H2 + wcba(A, TH).

Since

‖u− ūH‖L2(Ω)

‖f‖L2(Ω)
. wcba(A, TH)

(which follows from the fact that ūH = IHu), the triangle inequality concludes the
proof.
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With similar arguments it is possible to prove that the coupling ` ≈ |logH| is
sufficient to derive the error bound

(3.18) ‖u− u(`)
H ‖L2(Ω) . (H2 + wcba(A, TH)) ‖f‖L2(Ω).

The proof is based on a similar argument as in Proposition 3.5: Since the L2 distance
of u − ū

(`)
H is controlled by the right-hand side of (3.18) [21], where ū

(`)
H solves a

modified version of (3.10) with right-hand-side F ((1 − C(`))vH), it is sufficient to
control u(`)

H − ū
(`)
H in the L2 norm. This can be done with a duality argument similar

to that from the proof of Proposition 3.5. The additional tool needed therein is the
fact that

‖∇(C − C(`))IHz‖L2(Ω) . exp(−c`)C(`)‖∇z‖L2(Ω)

for the dual solution z (see [21, Proof of Theorem 4.13] for an outline of a proof), where
C(`) is an overlap constant depending polynomially on `. The choice of ` ≈ |logH|
therefore leads to (3.18). The details are omitted here and the reader is referred to
[28, 21, 36, 25].

4. Local effective coefficient. Throughout this section we consider oversam-
pling parameters chosen as ` ≈ |logH|.

4.1. Definition of the local effective coefficient. The exponential decay
motivates us to approximate the nonlocal bilinear form a(`)(·, ·) by a quadrature-like
procedure: Define the piecewise constant coefficient A(`)

H ∈ P0(TH ; Rd×d) by

A
(`)
H |T :=

 
T

Adx−
∑
K∈TH

|K| K(`)
T,K .

and the bilinear form ã(`) on V × V by

ã(`)(u, v) :=
ˆ

Ω
∇u · (A(`)

H ∇v) dx.

Remark 4.1. In analogy to classical periodic homogenization, the local effective
coefficient A(`)

H can be written as

(A(`)
H )j,k|T = |T |−1

ˆ
ΩT

ej ·
(
A(χT ek −∇q(`)

T,k)
)

= |T |−1
ˆ

ΩT
(ej −∇q(`)

T,j) ·
(
A(χT ek −∇q(`)

T,k)
)

for the characteristic function χT of T and the slightly enlarged averaging domain
ΩT . See section 5 for further analogies to homogenization theory in the periodic case.

The localized multiscale method is to seek ũ(`)
H ∈ VH such that

(4.1) ã(`)(ũ(`)
H , vH) = F (vH) for all vH ∈ VH .

The unique solvability of (4.1) is not guaranteed a priori. It must be checked a pos-
teriori whether positive spectral bounds αH , βH on A

(`)
H exist in the sense of (2.2).

Throughout this paper we assume that such bounds exist, that is, we assume that
there exist positive numbers αH , βH such that

(4.2) αH |ξ|2 ≤ ξ · (A(`)
H (x)ξ) ≤ βH |ξ|2

for all ξ ∈ Rd and almost all x ∈ Ω.
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4.2. Error analysis. The goal of this section is to establish an error estimate
for the error

‖u− ũ(`)
H ‖L2(Ω).

Let u(`)
H ∈ VH solve (3.10). Then the error estimate (3.18) leads to the a priori error

estimate

(4.3) ‖u− u(`)
H ‖L2(Ω) . (H2 + wcba(A, TH)) ‖f‖L2(Ω).

We employ the triangle inequality and merely estimate the difference ‖u(`)
H −ũ

(`)
H ‖L2(Ω).

With the finite localization parameter `, the quasi-local coefficient A(`) is sparse
in the sense that A(`)(x, y) = 0 whenever |x − y| > C`H. We note the following
lemma, which will be employed in the error analysis.

Lemma 4.2. Given some x ∈ Ω with x ∈ T for some T ∈ TH , we have

‖K(`)(x, y)‖L2(Ω,dy) . H−d/2.

Proof. From the definition of K(`), the boundedness of A, and the Hölder inequal-
ity we obtain for any j, k ∈ {1, . . . , d} that

|(K(`)
T,K)j,k| .

1
|T | |K|

‖∇qT,k‖L1(K) .
1

|T | |K|1/2
‖∇qT,k‖L2(K).

Hence, we conclude with the stability of problem (3.8) and ‖ek‖2L2(T ) = |T | that

‖K(`)(x, y)‖2L2(Ω,dy) =
∑
K∈TH

|K||K(`)
T,K |

2 = |T |−2‖∇qT,k‖2L2(Ω) . H−d.

This implies the assertion.

In what follows, we abbreviate

(4.4) ρ := CH|logH|

for some appropriately chosen constant C.

Proposition 4.3 (error estimate I). Assume that (4.2) is satisfied. Let u(`)
H ∈

VH solve (3.12) and let ũ(`)
H solve (4.1). Then,

‖∇(u(`)
H − ũ

(`)
H )‖L2(Ω) . H−d/2

∥∥∥‖∇ũ(`)
H (y)−∇ũ(`)

H (x)‖L2(Bρ(x),dy)

∥∥∥
L2(Ω,dx)

.

Proof. Denote eH := ũ
(`)
H − u

(`)
H . In the idealized case, ` = ∞, the orthogonality

(3.3) and relation (3.11) show that

‖∇(1− C(`))eH‖2L2(Ω) . a(`)(eH , eH).

The case ` & | logH| again follows ideas from [28] with the exponential-in-` closeness
of C and C` and is merely sketched here. From the stability of IH and the properties
of the fine-scale projection C(`) we observe (with contrast-dependent constants)

‖∇eH‖2L2(Ω) = ‖∇IHeH‖2L2(Ω) = ‖∇IH(1− C(`))eH‖2L2(Ω)

. ‖∇(1− C(`))eH‖2L2(Ω)

. a(`)(eH , eH) + exp(−c`)‖∇eH‖2L2(Ω)
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for some constant c > 0. Hence, with positive constants C1, C2,

‖∇eH‖2L2(Ω) ≤ C1a
(`)(eH , eH) + C2 exp(−c`)‖∇eH‖2L2(Ω).

If, for some sufficiently large r, the parameter ` is chosen to satisfy ` ≥ r|logH| such
that C2 exp(−c`) ≤ 1/2, then the second term on the right-hand side can be absorbed.
Thus, we proceed with (3.12) and (4.1) as

‖∇eH‖2L2(Ω) . a(`)(ũ(`)
H − u

(`)
H , eH) = a(`)(ũ(`)

H , eH)− ã(`)(ũ(`)
H , eH).

The right-hand side can be rewritten as

a(`)(ũ(`)
H , eH)− ã(`)(ũ(`)

H , eH)

=
ˆ

Ω

ˆ
Ω

(∇ũ(`)
H (y)−∇ũ(`)

H (x)) ·
[
A(`)
H (x, y)∇eH(x)

]
dy dx

+
ˆ

Ω

[
ũ

(`)
H (x) ·

(ˆ
Ω
A(`)
H (x, y) dy −A(`)

H (x)
)
∇eH(x)

]
dx.

The second term vanishes by definition of A(`)
H . Hence, the combination of the pre-

ceding arguments with the Cauchy inequality leads to

‖∇eH‖2L2(Ω) . ‖∇eH‖L2(Ω)

∥∥∥ˆ
Bρ(x)

A(`)
H (x, y)∗(∇ũ(`)

H (y)−∇ũ(`)
H (x)) dy

∥∥∥
L2(Ω,dx)

,

where it was used that A(`)
H (x, y) = 0 whenever |x − y| > ρ. Note that (∇ũ(`)

H (y) −
∇ũ(`)

H (x)) = 0 for all x and y that belong to the same element T ∈ TH . Thus,
A(`)
H (x, y) in the above expression can be replaced by K(`)

H (x, y). This and division by
‖∇eH‖L2(Ω) lead to

(4.5)

‖∇eH‖L2(Ω)

.
√
(ˆ

Ω

∣∣∣∣ ˆ
Bρ(x)

K(`)(x, y)∗(∇ũ(`)
H (y)−∇ũ(`)

H (x)) dy
∣∣∣∣2dx

)
.

This term can be bounded with the Cauchy inequality and Lemma 4.2 by

√
(ˆ

Ω

∣∣∣∣‖K(`)(x, y)‖L2(Bρ(x),dy)‖∇ũ
(`)
H (y)−∇ũ(`)

H (x)‖L2(Bρ(x),dy)

∣∣∣∣2 dx
)

. H−d/2
∥∥∥‖∇ũ(`)

H (y)−∇ũ(`)
H (x)‖L2(Bρ(x),dy)

∥∥∥
L2(Ω,dx)

.

This finishes the proof.

It is worth noting that the error bound in Proposition 4.3 can be evaluated with-
out knowledge of the exact solution. Hence, Proposition 4.3 can be regarded as an
a posteriori error estimate. Formula (4.5) could also be an option if it is available.
We expect Proposition 4.3 to be rather sharp. Below we provide the main a priori
error estimate, Proposition 4.5, which is fundamental for the mentioned link between
analytical and numerical homogenization. The following technical lemma is required.

Lemma 4.4 (existence of a regularized coefficient). Let AH ∈ P0(TH ; Rd×d) be
a piecewise constant field of d × d matrices that satisfies the spectral bounds (4.2).



NUMERICAL HOMOGENIZATION 1541

Then there exists a Lipschitz continuous coefficient Areg
H ∈ W 1,∞(Ω; Rd×d) satisfying

the following three properties: (1) The piecewise integral mean is conserved, i.e.,ˆ
T

Areg
H dx =

ˆ
T

AH dx for all T ∈ TH .

(2) The eigenvalues of sym(Areg
H ) lie in the interval [αH/2, 2βH ]. (3) The derivative

satisfies the bound

‖∇Areg
H ‖L∞(Ω) ≤ Cη(AH)

for some constant C that depends on the shape-regularity of TH and for the expression

η(AH) := H−1‖[AH ]‖L∞(FH)
(
1 + α−1

H ‖[AH ]‖L∞(FH)
)
.(4.6)

Here [·] defines the interelement jump and FH denotes the set of interior hyperfaces
of TH .

Proof. Consider a refined triangulation TL resulting from L uniform refinements
of TH . In particular, the mesh-size in TL is of the order 2−LH. Let ELAH denote
the TL-piecewise affine and continuous function that takes at every interior vertex the
arithmetic mean of the nodal values of AH on the adjacent elements of TL (similar
to (2.6)). Clearly, for this convex combination the eigenvalues of sym(ELAH) range
within the interval [αH , βH ]. It is not difficult to prove that, for any T ∈ TH , 

T

|AH − ELAH | dx . 2−L‖[AH ]‖L∞(FH(ωT ))(4.7)

as well as

‖AH − ELAH‖L∞(T ) . ‖[AH ]‖L∞(FH(ωT )).(4.8)

Here, FH(ωT ) denotes the set of interior hyperfaces of TH that share a point with
T . Let, for any T ∈ TH , bT ∈ H1

0 (T ) denote a positive polynomial bubble func-
tion with

ffl
T
bT dx = 1 and ‖bT ‖L∞(T ) ≈ 1. The regularized coefficient Areg

H =
EL(AH)+bT

ffl
T

(AH−EL(AH)) dx has, for any T ∈ TH , the integral mean
ffl
T
Areg
H dx =ffl

T
AH dx. For any ξ ∈ Rd with |ξ| = 1 and any T ∈ TH , the estimate (4.7) shows∣∣∣∣ξ ·  

T

(AH − ELAH) dx bT ξ
∣∣∣∣ ≤ ∣∣∣∣ 

T

(AH − ELAH) dx bT

∣∣∣∣
≤ C2−L‖[AH ]‖L∞(FH(ωT )).

If L is chosen to be of the order |log(α−1
H C‖[AH ]‖L∞(FH))| (for small jumps of AH it

can be chosen of order 1), then∣∣∣∣ξ ·  
T

(AH − ELAH) dx bT ξ
∣∣∣∣ ≤ α/2.

This and the triangle inequality prove the claimed spectral bound on sym(Areg
H ). For

the bound on the derivative of Areg
H , let t ∈ TL and T ∈ TH such that t ⊆ T . The

diameter of t is of order 2−LH. Since ‖∇bT ‖L∞(T ) . H−1, the triangle and inverse
inequalities therefore yield with the above choice of L (note that ∇(AH |T ) = 0)

‖∇Areg
H ‖L∞(t) . ‖∇(AH − EL(AH))‖L∞(t) +H−1‖AH − EL(AH)‖L∞(t)

. H−1‖[AH ]‖L∞(FH(ωT ))
(
1 + α−1

H ‖[AH ]‖L∞(FH(ωT )
)
.

This proves the assertion.
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By Lemma 4.4, there exists a coefficient Areg
H ∈ W 1,∞(Ω) such that A(`)

H is the
piecewise L2 projection of Areg

H onto the piecewise constants. Let ureg ∈ V solve

(4.9)
ˆ

Ω
∇ureg · (Areg

H ∇v) dx = F (v) for all v ∈ V.

In particular, ũH is the finite element approximation to ureg . In the following, s refers
to the H1+s(Ω) regularity index of a function. Recall that the H1+s(Ω) norm [2] of
some function v is given by

(4.10) ‖v‖H1+s(Ω) =
[
‖v‖2H1(Ω) +

ˆ
Ω

ˆ
Ω

|∇v(x)−∇v(y)|2

|x− y|d+2s dy dx

]1/2

.

We have the following error estimate.

Proposition 4.5 (error estimate II). Let ` ≈ |logH| and assume that (4.2) is
satisfied. Let u(`)

H solve (3.10) and let ũ(`)
H solve (4.1). Assume furthermore that the

solution ureg to (4.9) belongs to H1+s(Ω) for some 0 < s ≤ 1. Then,

‖∇(u(`)
H − ũ

(`)
H )‖L2(Ω) . Hs|logH|s+d/2

(
1 + η(A(`)

H )
)s‖f‖L2(Ω).

Proof. Recall the estimate from Proposition 4.3,

‖∇(u(`)
H − ũ

(`)
H )‖L2(Ω) . H−d/2

∥∥∥‖∇ũ(`)
H (y)−∇ũ(`)

H (x)‖L2(Bρ(x),dy)

∥∥∥
L2(Ω,dx)

.

To bound the norm on the right-hand side, we denote e := ∇(ũ(`)
H − ureg) and infer

with the triangle inequality

(4.11)

∥∥∥‖∇ũ(`)
H (y)−∇ũ(`)

H (x)‖L2(Bρ(x),dy)

∥∥∥
L2(Ω,dx)

≤
∥∥∥‖e(y)‖L2(Bρ(x),dy)

∥∥∥
L2(Ω,dx)

+
∥∥∥‖∇ureg(y)−∇ureg(x)‖L2(Bρ(x),dy)

∥∥∥
L2(Ω,dx)

+
∥∥∥‖e(x)‖L2(Bρ(x),dy)

∥∥∥
L2(Ω,dx)

.

The square of the first term on the right-hand side of (4.11) satisfies∥∥∥‖e(y)‖L2(Bρ(x),dy)

∥∥∥2

L2(Ω,dx)
=
ˆ

Ω

ˆ
Bρ(x)

|e(y)|2 dy dx

=
ˆ

Ω

ˆ
{x with y∈Bρ(x)}

|e(y)|2 dx dy . ρd‖e‖2L2(Ω).

Similarly, the third term on the right-hand side of (4.11) satisfies∥∥∥‖e(x)‖L2(Bρ(x),dy)

∥∥∥2

L2(Ω,dx)
=
ˆ

Ω

ˆ
Bρ(x)

|e(x)|2 dy dx . ρd‖e‖2L2(Ω).

The second term on the right-hand side of (4.11) reads for any 0 < s < 1 as∥∥∥‖∇ureg(y)−∇ureg(x)‖L2(Bρ(x),dy)

∥∥∥
L2(Ω,dx)

= ρ(d+2s)/2

(ˆ
Ω

ˆ
Bρ(x)

|∇ureg(x)−∇ureg(y)|2

ρd+2s dy dx

)1/2 ]
. ρ(d+2s)/2‖ureg‖H1+s(Ω).
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Here we have used the representation (4.10) and the fact that the value of the double
integral increases when, first, in the denominator ρ is replaced by |x−y| and thereafter
the integration domain of the inner integral is replaced by Ω. In conclusion,∥∥∥‖∇ũ(`)

H (y)−∇ũ(`)
H (x)‖L2(Bρ(x),dy)

∥∥∥
L2(Ω,dx)

. ρd/2‖e‖L2(Ω) + ρ(d+2s)/2‖ureg‖H1+s(Ω).

Since ũ(`)
H is the finite element approximation to ∇ureg , standard a priori error esti-

mates for the Galerkin projection yield

‖e‖L2(Ω) . Hs‖ureg‖H1+s(Ω).

Thus,

(4.12)
∥∥∥‖∇ũ(`)

H (y)−∇ũ(`)
H (x)‖L2(Bρ(x),dy)

∥∥∥
L2(Ω,dx)

. ρ(d+2s)/2‖ureg‖H1+s(Ω).

If ureg belongs to H2(Ω), then the results of [18, 9, 30] lead to

(4.13)
‖ureg‖H2(Ω) . ‖Areg

H ‖W 1,∞(Ω)(‖f‖L2(Ω) + ‖ureg‖H1(Ω))
. ‖Areg

H ‖W 1,∞(Ω)‖f‖L2(Ω).

The assertion in H1+s(Ω) can be proved with an operator interpolation argument.
Indeed, as shown in [18], the operator −div(Areg∇·) maps H2(Ω)∩H1

0 (Ω) to a closed
subspace Y1 of L2(Ω). Let T denote the solution operator, which maps Y1 to X1 :=
H2(Ω) and furthermore maps Y0 := L2(Ω) to X0 := H1(Ω). The real method of
Banach space interpolation [7] shows that H1+s(Ω) = [X0, X1]s,2, which together
with the H1 stability of the problem and (4.13) proves

‖ureg‖H1+s(Ω) . ‖Areg
H ‖

s
W 1,∞(Ω)‖f‖L2(Ω).

The combination with Lemma 4.4 proves

‖ureg‖H1+s(Ω) .
(
1 + η(A(`)

H )
)s ‖f‖L2(Ω).

The combination with Proposition 4.3 and (4.12) proves

‖∇(u(`)
H − ũ

(`)
H )‖L2(Ω) . H−d/2ρ(d+2s)/2‖ureg‖H1+s(Ω)

. Hs|logH|s+d/2
(
1 + η(A(`)

H )
)s ‖f‖L2(Ω).

This implies the assertion.

Remark 4.6 (homogenization indicator). If the relations

H−1‖[A(`)
H ]‖L∞(FH) . 1 and α−1

H H . 1

are satisfied, then the multiplicative constant in Proposition 4.5 is of moderate size.
Hence, we interpret η(A(`)

H ) as a homogenization indicator and the above relations as
a homogenization criterion.

Remark 4.7 (local mesh-refinement). We furthermore remark that local versions
of η(A(`)

H ) involving the jump information H−1‖[A(`)
H ]‖L∞(F ) for interior interfaces

F may be used as refinement indicators for local mesh-adaptation. This possibility,
however, shall not be further discussed here.
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Remark 4.8 (global homogenized coefficient). If the global variations of A(`)
H are

small in the sense that there are positive constants c1, c2 such that, almost everywhere,

c1|ξ|2 ≤ ξ · (A(`)
H ξ) ≤ c2|ξ|2 for any ξ ∈ Rd

holds with |c2 − c1| . H, then A
(`)
H can be replaced by

ffl
ΩA

(`)
H dx without effecting

the accuracy.

The combination of Proposition 4.5 with (4.3) leads to the following a priori error
estimate. The parameter s therein is determined by the elliptic regularity of the model
problem with a W 1,∞(Ω) coefficient.

Theorem 4.9. Let ` ≈ |logH| and assume that (4.2) is satisfied. Let u solve
(2.3) and let ũ(`)

H solve (4.1). Assume furthermore that the solution ureg to (4.9)
belongs to H1+s(Ω) for some 0 < s ≤ 1. Then,

‖u− ũ(`)
H ‖L2(Ω) .

(
H +Hs|logH|s+d/2

(
1 + η(A(`)

H )
)s)‖f‖L2(Ω).

In particular, under the homogenization criterion from Remark 4.6, a convergence
rate is achieved. If the domain is convex, then s can be chosen as s = 1, i.e., the
convergence rate is linear up to a logarithmic factor.

Proof. This follows from combining Proposition 4.5 with (4.3), the triangle in-
equality, and the Friedrichs inequality. If the domain is convex, elliptic regularity
theory [18, 9, 30] shows that s = 1 is an admissible choice.

Remark 4.10. We emphasize that η(A(`)
H ) is not an error estimator for the dis-

cretization error. It rather indicates whether the local discrete model is appropriate.
If η(A(`)

H ) is close to zero, then the multiplicative constant on the right-hand side of
the formula in Theorem 4.9 is of reasonable magnitude.

5. The periodic setting. In this section we justify the use of the local effective
coefficient AH in the periodic setting. We show that the procedure in its idealized
form with ` =∞ recovers the classical periodic homogenization limit. We denote by
V := H1

#(Ω)/R the space of periodic H1 functions with vanishing integral mean over
Ω. We assume Ω to be a polytope allowing for periodic boundary conditions. We adopt
the notation of section 3; in particular, W ⊆ V is the kernel of the quasi-interpolation
IH , VH is the space of piecewise affine globally continuous functions of V , and C(`),
a, ã(`), a(`), A(`)

H , A(`)
H , K(`) are defined as in section 3 with the underlying space V

being H1
#(Ω)/R. We assume that the domain Ω matches with integer multiples of

the period. We assume the triangulation TH to match with the periodicity pattern.
For simplicial partitions this implies further symmetry assumptions. In particular,
periodicity with respect to a uniform rectangular grid is not sufficient. Instead we
require further symmetry within the triangulated macro-cells; see Example 5.1 for an
illustration. This property will be required in the proof of Propositon 5.2 below. In
particular, not every periodic coefficient may meet this requirement. Also, generating
such a triangulation requires knowledge about the length of the period.

Example 5.1. Figure 1 displays a periodic coefficient and a matching triangula-
tion.

We remark that the error estimate (3.18) and Proposition 4.5 hold in this case as
well. Due to the periodic boundary conditions, the auxiliary solution ureg utilized in
the proof of Proposition 4.5 has the smoothness ureg ∈ H2(Ω) so that those estimates
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Fig. 1. Periodic coefficients with respect to a square grid and triangulations: nonmatching
(left) and matching (right).

are valid with s = 1. In the periodic setting, further properties of A(`)
H can be derived.

First, it is not difficult to prove that the coefficient A(`)
H is globally constant. The

following result states that, in the idealized case ` = ∞, the coefficient A(`)
H is even

independent of the mesh-size H and coincides with the classical homogenization limit,
where for any j = 1, . . . , d, the corrector q̂j ∈ H1

#(Ω)/R is the solution to

divA(∇q̂j − ej) = 0 in Ω with periodic boundary conditions.(5.1)

Proposition 5.2. Let A be periodic and let TH be uniform and aligned with the
periodicity pattern of A and let V , W be spaces with periodic boundary conditions.
Then, for any T ∈ TH , the idealized coefficient A(∞)

H |T coincides with the homogenized
coefficient from the classical homogenization theory. In particular, A(∞)

H is globally
constant and independent of H.

Proof. Let T ∈ TH and j, k ∈ {1, . . . , d}. The definitions of A(∞)
H |T and K(∞)

lead to

(5.2)

 
T

Ajk dx− (A(∞)
H |T )jk = |T |−1

∑
K∈TH

ˆ
K

ej · (A∇qT,k) dx

= |T |−1
ˆ

Ω
ej · (A∇qT,k) dx.

The sum over all element correctors defined by qk :=
∑
T∈TH qT,k solves

(5.3) a(w, qk) = (∇w,Aek)L2(Ω) for all w ∈W.

The definitions of qT,k and qk and the symmetry of A lead to

(5.4)
|T |−1

ˆ
Ω
ej · (A∇qT,k) dx = |T |−1

ˆ
Ω
∇qj · (A∇qT,k) dx

=
 
T

ek · (A∇qj) dx.

Let v ∈ V . We have (v − IHv) ∈W and therefore by (5.3) that
ˆ

Ω
∇v · (A(∇qj − ej)) dx =

ˆ
Ω

(∇IHv) · (A(∇qj − ej)) dx

=
∑
K∈TH

ˆ
K

(∇IHv) dx ·
 
K

A(∇qj − ej) dx,
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where for the last identity it was used that ∇IHv is constant on each element. By
periodicity we have that

ffl
K
A(∇qj − ej) dx =

ffl
ΩA(∇qj − ej) dx for any K ∈ TH .

Therefore, for all v ∈ V ,
ˆ

Ω
∇v · (A(∇qj − ej)) dx =

ˆ
Ω

(∇IHv) dx ·
 

Ω
A(∇qj − ej) dx = 0

due to the periodic boundary conditions of IHv. Hence, the difference∇qj−ej satisfies
(5.1). This is the corrector problem from classical homogenization theory and, thus,
the proof is concluded by the above formulae (5.2)–(5.4). Indeed, by symmetry of A,

(A(∞)
H |T )jk =

 
T

Ajk dx−
 
T

ek · (A∇qj) dx =
 
T

(ej −∇qj) ·Aek dx.

Remark 5.3. For Dirichlet boundary conditions, the method is different from the
classical periodic homogenization as it takes the boundary conditions into account.

The remaining parts of this section are devoted to an L2 error estimate for the
classical homogenization limit. Let the coefficient A = Aε be periodic, oscillating on
the scale ε. Let H be the observation scale represented by the mesh-size of the finite
element mesh. We couple H to ε so that the ratio H/ε is constant. Recall from
Proposition 5.2 that the idealized coefficient A(∞)

H = A0 for a constant coefficient A0
that is independent of H. It is known (see, e.g., [4]) that, in the present case of a
symmetric coefficient, A0 satisfies the bounds (4.2). Denote, for any ε, by uε ∈ V the
solution to

(5.5)
ˆ

Ω
∇uε · (Aε∇v) dx = F (v) for all v ∈ V.

Denote by u0 ∈ V the solution to

(5.6)
ˆ

Ω
∇u0 · (A0∇v) dx = F (v) for all v ∈ V.

In periodic homogenization theory, the function u0 is called the homogenized solution.
The aim is to estimate ‖u0−uε‖L2(Ω) in terms of ε. The following perturbation result
is required.

Lemma 5.4 (perturbed coefficient). Let H and ε be coupled so that H/ε is
constant. Let the localization parameter ` be chosen of order ` ≈ |logH|. Then,

‖A(∞)
H −A(`)

H ‖L∞(Ω) . H.

There exist ε0 > 0 and 0 < α′ ≤ β′ <∞ such that for all ε ≤ ε0

α′|ξ|2 ≤ ξ · (A(`)
H (x)ξ) ≤ β′|ξ|2

for all ξ ∈ Rd and almost all x ∈ Ω.

Proof. Remark 4.1 shows that A(∞)
H and A

(`)
H are given on any T ∈ TH through

(A(∞)
H )j,k|T = |T |−1

ˆ
Ω
ej ·

(
A(χT ek −∇qT,k)

)
and (A(`)

H )j,k|T = |T |−1
ˆ

ΩT
ej ·

(
A(χT ek −∇q(`)

T,k)
)
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for any j, k ∈ {1, . . . , d}. Thus,

|(A(∞)
H )j,k|T − (A(`)

H )j,k|T | = |T |−1
ˆ

Ω
ej ·

(
A(∇(qT,k − q(`)

T,k))
)

≤ |T |−1‖A1/2ej‖L2(Ω)‖A1/2∇(qT,k − q(`)
T,k)‖L2(Ω)

≤ |T |−1‖A1/2∇(qT,k − q(`)
T,k)‖L2(Ω).

It is shown in [21, proof of Corollary 4.11] that

‖A1/2∇(qT,k − q(`)
T,k)‖L2(Ω) . exp(−c`)|T |1/2.

In conclusion, the choice ` ≈ |logH| implies the first stated estimate. The second
stated result follows from a perturbation argument because it is known [4] that A(∞)

H =
A0 satisfies (2.2).

The following result recovers the classical homogenization limit uε → u0 strongly
in L2 as ε→ 0. In particular, it quantifies the convergence speed and states that for
f ∈ L2(Ω) an almost linear rate is achieved.

Proposition 5.5 (quantified homogenization limit). Let Ω be convex, let uε ∈ V
solve (5.5), and let u0 ∈ V solve (5.6). For any ε ≤ ε0 (for ε0 from Lemma 5.4) we
have

‖uε − u0‖L2(Ω) . ε|log ε|1+d/2‖f‖L2(Ω).

Proof. As before, we couple H and ε such that H/ε is constant. We denote by
u

(`)
H ∈ VH the solution to (3.10), by ũ(`)

H ∈ VH the solution to (4.1), and by ũ(∞)
H ∈ VH

the solution to (4.1) with the choice ` =∞, where in all problems A is replaced by Aε.
Note that Lemma 5.4 implies stability of the discrete system (4.1) and thereby unique
existence of ũ(`)

H . We employ the triangle inequality to split the error as follows:

(5.7)
‖uε − u0‖L2(Ω) . ‖uε − u(`)

H ‖L2(Ω) + ‖u(`)
H − ũ

(`)
H ‖L2(Ω)

+ ‖ũ(`)
H − ũ

(∞)
H ‖L2(Ω) + ‖ũ(∞)

H − u0‖L2(Ω).

Estimate (3.18) allows us to bound the first term on the right-hand side of (5.7) as

‖uε − u(`)
H ‖L2(Ω) . ε‖f‖L2(Ω).

The second term on the right-hand side of (5.7) was bounded in Proposition 4.5. With
the Friedrichs inequality the result reads

‖u(`)
H − ũ

(`)
H ‖L2(Ω) . ε|log ε|1+d/2‖f‖L2(Ω),

where it was used that η(A(`)
H ) = 0 because A(`)

H is spatially constant. In order to
bound the third term on the right-hand side of (5.7) we use the stability of the discrete
problems and the perturbation result of Lemma 5.4 to deduce

‖ũ(`)
H − ũ

(∞)
H ‖L2(Ω) . ‖A(∞)

H −A(`)
H ‖L∞(Ω)‖f‖L2(Ω) . ε‖f‖L2(Ω).

For the fourth term on the right-hand side of (5.7) it is enough to note that ũ(∞)
H is

the Galerkin approximation of u0 in VH , which satisfies

‖ũ(∞)
H − u0‖L2(Ω) . ε2‖f‖L2(Ω)

on convex domains. The combination of the foregoing estimates concludes the
proof.
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6. Numerical illustration. In this section, we present numerical experiments
on the unit square domain Ω = (0, 1)2 with homogeneous Dirichlet boundary condi-
tions. We consider the following worst-case error (referred to as the L2 error) as error
measure:

sup
f∈L2(Ω)\{0}

‖u(f)− udiscrete(f)‖L2(Ω)

‖f‖L2(Ω)
,

where u(f) is the exact solution to (2.3) with right-hand side f and udiscrete(f) a
discrete approximation (standard FEM or local effective coefficient or quasi-local ef-
fective coefficient or L2-best approximation). The error quantity is approximated by
solving an eigenvalue problem on the reference mesh.

6.1. First experiment: Convergence rates. Consider the scalar coefficientA,

A(x1, x2) =
(

11
2

+ sin
(

2π
ε1
x1

)
sin
(

2π
ε1
x2

)
+ 4 sin

(
2π
ε2
x1

)
sin
(

2π
ε2
x2

))−1

with ε1 = 2−3 and ε2 = 2−5. We consider a sequence of uniformly refined meshes
of mesh-size H =

√
2 × 2−1, . . . ,

√
2 × 2−6. The corrector problems are solved on a

reference mesh of width h =
√

2 × 2−9. The localization (or oversampling) param-
eter is chosen as ` = 2. Figure 2 displays the coefficient A. The four components
of the reconstructed coefficient A(`)

H for H =
√

2 × 2−6 are displayed in Figure 3.
Figure 4 compares the L2 errors of the standard FEM, the FEM with the local effec-
tive coefficient, the method with the quasi-local effective coefficient, and the L2-best
approximation in dependence of H. For comparison, also the error of the MSFEM
from [13] is displayed. As expected, the error of the FEM is of order O(1) because the
coefficient is not resolved by the mesh-size H. The error for the quasi-local effective
coefficient is close to the best approximation. The local effective coefficient leads to
comparable errors on coarse meshes. On the finest mesh, where the coefficient is al-
most resolved, the error deteriorates. This effect, referred to as the “resonance effect,”
will be studied in the second numerical experiment. Table 1 lists the values of the

Fig. 2. The scalar coefficient A for the first experiment.
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0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 3. Matrix entries of the reconstructed localized coefficient (A(`)
H ) in the first experiment

for H =
√

2× 2−6.

10−2 10−1 100

10−3

10−2

10−1

H

FEM
MSFEM
loc. eff. coeff.
quasi-loc. eff. coeff.

L2 best

Fig. 4. Convergence history under uniform mesh refinement.

estimator η(A(`)
H ) as well as the bounds αH and βH on (A(`)

H ). The estimator η(A(`)
H )

is small on the first meshes, which corresponds to an effective coefficient close to a
constant. The estimator increases for the meshes approaching the resonance regime.
The values of the coefficient A range in the interval [α, β] = [0.096, 1.55]. In this
example, the discrete bounds αH , βH stay in this interval.

6.2. Second experiment: Resonance effects. In this experiment we investi-
gate so-called resonance effects of our homogenization procedure. These effects occur
because, unlike in section 5, in the present case we deal with Dirichlet boundary
conditions as well as meshes that do not satisfy requirements in the spirit of Exam-
ple 5.1. We consider a fixed mesh of width H =

√
2× 2−4 and the scalar coefficient
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Table 1
Values of the estimator η(A(`)

H ) and the bounds αH and βH on AH for the first experiment.
The values of the coefficient A range in the interval [α, β] = [0.096, 1.55].

H η(A(`)
H ) αH βH√

2× 2−1 3.2108e-02 1.9223e-01 2.0786e-01√
2× 2−2 1.1267e-02 1.9568e-01 1.9954e-01√
2× 2−3 1.4765e-02 1.9579e-01 1.9986e-01√
2× 2−4 5.3952e-01 1.8323e-01 2.1992e-01√
2× 2−5 1.7199e+00 1.6909e-01 2.3257e-01√
2× 2−6 1.5538e+01 1.4070e-01 3.0277e-01

10−2 10−1 100
0

10

20

30

40

50

ε

FEM
MSFEM
loc. eff. coeff.
quasi-loc. eff. coeff.

η(A(`)
H )

Fig. 5. Resonance effect: normalized (by L2-best error) errors of FEM, local effective model
and quasi-local effecitve model; and values of the estimator η(A(`)

H ).

A(x1, x2) =
(

5 + 4 sin
(

2π
ε
x1

)
sin
(

2π
ε
x2

))−1

for a sequence of parameters ε = 20, 2−1, . . . , 2−6. The coefficient (A(`)
H ) was computed

with the same reference mesh and the same oversampling parameter as in the first
experiment. Figure 5 displays the L2 errors normalized by the L2 error of the L2-best
approximation. On the third mesh, where H and ε have the same order of magnitude,
the local effective coefficient leads to a larger error compared to the coarser meshes
(where the coefficient is resolved by H) and finer meshes, where H is much coarser
than ε and the effective coefficient is close to a constant. We observe that the values
of the estimator η(A(`)

H ) are large in the resonance regime where also the error of
the method the local effective coefficient is large. For smaller values of ε, the values
of η(A(`)

H ) are close to zero, which indicates that the homogenization criterion from
Remark 4.6 is satisfied; cf. also Remark 4.10.
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