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NUMERICAL HOMOGENIZATION OF H(CURL)-PROBLEMS∗
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Abstract. If an elliptic differential operator associated with an H(curl)-problem involves rough
(rapidly varying) coefficients, then solutions to the corresponding H(curl)-problem admit typically
very low regularity, which leads to arbitrarily bad convergence rates for conventional numerical
schemes. The goal of this paper is to show that the missing regularity can be compensated through
a corrector operator. More precisely, we consider the lowest-order Nédélec finite element space and
show the existence of a linear corrector operator with four central properties: it is computable,
H(curl)-stable, and quasi-local and allows for a correction of coarse finite element functions so that
first-order estimates (in terms of the coarse mesh size) in the H(curl) norm are obtained provided
the right-hand side belongs to H(div). With these four properties, a practical application is to con-
struct generalized finite element spaces which can be straightforwardly used in a Galerkin method.
In particular, this characterizes a homogenized solution and a first-order corrector, including corre-
sponding quantitative error estimates without the requirement of scale separation. The constructed
generalized finite element method falls into the class of localized orthogonal decomposition methods,
which have not been studied for H(curl)-problems so far.
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1. Introduction. Electromagnetic wave propagation plays an essential role in
many physical applications, for instance, in the large field of wave optics. In recent
years, multiscale and heterogeneous materials have been studied with great interest,
e.g., in the context of photonic crystals [32]. These materials can exhibit unusual and
astonishing (optical) properties, such as band gaps, perfect transmission, or negative
refraction [36, 17, 35]. These problems are modeled by Maxwell’s equations, which
involve the curl-operator and the associated Sobolev space H(curl). Additionally, the
coefficients in the problems are rapidly oscillating on a fine scale for the context of
photonic crystals and metamaterials. The numerical simulation and approximation of
the solution are then a challenging task for the following three reasons: 1. As with all
multiscale problems, a direct treatment with standard methods is infeasible in many
cases because it needs grids which resolve all discontinuities or oscillations of the ma-
terial parameters. 2. Solutions to H(curl)-problems with discontinuous coefficients in
Lipschitz domains can have arbitrarily low regularity; see [5, 14, 13]. Hence, standard
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NUMERICAL HOMOGENIZATION OF H(CURL)-PROBLEMS 1571

methods (see, e.g., [38] for an overview) suffer from bad convergence rates and fine
meshes are needed to have a tolerably small error. 3. Due to the large kernel of the
curl-operator, we cannot expect that the L2-norm is of a lower order compared to the
full H(curl)-norm (the energy norm). Thus, it is necessary to consider dual norms or
the Helmholtz decomposition to obtain improved a priori error estimates.

In order to deal with the rapidly oscillating material parameters, we consider
multiscale methods and thereby aim at a feasible numerical simulation. In general,
these methods try to decompose the exact solution into a macroscopic contribution
(without oscillations), which can be discretized on a coarse mesh, and a fine-scale
contribution. Analytical homogenization for locally periodic H(curl)-problems shows
that there exists such a decomposition, where the macroscopic part is a good approxi-
mation in H−1 and an additional fine-scale corrector leads to a good approximation in
L2 and H(curl); cf. [48, 27, 49]. Based on these analytical results, multiscale methods
are developed, e.g., the heterogeneous multiscale method in [27, 12] and asymptotic
expansion methods in [9]. The question is now how far such considerations can be
extended beyond the (locally) periodic case.

The main contribution of this paper is the numerical homogenization of H(curl)-
elliptic problems—beyond the periodic case and without assuming scale separation.
The main findings can be summarized as follows. We show that the exact solution
can indeed be decomposed into a coarse and a fine part, using a suitable interpolation
operator. The coarse part gives an optimal approximation in a negative Sobolev
norm, the best we can hope for in this situation, namely, the H(div)′ norm. In order
to obtain optimal L2 and H(curl) approximations, we have to add a so-called fine-
scale corrector or corrector Green’s operator. This corrector shows exponential decay
and can therefore be truncated to local patches of macroscopic elements, so that it
can be computed efficiently.

This technique of numerical homogenization is known as localized orthogonal
decomposition (LOD) and arose from the framework of the variational multiscale
method, where we refer to [6, 30, 31, 37, 43] for historically important steps in this di-
rection. A game theoretic interpretation of the methodology, using so-called gamblets,
was recently given in [40] (see also [41]). Let us describe the contribution of this paper
in the usual language of an LOD: The LOD framework decomposes the solution space
into a coarse finite-dimensional space (spanned by standard finite element functions)
and a fine-scale space, expressed as the kernel of a suitable interpolation/projection
operator. A generalized finite element basis is constructed by adding corrections from
the fine-scale space to the standard basis functions. These corrections are computed
as solutions of a PDE on a fine grid, i.e., what we called the corrector Green’s operator
above. For all problem classes considered so far (see below), the corrections show an
exponential decay, which justifies truncating their computation to patches of coarse
elements. The LOD has been extensively studied in the context of Lagrange finite
elements [37, 26, 28], where we particularly refer to the contributions written on wave
phenomena [1, 7, 8, 24, 39, 44, 45]. Aside from Lagrange finite elements, an LOD
application in Raviart–Thomas spaces was given in [25].

In this spirit, this contribution can be seen as an extension of periodic homog-
enization results to more general rapidly varying coefficients or as an application of
the LOD framework to a new problem class, namely, H(curl)-elliptic problems. We
try to cover both views throughout this paper.

A crucial ingredient for numerical homogenization procedures in the spirit of
LODs is the choice of a suitable interpolation operator. As we will see later, in our
case we require it to be computable, H(curl)-stable, and (quasi-)local and that it
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1572 D. GALLISTL, P. HENNING, AND B. VERFÜRTH

commutes with the curl-operator. Constructing an operator that enjoys such proper-
ties is a very delicate task and a lot of operators have been suggested—with different
backgrounds and applications in mind. The nodal interpolation operator (see, e.g.,
[38, Theorem 5.41]) and the interpolation operators introduced in [15] are not well-
defined on H(curl) and hence lack the required stability. Various (quasi-)interpolation
operators are constructed as a composition of smoothing and some (nodal) interpo-
lation, such as [10, 11, 16, 19, 46, 47]. For all of them, the kernel of the operator is
practically hard or even impossible to compute and they fulfill only the projection
or the locality property. Finally, we mention the interpolation operator of [20] which
is local and a projection, but which, however, does not commute with the exterior
derivative. A suitable candidate (and to the authors’ best knowledge, the only one)
that enjoys all required properties was proposed by Falk and Winther in [21].

This paper thereby also shows the applicability of the Falk–Winther operator. In
this context, we mention two results, which may be of their own interest: a local-
ized regular decomposition of the interpolation error (in the spirit of [47]) and the
practicable implementation of the Falk–Winther operator as a matrix. The last point
admits the efficient implementation of our numerical scheme and we refer to [18] for
general considerations.

The paper is organized as follows. Section 2 introduces the general curl-curl-
problem under consideration and briefly mentions its relation to Maxwell’s equations.
In section 3, we give a short motivation of our approach from two perspectives: pe-
riodic homogenization and the (ideal) LOD. Section 4 introduces the necessary no-
tation for meshes, finite element spaces, and interpolation operators. We introduce
the corrector Green’s operator in section 5 and show its approximation properties.
We localize the corrector operator in section 6 and present the main a priori error
estimates. The proofs of the decay of the correctors are given in section 7. Details
on the definition of the interpolation operator and its implementation are given in
section 8.

The notation a . b is used for a ≤ Cb with a constant C independent of the mesh
size H and the oversampling parameter m. It will be used in (technical) proofs for
simplicity and readability.

2. Model problem. Let Ω ⊂ R3 be an open, bounded, contractible domain with
polyhedral Lipschitz boundary. We consider the following so-called curl-curl-problem:
Find u : Ω→ C3 such that

curl(µ curl u) + κu = f in Ω,

u× n = 0 on ∂Ω
(2.1)

with the outer unit normal n of Ω. Exact assumptions on the parameters µ and κ and
the right-hand-side f are given in Assumption 1 below, but we implicitly assume that
the above problem is a multiscale problem, i.e., the coefficients µ and κ are rapidly
varying on a very fine scale.

Such curl-curl-problems arise in various formulations and reductions of Maxwell’s
equations and we give a few examples. In all cases, our coefficient µ equals µ̃−1 with
the magnetic permeability µ̃, a material parameter. The right-hand-side f is related
to (source) current densities. One possible example is Maxwell’s equations in a linear
conductive medium, subject to Ohm’s law, together with the so-called time-harmonic
ansatz ψ̂(x, t) = ψ(x) exp(−iωt) for all fields. In this case, one obtains the above
curl-curl-problem with u = E, the electric field, and κ = iωσ − ω2ε related to the
electric permittivity ε and the conductivity σ of the material. Another example is
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implicit time-step discretizations of eddy current simulations, where the above curl-
curl-problem has to be solved in each time step. In that case u is the vector potential
associated with the magnetic field and κ ≈ σ/τ , where τ is the time-step size. Coef-
ficients with multiscale properties can, for instance, arise in the context of photonic
crystals.

Before we define the variational problem associated with our general curl-curl-
problem (2.1), we need to introduce some function spaces. In the following, bold face
letters will indicate vector-valued quantities and all functions are complex-valued,
unless explicitly mentioned. For any bounded subdomain G ⊂ Ω, we define the space

H(curl, G) := {v ∈ L2(G,C3)| curl v ∈ L2(G,C3)}

with the inner product (v,w)H(curl,G) := (curl v, curl w)L2(G) + (v,w)L2(G) with the
complex L2-inner product. We will omit the domain G if it is equal to the full domain
Ω. The restriction of H(curl,Ω) to functions with a zero tangential trace is defined as

H0(curl,Ω) := {v ∈ H(curl,Ω)| v × n|∂Ω = 0}.

Similarly, we define the space

H(div, G) := {v ∈ L2(G,C3)|div v ∈ L2(G,C)}

with corresponding inner product (·, ·)H(div,G). For more details we refer to [38].
We make the following assumptions on the data of our problem.

Assumption 1. Let f ∈ H(div,Ω) and µ ∈ L∞(Ω,R3×3) and κ ∈ L∞(Ω,C3×3)
be self-adjoint. For any open subset G ⊂ Ω, we define the sesquilinear form BG :
H(curl, G)×H(curl, G)→ C as

BG(v,ψ) := (µ curl v, curlψ)L2(G) + (κv,ψ)L2(G)(2.2)

and set B := BΩ. The form BG is obviously continuous, i.e., there is CB > 0 such
that

|BG(v,ψ)| ≤ CB‖v‖H(curl,G)‖ψ‖H(curl,G) for all v,ψ ∈ H(curl, G).

We furthermore assume that µ and κ are such that B : H0(curl) ×H0(curl) → C is
H0(curl)-elliptic, i.e., there is α > 0 such that

|B(v,v)| ≥ α‖v‖2H(curl) for all v ∈ H0(curl).

The assumption that B is self-adjoint is made for better readability because in this
case the discretization is a Galerkin method instead of a Petrov–Galerkin method. It
is not an essential restriction. We now give a precise definition of our model problem
for this article. Let Assumption 1 be fulfilled. We look for u ∈ H0(curl,Ω) such that

B(u,ψ) = (f ,ψ)L2(Ω) for all ψ ∈ H0(curl,Ω).(2.3)

Existence and uniqueness of a solution to (2.3) follow from the Lax–Milgram–Babuška
theorem [4]. Assumption 1 is fulfilled in the following two important examples men-
tioned at the beginning: (i) a strictly positive real function in the identity term, i.e.,
κ ∈ L∞(Ω,R), as it occurs in the time-step discretization of eddy-current problems;
and (ii) a complex κ with strictly negative real part and strictly positive imaginary
part, as it occurs for time-harmonic Maxwell’s equations in a conductive medium.
Further possibilities of µ and κ yielding an H(curl)-elliptic problem are described in
[23].
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1574 D. GALLISTL, P. HENNING, AND B. VERFÜRTH

Remark 2. The assumption of contractibility of Ω is required only to ensure the
existence of local regular decompositions later used in the proof of Lemma 4. We
note that this assumption can be relaxed by assuming that Ω is simply connected in
certain local subdomains formed by unions of tetrahedra (i.e., in patches of the form
N(ΩP ), using the notation from Lemma 4).

3. Motivation of the approach. As explained in the introduction, our con-
tribution can be viewed from two perspectives: (numerical) homogenization and the
LOD framework, which of course are connected.

3.1. Motivation via homogenization. For the sake of the argument, let us
consider model problem (2.1) for the case that the coefficients µ and κ are replaced
by parametrized multiscale coefficients µδ and κδ, respectively. Here, 0 < δ � 1 is a
small parameter that characterizes the roughness of the coefficient or respectively the
speed of the variations, i.e., the smaller the δ, the faster the oscillations of µδ and κδ.
If we discretize this model problem in the lowest-order Nédélec finite element space
N̊ (TH), we have the classical error estimate of the form

inf
vH∈N̊ (TH)

‖uδ − vH‖H(curl) ≤ CH
(
‖uδ‖H1(Ω) + ‖ curl uδ‖H1(Ω)

)
with the mesh size H. However, if the coefficients µδ and κδ are discontinuous the
necessary regularity for this estimate is not available; see [13, 14, 5]. On the other
hand, if µδ and κδ are sufficiently regular but δ small, then we face the blow-up with
‖uδ‖H1(Ω) + ‖ curl uδ‖H1(Ω) → ∞ for δ → 0, which makes the estimate useless in
practice, unless the mesh size H becomes very small to compensate for the blow-up.
This does not change if we replace the H(curl)-norm by the L2(Ω)-norm since both
norms are equivalent in the kernel of the curl-operator, i.e., in the subspace of gradient
functions.

To understand if there exist any meaningful approximations of uδ in N̊ (TH) (even
on coarse meshes), we make a short excursus to classical homogenization theory.
For that we assume that the coefficients µδ(x) = µ(x/δ) and κδ(x) = κ(x/δ) are
periodically oscillating with period δ. In this case it is known (cf. [12, 27, 49]) that the
sequence of exact solutions uδ converges weakly in H0(curl) to a homogenized function
u0. Since u0 ∈ H0(curl) is δ-independent and slow, it can be well approximated in
N̊ (TH). Furthermore, there exists a corrector Kδ(u0) such that

uδ ≈ (id +Kδ)u0

is a good approximation in H(curl), i.e., the error converges strongly to zero with

‖uδ − (u0 +Kδ(u0))‖H(curl) → 0 for δ → 0.

Here the nature of the corrector is revealed by two estimates. In fact, Kδ(u0) admits
a decomposition into a gradient part and a part with small amplitude (cf. [27, 48, 49])
such that

Kδ(u0) = zδ +∇θδ

with

δ−1‖zδ‖L2(Ω) + ‖zδ‖H(curl) ≤ C‖u0‖H(curl)(3.1)

and δ−1‖θδ‖L2(Ω) + ‖∇θδ‖L2(Ω) ≤ C‖u0‖H(curl),(3.2)
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where C = C(α,CB) only depends on the constants appearing in Assumption 1.
First, we immediately see that the estimates imply that Kδ(u0) is H(curl)-stable in
the sense that it holds that

‖Kδ(u0)‖H(curl) ≤ C‖u0‖H(curl).

Second, and more interestingly, we see that alone from the above properties, we
can conclude that u0 must be a good approximation of the exact solution in the
space H−1(Ω,C3) := H1

0 (Ω,C3)′. In fact, using (3.1) and (3.2) we have for any
v ∈ H1

0 (Ω,C3) with ‖v‖H1(Ω) = 1 that∣∣∣∣ˆ
Ω

Kδ(u0) · v
∣∣∣∣ =

∣∣∣∣ˆ
Ω

zδ · v−
ˆ

Ω

θδ (∇ · v)

∣∣∣∣ ≤ ‖zδ‖L2(Ω) + ‖θδ‖L2(Ω) ≤ Cδ‖u0‖H(curl).

Consequently we have strong convergence in H−1(Ω) with

‖uδ − u0‖H−1(Ω) ≤ ‖uδ − (u0 +Kδ(u0))‖H−1(Ω) + ‖Kδ(u0)‖H−1(Ω)
δ→0−→ 0.

We conclude two things. First, even though the coarse space N̊ (TH) does not contain
good H(curl)- or L2-approximations, it still contains meaningful approximations in
H−1(Ω). Second, the fact that the coarse part u0 is a good H−1-approximation of
uδ is an intrinsic conclusion from the properties of the correction Kδ(u0). A refined
analysis reveals that the numerical homogenization method presented here allows for
estimates in the stronger H(div)′ norm.

In this paper we are concerned with the question of whether the above consider-
ations can be transferred to a discrete setting beyond the assumption of periodicity.
More precisely, defining a coarse level of resolution through the space N̊ (TH), we ask
if it is possible to find a coarse function uH and an (efficiently computable) H(curl)-
stable operator K such that

‖uδ − uH‖H−1(Ω) ≤ CH and ‖uδ − (id +K)uH‖H(curl) ≤ CH,(3.3)

with C being independent of the oscillations in terms of δ. A natural ansatz for the
coarse part is uH = πH(uδ) for a suitable projection πH : H(curl) → N̊ (TH). From
the considerations above, it is desirable that the (interpolation) error uδ − πH(uδ)
fulfills a discrete analogue to the estimates (3.1) and (3.2). Hence, we look for a
projector πH with the following property: there are z ∈ H1

0(Ω) and θ ∈ H1
0 (Ω) such

that
v − πHv = z +∇θ

and

H−1‖z‖L2(Ω) + ‖∇z‖L2(Ω) ≤ C‖ curl v‖L2(Ω),

H−1‖θ‖L2(Ω) + ‖∇θ‖L2(Ω) ≤ C‖v‖H(curl).(3.4)

Note that the above properties are not fulfilled for, e.g., the L2-projection.
We conclude this paragraph by summarizing that we want to have a projection

πH fulfilling (3.4). We can then define a coarse scale numerically through the space
N̊ (TH) = im(πH). Moreover, the corrector K should be constructed such that it maps
into the kernel of the projection operator, i.e., im(K) ⊂ ker(πH) in order to inherit
the estimates (3.3).

3.2. Motivation via the localized orthogonal decomposition. The ques-
tion of decomposing the solution space into a coarse and a fine part is also the key mo-
tivation for the LOD. The idea is to write H0(curl) = N̊ (TH)⊕W with W = kerπH ,
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1576 D. GALLISTL, P. HENNING, AND B. VERFÜRTH

where πH : H0(curl) → N̊ (TH) is a suitable projection. One can define a correction
operator K : H0(curl)→W via

B(Kv,w) = −B(v,w) for all w ∈W.(3.5)

The (ideal) LOD is now a Galerkin method over the space (id +K)N̊ (TH), i.e., we
look for uH ∈ N̊ (TH) such that

B((id +K)uH , (id +K)vH) = (f , (id +K)vH) for all vH ∈ N̊ (TH).(3.6)

Problem (3.5), however, is global and therefore very costly to solve. In order to obtain
a localized method the computation has to be truncated to patches Nm(T ) of diameter
approximately mH; see section 4 for a precise definition. The overall scheme can then
be described as follows: Consider a basis {Φk| 1 ≤ k ≤ N} of N̊ (TH). For all T ∈ TH
with T ⊂ supp(Φk), we solve for KT,m(Φk) ∈W(Nm(T )) with

BNm(T )(KT,m(Φk),w) = −BT (Φk,w) for all w ∈W(Nm(T )).

Defining the corrector operator Km via

Km(Φk) =
∑
T∈TH

T⊂supp(Φk)

KT,m(Φk),

one looks for the solution uH,m ∈ N̊ (TH) of (3.6) with K replaced by Km; see section 6
for details.

In the LOD framework the following questions now have to be answered: (i)
What approximation properties do uH and (id +K)uH have? (ii) Can we truncate
the computation in (3.5) to patches of elements without losing the approximation
properties?

With a view to these two questions, let us briefly describe the main challenges for
H(curl)-problems in contrast to elliptic diffusion problems. Concerning (i), denoting
e = u− (id +K)uH , where u solves (2.3), one observes πHe = 0 and quickly comes to
the estimate

‖e‖2H(curl) . |(f , e)| = |(f , e− πHe)|.

At this point, the approximation properties of πH play a crucial role. For elliptic
diffusion problems, there are several possible choices for IH which fulfill

‖v − IHv‖L2(Ω) . H‖∇v‖L2(Ω) for all v ∈ H1(Ω).

Such an estimate (with the gradient replaced by the curl), however, cannot hold in
H(curl) because of the large kernel of the curl-operator. Instead, one has to hope for
estimates like (3.4) in order to deduce

|(f , e− πHe)| = |(f , z +∇θ)| ≤ |(f , z)|+ |(div f , θ)| . H‖f‖H(div)‖e‖H(curl),

where we also see the role of the assumption f ∈ H(div). This difference between the
gradient subspace and its complement also has to be considered when studying the
exponential decay of K to answer (ii).
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4. Mesh and interpolation operator. In this section we introduce the basic
notation for establishing our coarse scale discretization and we will present a projec-
tion operator that fulfills the sufficient conditions derived in the previous section.

Let TH be a regular partition of Ω into tetrahedra such that ∪TH = Ω and any
two distinct T, T ′ ∈ TH either are disjoint or share a common vertex, edge, or face.
We assume the partition TH to be shape-regular and quasi-uniform. The global mesh
size is defined as H := max{diam(T )|T ∈ TH}. TH is a coarse mesh in the sense that
it does not resolve the fine-scale oscillations of the parameters.

Given any (possibly even not connected) subdomain G ⊂ Ω define its neighbor-
hood via

N(G) := int(∪{T ∈ TH |T ∩G 6= ∅})

and for any m ≥ 2 the patches

N1(G) := N(G) and Nm(G) := N(Nm−1(G)).

The shape regularity implies that there is a uniform bound Col,m on the number of
elements in the mth order patch

max
T∈TH

card{K ∈ TH |K ⊂ Nm(T )} ≤ Col,m

and the quasi-uniformity implies that Col,m depends polynomially on m. We abbre-
viate Col := Col,1.

The space of TH -piecewise affine and continuous functions is denoted by S1(TH).
We denote the lowest-order Nédélec finite element (cf. [38, section 5.5]) by

N̊ (TH) := {v ∈ H0(curl)| for allT ∈ TH : v|T (x) = aT × x + bT with aT ,bT ∈ C3}

and the space of Raviart–Thomas fields by

R̊T (TH) := {v ∈ H0(div)| for all T∈TH : v|T (x)=aTx + bT with aT ∈ C,bT ∈ C3}.

As motivated in section 3 we require an H(curl)-stable interpolation operator πEH :

H0(curl)→ N̊ (TH) that allows for a decomposition with the estimates such as (3.4).
However, from the view point of numerical homogenization where corrector problems
should be localized to small subdomains, we also need that πEH is local and (as we
will see later) that it fits into a commuting diagram with other stable interpolation
operators for lowest order H1(Ω), H(div), and L2(Ω) elements. As discussed in the
introduction, the only known candidate is the Falk–Winther interpolation operator
πEH [21]. We postpone a precise definition of πEH to section 8 and just summarize its
most important properties in the following proposition.

Proposition 3. There exists a projection πEH : H0(curl) → N̊ (TH) with the
following local stability properties: For all v ∈ H0(curl) and all T ∈ TH it holds that

‖πEH(v)‖L2(T ) ≤ Cπ
(
‖v‖L2(N(T )) +H‖ curl v‖L2(N(T ))

)
,(4.1)

‖ curlπEH(v)‖L2(T ) ≤ Cπ‖ curl v‖L2(N(T )).(4.2)

Furthermore, there exists a projection πFH : H0(div) → R̊T (TH) to the Raviart–
Thomas space such that the following commutation property holds

curlπEH(v) = πFH(curl v).
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A corresponding proof that is also valid (verbatim) in the case of homogeneous
boundary values is found in [21].

As explained in the motivation in section 3, we also require that πEH allows for a
regular decomposition in the sense of (3.4). In general, regular decompositions are an
important tool for the study of H(curl)-elliptic problems and involve that a vector field
v ∈ H0(curl) is split—in a nonunique way—into a gradient and a (regular) remainder
in H1; see [29, 42]. In contrast to the Helmholtz decomposition, this splitting is not
orthogonal with respect to the L2-inner product. If the function v ∈ H0(curl) is
additionally known to be in the kernel of a suitable quasi interpolation, a modified
decomposition can be derived that is localized and H-weighted. In particular, the
weighting with H allows for estimates similar to the one stated in (3.4). The first
proof of such a modified decomposition was given by Schöberl [47]. In the following
we shall use his results and the locality of the Falk–Winther operator to recover a
similar decomposition for the projection πEH . More precisely, we have the following
lemma, which is crucial for our analysis.

Lemma 4. Let πEH denote the projection from Proposition 3. For any v ∈ H0

(curl,Ω), there are z ∈ H1
0(Ω) and θ ∈ H1

0 (Ω) such that

v − πEH(v) = z +∇θ

with the local bounds for every T ∈ TH

H−1‖z‖L2(T ) + ‖∇z‖L2(T ) ≤ Cz‖ curl v‖L2(N3(T )),

H−1‖θ‖L2(T ) + ‖∇θ‖L2(T ) ≤ Cθ
(
‖v‖L2(N3(T )) +H‖ curl v‖L2(N3(T ))

)
,

(4.3)

where ∇z stands for the Jacobi matrix of z. Here Cz and Cθ are generic constants
that only depend on the regularity of the coarse mesh.

Observe that (4.3) implies the earlier formulated condition (3.4).

Proof. Let v ∈ H0(curl,Ω). Denote by ISH : H0(curl,Ω) → N̊ (TH) the quasi-
interpolation operator introduced by Schöberl in [47]. It is shown in [47, Theorem 6]
that there exists a decomposition

v − ISH(v) =
∑

P vertex
of TH

vP ,(4.4)

where, for any vertex P , vP ∈ H0(curl,ΩP ) and ΩP is the support of the local hat
function associated with P . Moreover, [47, Theorem 6] provides the stability estimates

‖vP ‖L2(ΩP ) . ‖v‖L2(N(ΩP )) and ‖ curl vP ‖L2(ΩP ) . ‖ curl v‖L2(N(ΩP ))(4.5)

for any vertex P . With these results we deduce, since πEH is a projection onto the
finite element space, that

v − πEH(v) = v − ISH(v)− πEH(v − ISHv) =
∑

P vertex
of TH

(id−πEH)(vP ).

Due to the locality of πEH , we have (id−πEH)(vP ) ∈ H0(curl,N(ΩP )). The local
stability of πEH , (4.1) and (4.2), and the stability (4.5) imply

‖(id−πEH)(vP )‖L2(N(ΩP )) . ‖v‖L2(N(ΩP )) +H‖ curl v‖L2(N(ΩP )),

‖ curl(id−πEH)(vP )‖L2(N(ΩP )) . ‖ curl v‖L2(N(ΩP )).
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We can now apply the regular splitting to (id−πEH)vP (cf. [42]), i.e., there are zP ∈
H1

0(N(ΩP )), θP ∈ H1
0 (N(ΩP )) such that (id−πEH)vP = zP + ∇θP and with the

estimates

H−1‖zP ‖L2(N(ΩP )) + ‖∇zP ‖L2(N(ΩP )) . ‖ curl((id−πEH)(vP ))‖L2(N(ΩP )),

H−1‖θP ‖L2(N(ΩP )) + ‖∇θP ‖L2(N(ΩP )) . ‖(id−πEH)(vP )‖L2(N(ΩP )).

Set z =
∑
P zP and θ =

∑
P θP , which is a regular decomposition of v− πEH(v). The

local estimate follows from the foregoing estimates for vP and the decomposition (4.4)
which yields

H−1‖z‖L2(T ) + ‖∇z‖L2(T ) ≤
∑

P vertex
of T

(
H−1‖zP ‖L2(ΩP ) + ‖∇zP ‖L2(ΩP )

)
.
∑

P vertex
of T

‖ curl(id−πEH)(vP )‖L2(N(ΩP )) . ‖ curl v‖L2(N3(T )).

The local estimate for θ follows analogously.

5. The corrector Green’s operator. In this section we introduce an ideal
corrector Green’s operator (also known as the fine-scale Green’s operator in the context
of the variational multiscale method; see [31]) that allows us to derive a decomposition
of the exact solution into a coarse part (which is a good approximation in H−1(Ω,C3))
and two different corrector contributions. For simplicity, we let from now on L :
H0(curl)→ H0(curl)′ denote the differential operator associated with the sesquilinear
form B(·, ·), i.e., L(v)(w) = B(v, w).

Using the Falk-Winther interpolation operator πEH for the Nédélec elements, we

split the space H0(curl) into the finite, low-dimensional coarse space N̊ (TH) = im(πEH)
and a corrector space given as the kernel of πEH , i.e., we set W := ker(πEH) ⊂ H0(curl).

This yields the direct sum splitting H0(curl) = N̊ (TH)⊕W. Note that W is closed
since it is the kernel of a continuous (i.e., H(curl)-stable) operator. With this the
ideal corrector Green’s operator is defined as follows.

Definition 5 (corrector Green’s operator). For F ∈ H0(curl)′, we define the
corrector Green’s operator

G : H0(curl)′ →W by B(G(F),w) = F(w) for all w ∈W.(5.1)

It is well defined by the Lax–Milgram–Babuška theorem, which is applicable since B(·, ·)
is H0(curl)-elliptic and since W is a closed subspace of H0(curl).

Using the corrector Green’s operator we obtain the following decomposition of
the exact solution.

Lemma 6 (ideal decomposition). The exact solution u ∈ H0(curl) to (2.3) and
uH := πEH(u) admit the decomposition

u = uH − (G ◦ L)(uH) + G(f).

Proof. Since H0(curl) = N̊ (TH)⊕W, we can write u uniquely as

u = πEH(u) + (id−πEH)(u) = uH + (id−πEH)(u),

where (id−πEH)(u) ∈ W by the projection property of πEH . Using the differential
equation for test functions w ∈W yields that
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B((id−πEH)(u),w) = −B(uH ,w) + (f ,w)L2(Ω) = −B((G ◦ L)(uH),w) + B(G(f),w).

Since this holds for all w ∈W and since G(f)− (G ◦ L)(uH) ∈W, we conclude that

(id−πEH)(u) = G(f)− (G ◦ L)(uH),

which finishes the proof.

The corrector Green’s operator has the following approximation and stability
properties, which reveal that its contribution is always negligible in the H(div)′-norm
and negligible in the H(curl)-norm if applied to a function in H(div).

Lemma 7 (ideal corrector estimates). Any F ∈ H0(curl)′ satisfies

H‖G(F)‖H(curl) + ‖G(F)‖H(div)′ ≤ CHα−1‖F‖H0(curl)′ .(5.2)

If F = f ∈ H(div) we even have

H‖G(f)‖H(curl) + ‖G(f)‖H(div)′ ≤ CH2α−1‖f‖H(div).(5.3)

Here, the constant C does only depend on the maximum number of neighbors of a
coarse element and the generic constants appearing in Lemma 4.

Remark 8. We phrase all results in the H(div)′ norm because we do not require
more. Note, however, that all results are still valid if we replace the H(div)′-norm by
the H−1(Ω,C3)-norm, which is the norm we used in the motivation in section 3.

Proof. The stability estimate ‖G(F)‖H(curl) ≤ α−1‖F‖H0(curl)′ is obvious. Next,
with G(F) ∈W and Lemma 4 we have

‖G(F)‖H(div)′ = sup
v∈H(div)

‖v‖H(div)=1

∣∣∣∣ˆ
Ω

z · v −
ˆ

Ω

θ(∇ · v)

∣∣∣∣
≤ (‖z‖2L2(Ω) + ‖θ‖2L2(Ω))

1/2≤ CH‖G(F)‖H(curl) ≤ CHα−1‖F‖H0(curl)′ ,(5.4)

which proves (5.2). Note that this estimate exploited θ ∈ H1
0 (Ω), which is why we do

not require the function v to have a vanishing normal trace. Let us now consider the
case that F = f ∈ H(div). The ellipticity, the relation (5.1), and (5.4) imply that

α‖G(f)‖2H(curl) ≤ ‖G(f)‖H(div)′‖f‖H(div) ≤ CH‖G(f)‖H(curl)‖f‖H(div).

We conclude ‖G(f)‖H(curl) ≤ CHα−1‖f‖H(div). Finally, we can use this estimate again
in (5.4) to obtain

‖G(f)‖H(div)′ ≤ CH‖G(f)‖H(curl) ≤ CH2α−1‖f‖H(div).

This finishes the proof.

An immediate conclusion of Lemmas 6 and 7 is the following.

Conclusion 9. Let u denote the exact solution to (2.1) for f ∈ H(div). Then
with the coarse part uH := πEH(u) and corrector operator K := −G ◦ L it holds that

H−1‖u− (id +K)uH‖H(div)′ + ‖u− (id +K)uH‖H(curl) + ‖u− uH‖H(div)′

≤ CH‖f‖H(div).

Here, C only depends on α, on the mesh regularity, and on the constants appearing
in Lemma 4.
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Proof. The estimates for u − (id +K)uH = G(f) directly follow from (5.3). For
the estimate of u− uH = KuH + Gf , observe that (5.2) and Proposition 3 imply

‖KuH‖H(div)′ . H‖LuH‖H0(curl)′ . H‖uH‖H(curl) = H‖πEHu‖H(curl) . H‖u‖H(curl).

Thus, the proof follows from the stability of the problem and the triangle
inequality.

It only remains to derive an equation that characterizes (id +K)uH as the unique
solution of a variational problem. This is done in the following theorem.

Theorem 10. We consider the setting of Conclusion 9. Then uH = πEH(u) ∈
N̊ (TH) is characterized as the unique solution to

B( (id +K)uH , (id +K)vH ) = (f , (id +KvH)L2(Ω) for all vH ∈ N̊ (TH).(5.5)

The sesquilinear form B((id +K) · , (id +K) · ) is H(curl)-elliptic on N̊ (TH).

We mention that in the non-self-adjoint case, the correction operator for the test
functions would be the adjoint K∗.

Proof. Since Lemma 6 guarantees u = uH − (G ◦L)(uH) +G(f), the weak formu-
lation (2.3) yields

B(uH − (G ◦ L)(uH) + G(f),vH) = (f ,vH)L2(Ω) for all vH ∈ N̊ (TH).

We observe that by definition of G we have

B(G(f),vH) = (f , (G ◦ L)vH)L2(Ω)

and

B(uH − (G ◦ L)(uH), (G ◦ L)vH) = 0.

Combining the three equations shows that (id +K)uH is a solution to (5.5). The
uniqueness follows from the following norm equivalence:

‖uH‖H(curl) = ‖πEH((id +K)uH)‖H(curl) ≤ C‖(id +K)uH‖H(curl) ≤ C‖uH‖H(curl).

This is also the reason why the H(curl)-ellipticity of B(·, ·) implies the H(curl)-
ellipticity of B((id +K) · , (id +K) · ) on N̊ (TH).

Dropping the correction on the right-hand side of (5.5) still allows for a numerical
homogenization result. However, not all estimates from Conclusion 9 can be recovered
in this case, as the quadratic order convergence for ‖u−(id +K)ũH‖H(div)′ is typically
lost (at least in the asymptotic regime). In general, the following result is available.

Conclusion 11. For f ∈ H(div), let ũH ∈ N̊ (TH) denote the unique solution to

B((id +K)ũH , (id +K)vH) = (f ,vH)L2(Ω) for all vH ∈ N̊ (TH).(5.6)

Then we have the error estimate

‖u− (id +K)ũH‖H(curl) + ‖u− ũH‖H(div)′ ≤ CH‖f‖H(div).
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Proof. We estimate the error uH − ũH , where uH solves (5.5). For any vH ∈
N̊ (TH), we have that

B((id +K)(uH − ũH), (id +K)vH) = (f ,KvH)L2(Ω).

Hence, we conclude with the coercivity and continuity of B and Lemma 7 that

‖uH − ũH‖2H(curl) . ‖(id +K)(uH − ũH)‖2H(curl) . ‖f‖H(div)‖K(uH − ũH)‖H(div)′

. H‖f‖H(div)‖L(uH − ũH)‖H0(curl)′ . H‖f‖H(div)‖uH − ũH‖H(curl).

The estimate for ‖u−ũH‖H(div)′ follows with the triangle inequality and the properties
of the corrector K.

The result from Conclusion 11 reflects the fact that in periodic homogenization,
correctors typically do not appear on the right-hand side. However, as mentioned
before, problem (5.6) has the disadvantage that its suffers from a slight loss in accuracy
which is expected to cause reduced convergence rates for ‖u− (id +K)ũH‖H(div)′ .

Numerical homogenization. Let us summarize the most important findings
and relate them to (numerical) homogenization. We defined a homogenization scale
through the coarse finite element space N̊ (TH). We proved that there exists a numer-
ically homogenized function uH ∈ N̊ (TH) which approximates the exact solution well
in H(div)′ with

‖u− uH‖H(div)′ ≤ CH‖f‖H(div).

From the periodic homogenization theory (cf. section 3) we know that this is the
best we can expect and that uH is typically not a good L2-approximation due to
the large kernel of the curl-operator. Furthermore, we showed the existence of an
H(curl)-stable corrector operator K : N̊ (TH) → W that corrects the homogenized
solution in such a way that the approximation is also accurate in H(curl) with

‖u− (id +K)uH‖H(curl) ≤ CH‖f‖H(div).

Since K = −G ◦ L, we know that we can characterize K(vH) ∈ W as the unique
solution to the (ideal) corrector problem

B(K(vH),w) = −B(vH ,w) for all w ∈W.(5.7)

The above result shows that (id +K)uH approximates the analytical solution with
linear rate without any assumptions on the regularity of the problem or the structure
of the coefficients that define B(·, ·). Also it does not assume that the mesh resolves the
possible fine-scale features of the coefficient. On the other hand, the ideal corrector
problem (5.7) is global, which significantly limits its practical usability in terms of
real computations.

However, as we will see next, the corrector Green’s function associated with prob-
lem (5.1) shows an exponential decay measured in units of H. This property will allow
us to split the global corrector problem (5.7) into several smaller problems on subdo-
mains, similar to how we encounter it in classical homogenization theory. We show the
exponential decay of the corrector Green’s function indirectly through the properties
of its corresponding Green’s operator G. The localization is established in section 6,
whereas we prove the decay in section 7.
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6. Quasi-local numerical homogenization. In this section we describe how
the ideal corrector K can be approximated by a sum of local correctors, without
destroying the overall approximation order. This is of central importance for an
efficient computability. Furthermore, it also reveals that the new corrector is a quasi-
local operator, which is in line with homogenization theory.

We follow the standard procedure for the localization in the LOD, as displayed,
for instance, in [1, 26, 37, 44], just to name a few. We start with quantifying the decay
properties of the corrector Green’s operator in subsection 6.1. In subsection 6.2 we
apply the result to our numerical homogenization setting and state the error estimates
for the “localized” corrector operator. We close with a few remarks on a fully discrete
realization of the localized corrector operator in subsection 6.3.

6.1. Exponential decay and localized corrector. The property that K can
be approximated by local correctors is directly linked to the decay properties of the
Green’s function associated with problem (5.1). These decay properties can be quan-
tified explicitly by measuring distances between points in units of the coarse mesh size
H. We have the following result, which states—loosely speaking—in which distance
from the support of a source term F becomes the H(curl)-norm of G(F) negligibly
small. For that, recall the definition of the element patches from the beginning of
section 4, where Nm(T ) denotes the patch that consists of a coarse element T ∈ TH
and m layers of coarse elements around it. A proof of the following proposition is
given in section 7.

Proposition 12. Let T ∈ TH denote a coarse element and m ∈ N a number
of layers. Furthermore, let FT ∈ H0(curl)′ denote a local source functional in the
sense that FT (v) = 0 for all v ∈ H0(curl) with supp(v) ⊂ Ω \ T . Then there exists
0 < β̃ < 1, independent of H, T , m, and FT , such that

‖G(FT )‖H(curl,Ω\Nm(T )) . β̃m‖FT ‖H0(curl)′ .(6.1)

In order to use this result to approximate K(vH) = −(G ◦ L)vH (which has a
nonlocal argument), we introduce, for any T ∈ TH , localized differential operators
LT : H(curl, T )→ H(curl,Ω)′ with

〈LT (u),v〉 := BT (u,v),

where BT (·, ·) denotes the restriction of B(·, ·) to the element T . By linearity of G we
have that

G ◦ L =
∑
T∈TH

G ◦ LT

and consequently we can write

K(vH) =
∑
T∈TH

G(FT ) with FT := −LT (vH).

Obviously, G(FT ) fits into the setting of Proposition 12. This suggests truncating
the individual computations of G(FT ) to a small patch Nm(T ) and then collecting
the results to construct a global approximation for the corrector. Typically, m is
referred to as an oversampling parameter. The strategy is detailed in the following
definition.

Definition 13 (localized corrector approximation). For an element T ∈ TH
we define the element patch ΩT := Nm(T ) of order m ∈ N. Let F ∈ H0(curl)′ be
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1584 D. GALLISTL, P. HENNING, AND B. VERFÜRTH

the sum of local functionals with F =
∑
T∈TH FT , where FT ∈ H0(curl)′ is as in

Proposition 12. Furthermore, let W(ΩT ) ⊂W denote the space of functions from W
that vanish outside ΩT , i.e.,

W(ΩT ) = {w ∈W|w = 0 outside ΩT }.

We call GT,m(FT ) ∈W(ΩT ) the localized corrector if it solves

B(GT,m(FT ),w) = FT (w) for all w ∈W(ΩT ).(6.2)

With this, the global corrector approximation is given by

Gm(F) :=
∑
T∈TH

GT,m(FT ).

Observe that problem (6.2) is only formulated on the patch ΩT and that it admits
a unique solution by the Lax–Milgram–Babuška theorem.

Based on decay properties stated in Proposition 12, we can derive the following
error estimate for the difference between the exact corrector G(F) and its approxima-
tion Gm(F) obtained by an mth level truncation. The proof of the following result is
again postponed to section 7.

Theorem 14. We consider the setting of Definition 13 with ideal Green’s correc-
tor G(F) and its mth level truncated approximation Gm(F). Then there exist constants
Cd > 0 and 0 < β < 1 (both independent of H and m) such that

‖G(F)− Gm(F)‖H(curl) ≤ Cd
√
Col,m β

m

( ∑
T∈TH

‖FT ‖2H0(curl)′

)1/2

(6.3)

and

‖G(F)− Gm(F)‖H(div)′ ≤ Cd
√
Col,m β

mH

( ∑
T∈TH

‖FT ‖2H0(curl)′

)1/2

.(6.4)

As a direct conclusion from Theorem 14 we obtain the main result of this paper
that we present in the next subsection.

6.2. The quasi-local corrector and homogenization. Following the above
motivation we split the ideal corrector K(vH) = −(G ◦L)vH into a sum of quasi-local
contributions of the form

∑
T∈TH (G ◦ LT )vH . Applying Theorem 14, we obtain the

following result.

Conclusion 15. Let Km := −
∑
T∈TH (GT,m ◦ LT ) : N̊ (TH) → W denote the

localized corrector operator obtained by truncation of mth order. Then it holds that

inf
vH∈N̊ (TH)

‖u− (id +Km)vH‖H(curl) ≤ C
(
H +

√
Col,mβ

m
)
‖f‖H(div).(6.5)

Note that even though the ideal corrector K is a nonlocal operator, we can ap-
proximate it by a quasi-local corrector Km. Here, the quasi locality is seen by the
fact that if K is applied to a function vH with local support, the image K(vH) will
typically still have a global support in Ω. On the other hand, if Km is applied to a
locally supported function, the support will only increase by a layer with thickness of
order mH.

D
ow

nl
oa

de
d 

06
/1

1/
18

 to
 1

30
.8

9.
27

.2
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL HOMOGENIZATION OF H(CURL)-PROBLEMS 1585

Proof of Conclusion 15. With Km = −
∑
T∈TH (GT,m◦LT ) we apply Conclusion 9

and Theorem 14 to obtain

inf
vH∈N̊ (TH)

‖u− (id +Km)vH‖H(curl)

≤ ‖u− (id +K)uH‖H(curl) + ‖(K −Km)uH‖H(curl)

≤ CH‖f‖H(div) + C
√
Col,m β

m

( ∑
T∈TH

‖LT (uH)‖2H0(curl)′

)1/2

,

where we observe with ‖LT (vH)‖H0(curl)′ ≤ C‖vH‖H(curl,T ) that∑
T∈TH

‖LT (uH)‖2H0(curl)′ ≤ C‖uH‖
2
H(curl) = C‖πEH(u)‖2H(curl)

≤ C‖u‖2H(curl) ≤ C‖f‖
2
H(div).

In the last line, the first inequality is due to the stability of πEH and the second
inequality is the energy estimate for the original problem (2.3).

Conclusion 15 has immediate implications from the computational point of view.
First, we observe that Km can be computed by solving local decoupled problems.
Considering a basis {Φk| 1 ≤ k ≤ N} of N̊ (TH), we require determining Km(Φk).
For that, we consider all T ∈ TH with T ⊂ supp(Φk) and solve for KT,m(Φk) ∈
W(Nm(T )) with

BNm(T )(KT,m(Φk),w) = −BT (Φk,w) for all w ∈W(Nm(T )).(6.6)

The global corrector approximation is now given by

Km(Φk) =
∑
T∈TH

T⊂supp(Φk)

KT,m(Φk),

as already presented in the motivation in section 3. Next, we observe that selecting
the localization parameter m such that

m & |logH|
/
|log β|,

we have with Conclusion 15 that

inf
vH∈N̊ (TH)

‖u− (id +Km)vH‖H(curl) ≤ CH‖f‖H(div),(6.7)

which is of the same order as for the ideal corrector K. Note that the polynomial (in
m) growth of Col,m does only influence the constant hidden in & in the selection rule
m & | logH| and not (6.7). The choice m ≈ | logH| is the standard condition for the
oversampling parameter m in LOD-type methods. However, numerical experiments
for other types of problems show that moderate sizes of m such as m = 1, 2, 3 are
often sufficient in practice; cf. [26, 44]. This indicates that there is hope for similar
observations for H(curl)-problems, though this still remains open for investigations.

Consequently, we can consider the Galerkin finite element method, where we seek
uH,m ∈ N̊ (TH) such that

B((id +Km)uH,m, (id +Km)vH) = (f , (id +Km)vH)L2(Ω) for all vH ∈ N̊ (TH).
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1586 D. GALLISTL, P. HENNING, AND B. VERFÜRTH

Since a Galerkin method yields the H(curl)-quasi-best approximation of u in the space
(id +Km)N̊ (TH) we have with (6.7) that

‖u− (id +Km)uH,m‖H(curl) ≤ CH‖f‖H(div)

and we have with (5.2), (6.4), and the H(curl)-stability of πEH that

‖u− uH,m‖H(div)′ ≤ CH‖f‖H(div).

This result is a homogenization result in the sense that it yields a coarse function uH,m
that approximates the exact solution in H(div)′. Furthermore, it yields an appropriate
(quasi-local) corrector Km(uH,m) that is required for an accurate approximation in
H(curl).

Finally, we note that the error estimate in H(curl) above can also be obtained for
the Galerkin method without corrector Km on the right-hand side; see Conclusion 11.
Moreover, the assumption f ∈ H(div) is essential to obtain a linear rate: If we only
have f ∈ H0(curl)′, the results of Conclusion 15 do not hold. As seen in Lemma 7,
we lose a power of H for less regular right-hand sides.

Remark 16 (refined estimates). With a more careful proof, the constants in the
estimate of Conclusion 15 can be specified as

inf
vH∈N̊ (TH)

‖u− (id +Km)vH‖H(curl)

≤ α−1(1 +H)
(
H max{Cz, Cθ}

√
Col,3 + CdCπC

2
B

√
Col,mCol β

m
)
‖f‖H(div),

where α and CB are as in Assumption 1, Cd is the constant appearing in the decay
estimate (6.3), Cπ is as in Proposition 3, Cz and Cθ are from (4.3), and Col,m is
as detailed at the beginning of section 4. Note that if m is large enough so that
Nm(T ) = Ω for all T ∈ TH , we have as a refinement of Conclusion 9 that

inf
vH∈N̊ (TH)

‖u− (id +K)vH‖H(curl) ≤ α−1(1 +H)
(
H max{Cz, Cθ}

√
Col,3

)
‖f‖H(div).

6.3. A fully discrete localized multiscale method. The procedure described
in the previous section is still not yet “ready to use” for a practical computation as
the local corrector problems (6.6) involve the infinite-dimensional spaces W(ΩT ).
Hence, we require an additional fine-scale discretization of the corrector problems
(just like the cell problems in periodic homogenization theory can typically not be
solved analytically).

For a fully discrete formulation, we introduce a second shape-regular partition
Th of Ω into tetrahedra. This partition may be nonuniform and is assumed to be
obtained from TH by at least one global refinement. It is a fine discretization in the
sense that h < H and that Th resolves all fine-scale features of the coefficients. Let
N̊ (Th) ⊂ H0(curl) denote the space of Nédélec elements with respect to the partition
Th. We then introduce the space

Wh(ΩT ) := W(ΩT ) ∩ N̊ (Th) = {vh ∈ N̊ (Th)|vh = 0 outside ΩT , π
E
H(vh) = 0}

and discretize the corrector problem (6.6) with this new space. The corresponding
correctors are denoted by KT,m,h and Km,h. With this modification we can prove
analogously to the error estimate (6.5) that it holds that
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inf
vH∈N̊ (TH)

‖uh − (id +Km,h)vH‖H(curl) ≤ C
(
H +

√
Col,mβ̃

m
)
‖f‖H(div),(6.8)

where uh is the Galerkin approximation of u in the discrete fine space N̊ (Th). If
Th is fine enough, we can assume that uh is a good H(curl)-approximation to the
true solution u. Consequently, it is justified to formulate a fully discrete (localized)
multiscale method by seeking uH,h,m ∈ N̊ (TH) such that

B((id +Km,h)uH,h,m, (id +Km,h)vH) = (f , (id +Km,h)vH)L2(Ω) for all vH ∈ N̊ (TH).

(6.9)

As before, we can conclude from (6.8) together with the choice m & |logH|/|log β|
that it holds that

‖uh − (id +Km,h)uH,h,m‖H(curl)+‖uh − uH,h,m‖H(div)′ ≤ CH‖f‖H(div).

Thus, the additional fine-scale discretization does not affect the overall error estimates
and we therefore concentrate in the proofs (for simplicity) on the semidiscrete case as
detailed in subsections 6.1 and 6.2. Compared to the fully discrete case, only some
small modifications are needed in the proofs for the decay of the correctors. These
modifications are outlined at the end of section 7. Note that uh is not needed in the
practical implementation of the method.

7. Proof of the decay for the corrector Green’s operator. In this section,
we prove Proposition 12 and Theorem 14. Since the latter is based on the first result,
we start with proving the exponential decay of the Green’s function associated with
G. Recall that we quantified the decay indirectly through estimates of the form

‖G(FT )‖H(curl,Ω\Nm(T )) . β̃m‖FT ‖H0(curl)′ ,

where FT is a T -local functional and 0 < β̃ < 1. The proof techniques rely on the
multiplication of a corrector function with a cut-off function and a Caccioppoli-type
argument, as is the usual strategy for LOD methods; see, e.g., [37, 44]. Alternatively,
the LOD has been recently reinterpreted in the form of an iterative method (additive
subspace correction method) and a new technique for proving the exponential decay
has been proposed; see [34, 33]. However, this modified approach would require a
different localization strategy than the one that we chose in section 6.

Proof of Proposition 12. Let η ∈ S1(TH) ⊂ H1(Ω) be a scalar-valued, piecewise
linear and globally continuous cut-off function with

η = 0 in Nm−6(T ), η = 1 in Ω \Nm−5(T ).

Denote R = supp(∇η) and φ := G(FT ) ∈ W. In the following we use Nk(R) =
Nm−5+k(T ) \ Nm−6−k(T ). Note that ‖∇η‖L∞(R) ∼ H−1. Furthermore, let φ =
φ− πEHφ = z +∇θ be the splitting from Lemma 4.

Set w := (id−πEH)(ηz +∇(ηθ)) and note that (i) curl w = curl(id−πEH)(ηz), (ii)
w ∈ W, and (iii) supp w ⊂ Ω \ T . Property (i) holds because of curl∇ = 0 and
curlπEH∇v = πFH(curl∇v) = 0 for all v ∈ H1

0 (Ω) due to the commuting property of
πEH . Since πEHφ = 0, η = 1 in Ω\Nm(T ) and because of the coercivity, we obtain that

‖φ‖2H(curl,Ω\Nm(T )) = ‖(id−πEH)(z +∇θ)‖2H(curl,Ω\Nm(T )) ≤ ‖w‖
2
H(curl,Ω)

≤ α−1|B(w,w)|.
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Using the definition of the corrector Green’s operator in (5.1) and the fact that
FT (w) = 0 due to supp w ⊂ Ω \T yields B(φ,w) = 0. Using that supp w∩ supp(φ−
w) ⊂ N(R), we obtain with the continuity of B

α‖φ‖2H(curl,Ω\Nm(T )) ≤ |B(w,w)| = |B(w − φ,w)|
. ‖w − φ‖H(curl,N(R))‖w‖H(curl,N(R))

≤ ‖w − φ‖H(curl,N(R))

(
‖w − φ‖H(curl,N(R)) + ‖φ‖H(curl,N(R))

)
.

We now estimate φ−w = (id−πEH)(φ− ηz−∇(ηθ)). We deduce with the stability
of πEH , (4.1) and (4.2), and Lemma 4

‖φ−w‖H(curl,N(R))

. ‖φ− ηz−∇(ηθ)‖L2(N2(R)) +H‖ curl(φ− ηz)‖L2(N2(R))

. (‖φ‖L2(N2(R)) +H‖ curlφ‖L2(N2(R)) + ‖ηz‖L2(N2(R))

+ ‖∇η‖L∞(R)‖θ‖L2(R) + ‖η‖L∞(N2(R))‖∇θ‖L2(Nm−3(T )\Nm−6(T ))

+H
(
‖∇η‖L∞(R)‖z‖L2(R) + ‖η‖L∞(N2(R))‖ curl z‖L2(Nm−3(T )\Nm−6(T ))

)
. ‖φ‖L2(Nm(T )\Nm−9(T )) +H‖ curlφ‖L2(Nm(T )\Nm−9(T )).

All in all, this gives

‖φ‖2H(curl,Ω\Nm(T )) ≤ C̃‖φ‖
2
H(curl,Nm(T )\Nm−9(T ))

for some C̃ > 0. Moreover, it holds that

‖φ‖2H(curl,Ω\Nm(T )) = ‖φ‖2H(curl,Ω\Nm−9(T )) − ‖φ‖
2
H(curl,Nm(T )\Nm−9(T )).

Thus, we obtain finally with β̃pre := (1 + C̃−1)−1 < 1, a reiteration of the above
argument, and Lemma 7 that

‖φ‖2H(curl,Ω\Nm(T )) . β̃bm/9cpre ‖φ‖2H(curl) . β̃bm/9cpre ‖FT ‖2H0(curl)′ .

Algebraic manipulations give the assertion.

Proof of Theorem 14. We start by proving the local estimate

‖G(FT )− GT,m(FT )‖H(curl) ≤ C1β̃
m‖FT ‖H0(curl)′(7.1)

for some constant C1 > 0 and 0 < β̃ < 1. Let η ∈ S1(TH) be a piecewise linear and
globally continuous cut-off function with

η = 0 in Ω \Nm−1(T ), η = 1 in Nm−2(T ).

Due to Céa’s lemma we have

‖G(FT )− GT,m(FT )‖H(curl) . inf
wT,m∈W(ΩT )

‖G(FT )−wT,m‖H(curl).

We use the splitting of Lemma 4 and write G(FT ) = (id−πEH)(G(FT )) = z +∇θ.
Then we choose wT,m = (id−πEH)(ηz +∇(ηθ)) ∈W(ΩT ) and derive with the sta-
bility of πEH and (4.3)
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‖G(FT )− GT,m(FT )‖H(curl) . ‖(id−πEH)(G(FT )− ηz−∇(ηθ))‖H(curl)

= ‖(id−πEH)((1− η)z +∇((1− η)θ))‖H(curl)

. ‖(1− η)z‖L2(Ω\{η=1}) + ‖∇((1− η)θ)‖L2(Ω\{η=1})

+ (1 +H)‖ curl((1− η)z)‖L2(Ω\{η=1})

. (1 +H) ‖G(FT )‖H(curl,N3(Ω\{η=1})).

Combination with Proposition 12 gives estimate (7.1).
To prove the main estimate of Theorem 14, i.e., estimate (6.3), we define, for

a given simplex T ∈ TH , the piecewise linear, globally continuous cut-off function
ηT ∈ S1(TH) via

ηT = 0 in Nm+1(T ), ηT = 1 in Ω \Nm+2(T ).

Denote w := (G − Gm)(F) =
∑
T∈TH wT with wT := (G − GT,m)(FT ) and split w

according to Lemma 4 as w = w − πEH(w) = z +∇θ. Due to the ellipticity of B and
its sesquilinearity, we have

α‖w‖2H(curl) ≤
∣∣∣ ∑
T∈TH

B(wT ,w)
∣∣∣ ≤ ∑

T∈TH

|B(wT , z +∇θ)| ≤
∑
T∈TH

(AT +BT ),

where, for any T ∈ TH , we abbreviate

AT := |B(wT , (1− ηT )z +∇((1− ηT )θ))| and BT := |B(wT , ηT z +∇(ηT θ))|.

For the term AT , we derive by using the properties of the cut-off function and
the regular decomposition (4.3)

AT . ‖wT ‖H(curl)‖(1− ηT )z +∇((1− ηT )θ)‖H(curl,{ηT 6=1})

≤ ‖wT ‖H(curl) (1 +H) ‖w‖H(curl,N3({ηT 6=1})).

The term BT can be split as

BT ≤ |B(wT , (id−πEH)(ηT z +∇(ηT θ)))|+ |B(wT , π
E
H(ηT z +∇(ηT θ)))|.

Denoting φ := (id−πEH)(ηT z + ∇(ηT θ)), we observe φ ∈ W and suppφ ⊂ Ω \
Nm(T ). Because φ ∈W with support outside T , we have B(G(FT ),φ) = FT (φ) = 0.
Since φ has support outside Nm(T ) = ΩT , but GT,m(FT ) ∈ W(ΩT ), we also have
B(GT,m(FT ),φ) = 0. All in all, this means B(wT ,φ) = 0. Using the stability of πEH
(4.1), (4.2), and the regular decomposition (4.3), we obtain

BT ≤ |B(wT , π
E
H(ηT z +∇(ηT θ)))|

. ‖wT ‖H(curl)

(
‖ηT z+∇(ηT θ)‖L2(N2({ηT 6=1}))+(1+H)‖ curl(ηT z)‖L2(N2({ηT 6=1}))

)
. ‖wT ‖H(curl)(1 +H) ‖w‖H(curl,N5({ηT 6=1})).

Combining the estimates for AT and BT and observing that {ηT 6= 1} = Nm+2(T ),
we deduce

α‖w‖2H(curl) .
∑
T∈TH

‖wT ‖H(curl) ‖w‖H(curl,Nm+7(T ))

.
√
Col,m ‖w‖H(curl)

√ ∑
T∈TH

‖wT ‖2H(curl).
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Combination with estimate (7.1) finishes the proof of (6.3). Finally, estimate (6.4)
follows with

‖w‖H(div)′ ≤ CH‖w‖H(curl).

Changes for the fully discrete localized method. Let us briefly consider
the fully discrete setting described in subsection 6.3. Here we note that, up to a
modification of the constants, Theorem 14 also holds for the difference (Gh−Gh,m)(F),
where Gh(F) is the Galerkin approximation of G(F) in the discrete space Wh :=
{vh ∈ N̊ (Th)|πEH(vh) = 0} and where Gh,m(F) is defined analogously to Gm(F) but
where Wh(ΩT ) := {wh ∈ Wh| wh ≡ 0 in Ω \ ΩT } replaces W(ΩT ) in the local
problems. Again, the central observation is a decay result similar to Proposition 12,
but now for Gh(FT ). A few modifications to the proof have to be made, though: The
product of the cut-off function η and the regular decomposition z+∇θ does not lie in
N̊ (Th). Therefore, an additional interpolation operator into N̊ (Th) has to be applied.
Here it is tempting to just use the nodal interpolation operator and its stability on
piecewise polynomials, since η Gh(FT ) is a piecewise (quadratic) polynomial, as done,
for instance, for the Helmholtz equation in [44]. However, the regular decomposition
employed is no longer piecewise polynomial and we hence have to use the Falk–Winther
operator πEh onto the fine space N̊ (Th) here. This means that we have to modify w
to w̃ := (id−πEH)πEh (ηz+∇(ηθ)). Note that the additional interpolation operator πEh
will enlarge the patches slightly, so that we should define η via

η = 0 in Nm−8(T ), η = 1 in Ω \Nm−7(T ).

With the same arguments as in the proof of Proposition 12, we can now deduce that

α‖φ‖2H(curl,Ω\Nm(T ) ≤ |B(w̃, w̃)| = |B(w̃ − φ, w̃)|.

Note that φ−w̃ = (id−πEh )(φ−ηz−∇(ηθ))+(id−πEH)(id−πEh )(ηz+∇(ηθ)). The first
term is the same as in the proof of Proposition 12. The second term can be estimated
simply using the stability of πEh , the properties of η, and the regular decomposition
(4.3).

8. Falk–Winther interpolation. This section briefly describes the construc-
tion of the bounded local cochain projection of [21] for the present case of H(curl)-
problems in three space dimensions. The two-dimensional case is thoroughly described
in the gentle introductory paper [22]. After giving the definition of the operator, we
describe how it can be represented as a matrix. This is important because the interpo-
lation operator is part of the algorithm and not a mere theoretical tool and therefore
required in a practical realization.

8.1. Definition of the operator. Let ∆0 denote the set of vertices of TH and
let ∆̊0 := ∆0 ∩ Ω denote the interior vertices. Let ∆1 denote the set of edges and let
∆̊1 denote the interior edges, i.e., the elements of ∆1 that are not a subset of ∂Ω. The
space N̊ (TH) is spanned by the well-known edge-oriented basis (ψE)E∈∆̊1

defined for

any E ∈ ∆̊1 through the property
 
E

ψE · tE ds = 1 and

 
E′
ψE · tE ds = 0 for all E′ ∈ ∆̊1 \ {E}.

Here tE denotes the unit tangent to the edge E with a globally fixed sign. Any vertex
z ∈ ∆0 possesses a nodal patch (sometimes also called macroelement)
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ωz := int
(⋃
{T ∈ TH : z ∈ T}

)
.

For any edge E ∈ ∆1 shared by two vertices z1, z2 ∈ ∆0 such that E = conv{z1, z2},
the extended edge patch reads

ωext
E := ωz1 ∪ ωz2 .

The restriction of the mesh TH to ωext
E is denoted by TH(ωext

E ). Let S1(TH(ωext
E ))

denote the (scalar-valued) first-order Lagrange finite element space with respect to
TH(ωext

E ) and let N (TH(ωext
E )) denote the lowest-order Nédélec finite element space

over TH(ωext
E ). The operator

Q1
E : H(curl, ωext

E )→ N (TH(ωext
E ))

is defined for any u ∈ H(curl, ωext
E ) via

(u−Q1
Eu,∇τ) = 0 for all τ ∈ S1(TH(ωext

E )),

(curl(u−Q1
Eu), curl v) = 0 for all v ∈ N (TH(ωext

E )).

Given any vertex y ∈ ∆0, define the piecewise constant function z0
y by

z0
y =

{
(meas(ωy))−1 in ωy,

0 in Ω \ ωy.

Given any edge E ∈ ∆1 shared by vertices y1, y2 ∈ ∆0 such that E = conv{y1, y2},
define

(δz0)E := z0
y2 − z

0
y1 .

Let E ∈ ∆1 and denote by R̊T (TH(ωext
E )) the lowest-order Raviart–Thomas space

with respect to TH(ωext
E ) with vanishing normal trace on the boundary ∂(ωext

E ). Let

for any E ∈ ∆1 the field z1
E ∈ R̊T (TH(ωext

E )) be defined by

div z1
E = −(δz0)E ,

(z1
E , curl τ ) = 0 for all τ ∈ N̊ (TH(ωext

E )),

where N̊ (TH(ωext
E )) denotes the Nédélec finite element functions over TH(ωext

E ) with
vanishing tangential trace on the boundary ∂(ωext

E ). The operator M1 : L2(Ω;C3)→
N̊ (TH) maps any u ∈ L2(Ω;C3) to

M1u :=
∑
E∈∆̊1

(length(E))−1

ˆ
ωext

E

u · z1
E dxψE .

Recall that the weights in the (modified) Clément interpolation of a function v ∈ H1
0

are (meas(ωz))
−1

´
ωz
v dx for all vertices z. The operator M1 now generalizes this

(local) averaging process of the Clément operator to the case of edge elements. M1,
however, is not a projection onto the edge elements yet.

The operator
Q1
y,− : H(curl, ωext

E )→ S1(TH(ωext
E ))

is the solution operator of a local discrete Neumann problem. For any u ∈ H(curl,
ωext
E ), the function Q1

y,−u solves
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(u−∇Q1
y,−u,∇v) = 0 for all v ∈ S1(TH(ωext

E )),ˆ
ωext

E

Q1
y,−u dx = 0.

Define now the operator S1 : H0(curl,Ω)→ N̊ (TH) via

S1u := M1u +
∑
y∈∆̊0

(Q1
y,−u)(y)∇λy.(8.1)

S1 preserves the degrees of freedom of N (TH) for all gradient functions ∇S(TH),
which is a first step to the projection property. However, S1 will not commute with
the exterior derivative in general and hence needs to be further modified. The second
sum on the right-hand side of (8.1) can be rewritten in terms of the basis functions
ψE . The inclusion ∇S̊1(TH) ⊆ N̊ (TH) follows from the principles of finite element
exterior calculus [2, 3]. Given an interior vertex z ∈ ∆̊0, the expansion in terms of
the basis (ψE)E∈∆̊1

reads

∇λz =
∑
E∈∆̊1

 
E

∇λz · tE dsψE =
∑

E∈∆1(z)

sign(tE · ∇λz)
length(E)

ψE ,

where ∆1(z) ⊆ ∆̊1 is the set of all edges that contain z. Thus, S1 from (8.1) can be
rewritten as

S1u := M1u +
∑
E∈∆̊1

(length(E))−1
(
(Q1

y2(E),−u)(y2(E))− (Q1
y1(E),−u)(y1(E))

)
ψE ,

(8.2)

where y1(E) and y2(E) denote the endpoints of E (with the orientation convention
tE = (y2(E)− y1(E))/ length(E)). Finally, the Falk–Winther interpolation operator
πEH : H0(curl,Ω)→ N̊ (TH) is defined as

πEHu := S1u +
∑
E∈∆̊1

 
E

(
(id−S1)Q1

Eu
)
· tE dsψE .(8.3)

8.2. Algorithmic aspects. Given a mesh TH and a refinement Th, the linear proj-

ection πH : N̊ (Th)→ N̊ (TH) can be represented by a matrix P∈Cdim N̊ (TH)×dim N̊ (Th).
This subsection briefly sketches the assembling of that matrix. The procedure involves
the solution of local discrete problems on the macroelements. It is important to note
that these problems are of small size.

Given an interior edge E ∈ ∆̊H
1 of TH and an interior edge e ∈ ∆̊h

1 of Th, the
interpolation πHψe has an expansion

πHψe =
∑

E′∈∆̊H
1

cE′ψE′

for coefficients (cE′)E′∈∆̊H
1

. The coefficient cE is zero whenever e is not contained in

the closure of the extended edge patch ωext
E . The assembling can therefore be organized

in a loop over all interior edges in ∆̊H
1 . Given a global numbering of the edges in ∆̊H

1 ,
each edge E ∈ ∆̊H

1 is equipped with a unique index IH(E) ∈ {1, . . . , card(∆̊H
1 )}.

Similarly, the numbering of edges in ∆̊h
1 is denoted by Ih.

The matrix P = P1 + P2 will be composed as the sum of matrices P1, P2 that
represent the two summands on the right-hand side of (8.3). Those will be assembled
in loops over the interior edges. Matrices P1, P2 are initialized as empty sparse
matrices.
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8.2.1. Operator P1. for E ∈ ∆̊H
1 do. Let the interior edges in ∆̊h

1 that lie
inside ωext

E be denoted with {e1, e2, . . . , eN} for some N ∈ N. The entries P1(IH(E),
[Ih(e1) . . . Ih(eN )]) of the matrix P1 are now determined as follows. Compute z1

E ∈
R̊T (TH(ωext

E )). The matrix ME ∈ C1×N defined via

ME := (length(E))−1

[ˆ
ωext

E

z1
E ·ψej dx

]N
j=1

represents the map of the basis functions on the fine mesh to the coefficient of M1

contributing to ψE on the coarse mesh. Denote by Ayj(E) and Byj(E) (j = 1, 2) the
stiffness and right-hand-side matrix representing the system for the operator Qyj(E),−

Ayj(E) :=

[ˆ
ωyj(E)

∇φy · ∇φz dx

]
y,z∈∆0(TH(ωyj(E)))

,

Byj(E) :=

[ˆ
ωyj(E)

∇φy ·ψej dx

]
y∈∆0(TH(ωyj(E)))

j=1,...,N

.

After enhancing the system to Ãyj(E) and B̃yj(E) (with a Lagrange multiplier account-

ing for the mean constraint), it is uniquely solvable. Set Q̃yj(E) = Ã−1
yj(E)B̃yj(E) and

extract the row corresponding to the vertex yj(E)

Qj := (length(E))−1Q̃yj(E)[yj(E), :] ∈ C1×N .

Set
P1(IH(E), [Ih(e1) . . . Ih(eN )]) = ME + Q1 − Q2.

end

8.2.2. Operator P2. for E ∈ ∆̊H
1 do. Denote the matrices—where indices j, k

run from 1 to card(∆1(TH(ωext
E ))), y through ∆0(TH(ωext

E )), and ` = 1, . . . , N—

SE :=

[ˆ
ωext

E

curlψEj
· curlψEk

dx

]
j,k

TE :=

[ˆ
ωext

E

ψEj
· ∇λy dx

]
j,y

and

FE :=

[ˆ
ωext

E

curlψEj
· curlψe` dx

]
j,`

GE :=

[ˆ
ωext

E

ψe` · ∇λy dx

]
y,`

.

Solve the saddle-point system [
S T∗

T 0

] [
U
V

]
=

[
F
G

]
.

(This requires an additional one-dimensional gauge condition because the sum of the
test functions

∑
y∇λy equals zero.) Assemble the operator S1 (locally) as described

in the previous step and denote this matrix by Ploc
1 . Compute U− Ploc

1 U and extract
the line X corresponding to the edge E

P2(IH(E), [Ih(e1) . . . Ih(eN )]) = X.

end
We note that this representation of the Falk–Winther operator as a matrix is

an essential step toward a practical implementation: Computations requiring test
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or ansatz functions in the kernel space W or its modifications can be written as
saddle-point problems now; see [18]. As the rest of our construction follows the LOD
framework, we refer to [18] for a discussion of an efficient implementation.

Conclusion. In this paper, we suggested a procedure for the numerical homoge-
nization of H(curl)-elliptic problems. The exact solution is decomposed into a coarse
part, which is a good approximation in H(div)′, and a corrector contribution by using
the Falk–Winther interpolation operator. We showed that this decomposition gives
an optimal order approximation in H(curl), independent of the regularity of the exact
solution. Furthermore, the corrector operator can be localized to patches of macro el-
ements, which allows for an efficient computation. This results in a generalized finite
element method in the spirit of the LOD which utilizes the bounded local cochain
projection of the Falk–Winther as part of the algorithm.
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