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Abstract. A mixed finite element approximation of H2 solutions to the fully nonlinear Hamilton–
Jacobi–Bellman equation, with coefficients that satisfy the Cordes condition, is proposed and an-
alyzed. A priori and a posteriori bounds on the approximation error are proved. The contribu-
tions from the a posteriori error estimator can be used as refinement indicators in an adaptive
mesh-refinement algorithm. The convergence of this procedure is proved and empirically studied in
numerical experiments.
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1. Introduction. This work presents a mixed finite element approximation of
H2 solutions to the Hamilton–Jacobi–Bellman (HJB) equation

(1.1) sup
α∈Λ

(aα : D2u+ bα · ∇u− cαu− fα) = 0 in Ω, u = 0 on ∂Ω,

with uniformly continuous coefficients satisfying a Cordes condition, which are para-
metrized over a compact metric space Λ. Here D2u and ∇u denote, respectively, the
Hessian and the gradient of the real-valued function u. The domain Ω ⊆ Rd is a
bounded, open, convex Lipschitz domain, which, for ease of discretization and the
sake of simplicity of the exposition, we shall henceforth consider to be a bounded,
open, convex polytope. The equation arises in the theory of optimal stochastic con-
trol for continuous time Markov processes [19]; it is fully nonlinear and involves a
parametrized family of second-order linear elliptic partial differential operators in
nondivergence form. While second-order elliptic equations in divergence form possess
a weak formulation in first-order Sobolev spaces, which can be directly discretized
with finite elements, the theory of nondivergence form and, more generally, fully non-
linear PDEs, relies on different solution concepts such as strong solutions, viscosity
solutions, or measure-valued solutions. The construction of numerical methods for
these problems, and finite element methods in particular, is much less straightfor-
ward, the reason being that the leading-order term does not stem from an energy
minimization procedure and thus there is no natural variational formulation.

The recent papers [39], [40], and [41] have identified a class of domains and co-
efficients for which an existence and uniqueness theory of strong solutions to HJB
equations (and linear nondivergence form problems, in particular,) in the Sobolev
space H2(Ω) is available. Therein, the main condition on the uniformly elliptic coef-
ficients aα ∈ L∞(Ω;Rd×d), α ∈ Λ, is the so-called Cordes condition, which dates back
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to [11]. In the absence of lower-order terms it basically requires that the Frobenius
norm of the tensor aα is properly dominated by its trace for each α ∈ Λ. For the anal-
ysis of PDEs with discontinuous coefficients under the Cordes condition the reader is
referred to the monograph [33]. In the presence of lower-order terms as in (1.1), the
Cordes condition [40] requires the existence of λ > 0 and ε ∈ (0, 1) such that, for each
α ∈ Λ,

(1.2)
|aα|2 + |bα|2/(2λ) + (cα/λ)2

(tr aα + cα/λ)2
≤ 1
/

(d+ ε) a.e. in Ω.

The existence and uniqueness of strong solutions to elliptic and parabolic HJB equa-
tions on convex domains, under the Cordes condition, were studied in [40] and [41],
and, based on these, discontinuous Galerkin finite element approximations of H2 so-
lutions were constructed and analyzed.

The scheme presented here is a mixed finite element method, based on a splitting
technique for equations involving the Hessian into systems of divergence-form PDEs
[20]. Its characteristic feature is that the gradient w = ∇u is discretized by an
additional independent variable, which bypasses the need for H2-conforming finite
elements. In the context of polyharmonic equations [20], the relation w = ∇u was
enforced through a saddlepoint formulation, the use of which is, however, merely
optional in this work on HJB equations. Such mixed discretizations were applied to
linear problems in nondivergence form in [21] and generalized to oblique derivative
problems in [23]. One advantage of this approach is that a priori as well as a posteriori
error bounds can be derived in a relatively direct way, and the convergence of adaptive
mesh-refinement algorithms can be proved. Key to the analysis of [39, 40] is the so-
called Miranda–Talenti estimate |u|H2(Ω) ≤ ‖∆u‖L2(Ω) for all u ∈ H2(Ω)∩H1

0 (Ω). In
the context of the mixed formulation considered herein, the corresponding relevant
inequality reads

(1.3) ‖Dw‖2L2(Ω) ≤ ‖rotw‖2L2(Ω) + ‖divw‖2L2(Ω)

for any vector field w all of whose components belong to H1(Ω) and whose tangential
trace vanishes on ∂Ω. Here Dw denotes the gradient of the d-component vector-
function w. If w equals the gradient of a real-valued function from H2(Ω) ∩H1

0 (Ω),
the original Miranda–Talenti estimate is recovered. In mixed finite element methods,
irrotationality of the finite element approximation to w is usually not imposed in
a pointwise fashion and thus quantities approximating gradients need not be true
gradients of discrete functions. It turns out that this is basically the reason why mixed
finite element approximations require stabilizing terms [21]. In this work, a novel
generalization of (1.3) will be introduced, which plays a key role in the construction
and the stability analysis of mixed approximations of (1.1).

The new finite element discretization proposed here greatly simplifies the numer-
ical approximation of (1.1) compared to prior contributions. In particular, standard
H1-conforming finite elements can be used. The numerical analysis of the scheme
requires careful investigation of Miranda–Talenti-type estimates in the spirit of (1.3),
thereby generalizing existing results, which, in turn, lead to the design of stabilization
terms, resulting in a well-posed numerical method for which a priori and a posteri-
ori error bounds will be derived. The latter enables the use of an adaptive mesh-
refinement algorithm, which can be proved to converge to the unique strong solution
of the problem. These theoretical results are supplemented by numerical experiments,
which suggest that the adaptive scheme can improve the accuracy of the method com-
pared with uniform mesh refinement.
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For the PDE analysis of elliptic equations in nondivergence form the reader is
referred to the monograph [33]. Finite element methods for the numerical solution of
linear problems in nondivergence form can be found in [32, 39, 37, 18, 15]. Concerning
the discretization of fully nonlinear problems, there are several monotone finite differ-
ence schemes [1, 29, 12, 38]. Key to these methods is monotonicity, which means that
discrete maximum principles are respected. This allows a quite general convergence
theory [1] on the one hand, and on the other hand it is known [35] that simultaneous
monotonicity and consistency necessarily come at the expense of a finite difference
stencil which increases (relative to the mesh size) under mesh refinement. Finite ele-
ments appear as one possibility of using nonmonotone methods, such as the method
by [4] (when the linearizations are in divergence form) or approaches based on adding
small perturbations via the bi-Laplacian [17]. A general overview can be found in the
survey articles [14, 36]. Regarding H1-conforming finite element methods for HJB
equations, we refer the reader to the works [7, 8, 27, 28] and the references therein.

Finite element methods for HJB equations with Cordes coefficients on convex do-
mains were introduced in [40]. As was noted above, that work establishes the existence
of a unique strong solution to the problem and proposes a discontinuous Galerkin finite
element discretization, based on prior work by the same authors [39]; an extension to
parabolic problems was presented in [41]. The HJB equation can furthermore be used
to reformulate the Monge–Ampère equation without the need to separately enforce
the convexity of the solution. This result [30] was recently generalized to the case of
viscosity solutions by [16], who proposed a semi-Lagrangian method.

The study of self-adaptive mesh refinement algorithms for fully nonlinear prob-
lems is still in its infancy. While the convergence and optimality of adaptive finite
element approximations of elliptic problems in divergence form have been reasonably
well understood during the past decade [9, 42], the only contributions to a posteriori
error estimation and the convergence analysis of adaptive schemes for linear problems
in nondivergence form seem to be [21, 23].

The article is organized as follows. Section 2 introduces the mixed formulation of
the problem and proves its well-posedness. The numerical method is described and
analyzed in section 3. The error analysis is comprised of a priori and a posteriori
error bounds as well as the convergence analysis of an adaptive algorithm. Section 4
presents numerical experiments.

Standard notation for function spaces is used throughout the article. Lebesgue
and Sobolev functions with values in Rd are denoted by L2(Ω;Rd) with L2(Ω) :=
L2(Ω;R), H1(Ω;Rd) with H1(Ω) := H1(Ω;R), etc. The symbol H1

t (Ω;Rd) denotes
the subspace of H1(Ω;Rd) consisting of vector fields with vanishing tangential trace
on ∂Ω. The n×n identity matrix is denoted by In×n. The inner product of real-valued
n× n matrices A, B is denoted by A : B :=

∑n
j,k=1AjkBjk. The Frobenius norm of

an n × n matrix A is denoted by |A| :=
√
A : A; the trace of an n × n matrix A is

denoted by trA. For vectors, |·| refers to the Euclidean length. The notation a . b
denotes the inequality a ≤ Cb up to a multiplicative constant C that does not depend
on the mesh-size. The results of this paper apply in any space dimension d ≥ 2, but
for ease of readability the results are presented here for d ∈ {2, 3}, where we define

rot v = ∂2v1 − ∂1v2 for d = 2 or rot v =

∂2v3 − ∂3v2

∂3v1 − ∂1v3

∂1v2 − ∂2v1

 for d = 3.

Setting rot as the exterior derivative operator, the proofs also extend to the case
d ≥ 4.
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2. Mixed formulation. This section consists of the following parts. After a
brief review of H2 solutions to the HJB equation in section 2.1, the stabilized saddle-
point formulation is introduced in section 2.2. The lemmas of section 2.3 provide the
results necessary for the proof of well-posedness in section 2.4.

2.1. Review of strong solutions to the HJB equation. The existence of a
unique H2 solution to the HJB equation was established in [40]. Since that setting
will be assumed throughout this work, it is briefly summarized here.

Let Ω ⊆ Rd be a bounded, open, convex polytope and let Λ be a compact metric
space. Assume that we are given the functions

a : Ω× Λ→ Rd×d, b : Ω× Λ→ Rd, c : Ω× Λ→ R, f : Ω× Λ→ R,

which are uniformly continuous, i.e., their components belong to C(Ω × Λ). The set
Λ serves as a parameter set. Thus, the following notation will be used throughout:

aα := a(·, α), bα := b(·, α), cα := c(·, α), fα := f(·, α) for any α ∈ Λ.

Define, for any α ∈ Λ, the linear operator L̃α : H2(Ω)→ L2(Ω) by

L̃α(v) := aα : D2v + bα · ∇v − cαv for any v ∈ H2(Ω).

It is assumed throughout that cα is nonnegative for all α ∈ Λ. Assume that aα is
uniformly elliptic in the sense that there exist constants 0 < ζ1 ≤ ζ2 <∞ such that,
for any α ∈ Λ,

(2.1) ζ1 ≤ inf
ξ∈Rd

|ξ|=1

ξTaαξ ≤ sup
ξ∈Rd

|ξ|=1

ξTaαξ ≤ ζ2 a.e. in Ω.

Assume furthermore that the Cordes condition (1.2) holds. It can be shown [40] that
a relaxed Cordes condition can be assumed when bα and cα vanish for all α ∈ Λ.
For ease of reading, this possibility is disregarded here since the adaptation of the
arguments to this case is straightforward. With this notation, the HJB equation (1.1)
can be rewritten as follows: find a function u ∈ H2(Ω) ∩H1

0 (Ω) such that

(2.2) sup
α∈Λ

(L̃αu− fα) = 0 a.e. in Ω.

It is shown in [40, Thm. 3] that under the aforementioned assumptions there exists a
unique solution u ∈ H2(Ω) ∩H1

0 (Ω) to (2.2).

2.2. The mixed formulation. In order to state the mixed formulation in the
fashion of [20, 21, 23, 22], let W := H1

t (Ω;Rd) denote the linear space of all H1

vector fields defined on Ω with vanishing tangential boundary trace on ∂Ω, and let
U := H1

0 (Ω). Let X := W × U and define on X the family of differential operators
(Lα)α∈Λ, for any α ∈ Λ and (w, u) ∈ X, by

(2.3) Lα(w, u) := aα : Dw + bα · ∇u− cαu.

This is a generalization of the operator L̃α from section 2.1, which satisfies L̃α(v) =
Lα(∇v, v) for any v ∈ H2(Ω) ∩H1

0 (Ω). The mixed formulation of the HJB equation
will rely on a reformulation of (2.2) as

w = ∇u and sup
α∈Λ

(Lα(w, u)− fα) = 0 in Ω.
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As in [40] we define the function

(2.4) γα := γ(·, α) :=
tr aα + cα/λ

|aα|2 + |bα|2/(2λ) + (cα/λ)2
for any α ∈ Λ.

The functions (γα)α∈Λ play the role of a scaling factor. Indeed, γ is strictly positive
and uniformly continuous, γ ∈ C(Ω × Λ), thanks to the assumed uniform continuity
of the coefficients, the uniform ellipticity (2.1) of (aα)α∈Λ, and the Cordes condition
(1.2). With γ thus defined, we consider the operator Fγ : X → L2(Ω), defined by

(2.5) Fγ(w, u) := sup
α∈Λ

[γα(Lα(w, u)− fα)].

The uniform continuity of the coefficients guarantees that Fγ(w, u) ∈ L2(Ω) for any
pair (w, u) ∈ X. We further define the operator τλ : X → L2(Ω), for any (w, u) ∈ X,
by

τλ(w, u) := divw − λu.

The map τλ will play the role of a surjective test-function operator. It is inspired by
the map u 7→ ∆u− λu proposed in [40] for this purpose in the H2 setting. Next, we
define the operator A : X → X? by

(2.6) 〈A[(w, u)], (w′, u′)〉 := (Fγ [(w, u)], τλ(w′, u′))L2(Ω)

for any (w, u), (w′, u′) ∈ X. The semilinear form a : X ×X → R is defined by

(2.7)
a((w, u), (w′, u′)) := 〈A[(w, u)], (w′, u′)〉

+ σ1(rotw, rotw′)L2(Ω) + σ2(w −∇u,w′ −∇u′)L2(Ω)

for any (w, u), (w′, u′) ∈ X. Here, the positive real parameters σ1, σ2 are defined as
follows:

(2.8) σ1 := 1− 1

2

√
1− ε and σ2 :=

λ(1−
√

1− ε)
2

+
λ

4(1−
√

1− ε)

with ε and λ as in (1.2). These numbers σ1, σ2 will play the role of stabilization
parameters in the mixed method. If we restrict our attention to pairs (w, u) and
(w′, u′) with the property that w = ∇u and w′ = ∇u′, then the stabilization terms in
(2.7) vanish. This, however, will not be true in the mixed discretization considered
below, where the finite element approximation wh to the vector field w will only be
the gradient of uh in a discrete weak sense. It is the stabilization that will guarantee
well-posedness of the discrete problem. There are of course different ways of enforc-
ing w = ∇u at the discrete level. It will turn out that the use of the aforementioned
stabilization terms will suffice for formulating a stable and convergent finite element
scheme. The reason is that the PDE is satisfied pointwise almost everywhere. Intro-
ducing a saddlepoint formulation may nevertheless be useful as it may help to reduce
the number of (quasi-)Newton steps in the course of solving the systems of nonlinear
algebraic equations resulting from the discretization. This is a purely empirical obser-
vation (see section 4), which is currently not explained by theoretical considerations.
In order to state the mixed formulation, we let M ⊆ H1

0 (Ω) denote any closed linear
subspace (in particular M = {0} or M = H1

0 (Ω) are possible) and define the bilinear
form b : M ×X → R by

(2.9) b(µ, (w, u)) := (∇µ,∇u− w)L2(Ω) for any µ ∈M and (w, u) ∈ X.
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Note that the freedom in the choice of M ⊆ H1
0 (Ω) will give rise to different numerical

schemes, which will be compared in section 4.4. The mixed formulation of the HJB
equation is then defined as the following nonlinear saddlepoint problem: seek (w, u) ∈
X and µ ∈M such that

a((w, u), (w′, u′)) + b(µ, (w′, u′)) = 0 for all (w′, u′) ∈ X,(2.10a)

b((w, u), µ′) = 0 for all µ′ ∈M.(2.10b)

For any open subset ω ⊆ Ω, we define the following seminorm on X:

(2.11)
|||(w, u)|||λ,ω

:=
(
‖Dw‖2L2(ω) + 2λ‖∇u‖2L2(ω) + λ2‖u‖2L2(ω)

)1/2

for any (w, u) ∈ X

and abbreviate the norm |||·|||λ := |||·|||λ,Ω. A simple argument shows that the global
version, |||·|||λ, does indeed define a norm: for any w ∈ W , Dw = 0 a.e. on Ω implies
that the d-component vector function w is a constant vector on Ω; the vanishing
tangential boundary trace of w on ∂Ω then implies that w = 0 a.e. on Ω, upon noting
that the set of all vectors in Rd that are tangential to ∂Ω span the whole of Rd. By
a standard compactness argument [6], the L2 norm of Dw is equivalent to the H1

norm of w for any w ∈W . The norm |||·|||λ is obviously induced by the following scalar
product on X:

(2.12) ((w, u), (w′, u′))λ := (Dw,Dw′)L2(Ω) + 2λ(∇u,∇u′)L2(Ω) + λ2(u, u′)L2(Ω)

for any (w, u), (w′, u′) ∈ X.
It is readily shown that any (w, u) ∈ X satisfies

|τλ(w, u)| ≤
√

2d
(
|Dw|2 + 2λ|∇u|2 + λ2|u|2

)1/2
almost everywhere on Ω.

Therefore, on every open subset ω ⊆ Ω, one has

(2.13) ‖τλ(w, u)‖L2(ω) ≤
√

2d |||(w, u)|||λ,ω for any (w, u) ∈ X.

Furthermore, on polytopes, the relation ‖divw‖L2(Ω) ≤ ‖Dw‖L2(Ω) for any w ∈ W
implies the sharper global estimate

(2.14) ‖τλ(w, u)‖L2(Ω) ≤
√

2 |||(w, u)|||λ for any (w, u) ∈ X.

2.3. Preparatory results. Since Ω ⊆ Rd is a convex polytope, the Miranda–
Talenti estimate (1.3) holds for any w ∈ W . The next lemma may be viewed as a
further new generalization of this estimate.

Lemma 2.1 (Miranda–Talenti-type estimate). Let Ω ⊆ Rd be a convex polytope.
Then, any (w, u) ∈ X satisfies, for any 0 < ρ < 2, the following inequality:

|||(w, u)|||2λ ≤
2

2− ρ

(
‖τλ(w, u)‖2L2(Ω) +

λ

ρ
‖∇u− w‖2L2(Ω) + ‖rotw‖2L2(Ω)

)
.

Proof. The definition of the norm |||·|||λ in (2.11), the classical estimate (1.3),
together with the integration-by-parts formula −(w,∇u)L2(Ω) = (divw, u)L2(Ω) for
(w, u) ∈ X, and elementary algebraic manipulations reveal that

|||(w, u)|||2λ ≤ ‖divw‖2L2(Ω) + ‖rotw‖2L2(Ω) + 2λ(∇u− w,∇u)L2(Ω)

− 2λ(divw, u)L2(Ω) + λ2‖u‖2L2(Ω)

= ‖τλ(w, u)‖2L2(Ω) + ‖rotw‖2L2(Ω) + 2λ(∇u− w,∇u)L2(Ω).
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Young’s inequality yields, for any 0 < ρ < 2, that

2λ(∇u− w,∇u)L2(Ω) ≤
λ

ρ
‖∇u− w‖2L2(Ω) + ρλ‖∇u‖2L2(Ω).

Thus,

|||(w, u)|||2λ ≤ ‖τλ(w, u)‖2L2(Ω) + ‖rotw‖2L2(Ω) +
λ

ρ
‖∇u− w‖2L2(Ω) + ρλ‖∇u‖2L2(Ω).

After subtracting ρλ‖∇u‖2L2(Ω) from both sides, the left-hand side is still bounded

from below by (1− ρ/2) |||(w, u)|||2λ, which proves the assertion.

Lemma 2.2. Let (w, u), (w′, u′) ∈ X and abbreviate δw := w − w′, δu := u − u′,
and δ := (δw, δu). The following estimate holds almost everywhere in Ω:

(2.15)
|Fγ [(w, u)]− Fγ [(w′, u′)]− τλ(δw, δu)|

≤
√

1− ε
(
|Dδw|2 + 2λ|∇δu|2 + λ2|δu|2

)1/2
.

Proof. The proof closely follows the lines of [40, Lem. 1]. The definition of Fγ , the
fact that τλ is independent of α, and elementary properties of the supremum imply
that the left-hand side of (2.15) is bounded from above by supα∈Λ|γαLαδ− τλδ|. The
Cauchy–Schwarz and triangle inequalities bound this term by

sup
α∈Λ

(
|γαaα − Id×d| |D(w − w′)|+ |γα| |bα| |∇(u− u′)|+ |λ− cαγα| |u− u′|

)
,

where we have used that div(w − w′) = Id×d : D(w − w′). The Cauchy–Schwarz
inequality in R3 therefore eventually leads to

|Fγ [(w, u)]− Fγ [(w′, u′)]− τλδ| ≤ sup
α∈Λ

√
Cα
(
|Dδw|2 + 2λ|∇δu|2 + λ2|δu|2

)1/2
,

where

Cα := |γαaα − Id×d|2 + |γα|2|bα|2/(2λ) + |λ− cαγα|2/λ2.

An elementary calculation reveals that

Cα = d+ 1− 2γα(tr aα + cα/λ) + |γα|2
(
|aα|2 + |bα|2/(2λ) + |cα|2/λ2

)
.

The definition of γα and the Cordes condition (1.2) imply that Cα ≤ 1 − ε. This
completes the proof.

The next lemma asserts monotonicity of a on the space X.

Lemma 2.3 (lower bound). For any (w, u), (w′, u′) ∈ X with δ := (w−w′, u−u′)
one has that

cmon|||δ|||2λ ≤ a((w, u), δ)− a((w′, u′), δ),

where cmon := (1−
√

1− ε)/4.

Proof. We define δw := w−w′ and δu := u−u′ so that δ = (δw, δu). The definition
of A from (2.6) and elementary algebraic manipulations lead to

〈A[(w, u)]−A[(w′, u′)], δ〉 = ‖τλδ‖2L2(Ω) + (Fγ [(w, u)]− Fγ [(w′, u′)]− τλδ, τλδ)L2(Ω).
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Lemma 2.2 and Young’s inequality bound the right-hand side from below by

‖τλδ‖2L2(Ω) −
√

1− ε|||δ|||λ‖τλδ‖L2(Ω) ≥
(

1−
√

1− ε
2

)
‖τλδ‖2L2(Ω) −

√
1− ε
2
|||δ|||2λ.

Lemma 2.1 with the choice ρ := 2− 2
√

1− ε yields

√
1− ε
2
|||δ|||2λ ≤

1

2
‖τλδ‖2L2(Ω) +

λ

4(1−
√

1− ε)
‖∇δu − δw‖2L2(Ω) +

1

2
‖rot δw‖2L2(Ω).

Hence, the combination of the foregoing displayed inequalities results in

〈A[(w, u)]−A[(w′, u′)], δ〉

≥ 1−
√

1− ε
2

‖τλδ‖2L2(Ω) −
λ

4(1−
√

1− ε)
‖∇δu − δw‖2L2(Ω) −

1

2
‖rot δw‖2L2(Ω).

We add σ1‖rot δw‖2L2(Ω) and σ2‖∇δu − δw‖2L2(Ω) to both sides, where σ1 and σ2 are

the parameters defined in (2.8). Then, with the definition of the form a from (2.7),

a((w, u), δ)− a((w′, u′), δ)

≥ 1−
√

1− ε
2

(
‖τλδ‖2L2(Ω) + λ‖∇δu − δw‖2L2(Ω) + ‖rot δw‖2L2(Ω)

)
.

The application of Lemma 2.1 with ρ := 1 implies that the right-hand side of this is
bounded from below by (1−

√
1− ε)|||δ|||2λ/4. That concludes the proof.

The next lemma guarantees the Lipschitz continuity of a. The local version of the
result on open subdomains ω ⊆ Ω will rely on a modified norm, whereas the global
version is stated with respect to the norm |||·|||λ. We define, for any open subdomain
ω ⊆ Ω and any (w, u), (w′, u′) ∈ X, the localized version of a by

aω((w, u), (w′, u′)) := (Fγ [(w, u)], τλ(w′, u′))L2(ω).

+ σ1(rotw, rotw′)L2(ω) + σ2(w −∇u,w′ −∇u′)L2(ω).

Lemma 2.4 (Lipschitz continuity). There exist positive constants CLip and C loc
Lip

such that any (w, u), (w′, u′), (z, v) ∈ X, with δw := w − w′ and δu := u− u′, satisfy

a((w, u), (z, v))− a((w′, u′), (z, v)) ≤ CLip|||(δw, δu)|||λ|||(z, v)|||λ,

as well as

aω((w, u), (z, v))− aω((w′, u′), (z, v))

≤ C loc
Lip

((
|||(δw, δu)|||λ,ω + ‖δw‖L2(ω)

)(
|||(z, v)|||λ,ω + ‖z‖L2(ω)

))
for any open subset ω ⊆ Ω. The constants CLip and C loc

Lip may depend on λ and ε
from the Cordes condition (1.2).

Proof. Let ω ⊆ Ω be an open subset. Consider the decomposition

aω((w, u), (z, v))− aω((w′, u′), (z, v)) = R1 +R2 +R3,
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where

R1 := (Fγ [(w, u)], τλ(z, v))L2(ω) − (Fγ [(w′, u′)], τλ(z, v))L2(ω),

R2 := σ1(rot δw, rot z)L2(ω),

R3 := σ2(δw −∇δu, z −∇v)L2(ω),

and abbreviate δ := (δw, δu). With the help of Lemma 2.2 and estimate (2.13), the
term R1 is bounded as follows:

R1 = (Fγ(w, u)− Fγ(w′, u′)− τλδ, τλ(z, v))L2(ω) + (τλδ, τλ(z, v))L2(ω)

≤ (2d+
√

2d
√

1− ε)|||δ|||λ,ω|||(z, v)|||λ,ω.

The term R2 can be directly bounded as follows:

R2 ≤ σ1|||δ|||λ,ω|||(z, v)|||λ,ω.

The term R3 can be bounded using the triangle inequality as follows:

R3 ≤ σ2(‖δw‖L2(ω) + ‖∇δu‖L2(ω))(‖z‖L2(ω) + ‖∇v‖L2(ω))

≤ σ2 max{1, 1/
√

2λ}
(
|||(δw, δu)|||λ,ω + ‖δw‖L2(ω)

)(
|||(z, v)|||λ,ω + ‖z‖L2(ω)

)
.

By combining the bounds on R1, R2, and R3 we deduce the localized version of the
asserted Lipschitz continuity. The global version for ω = Ω follows from the Poincaré-
type inequality ‖w‖L2(Ω) . ‖Dw‖L2(Ω) for any w ∈W .

2.4. Well-posedness of the mixed problem. The following result asserts
well-posedness of the mixed formulation and its equivalence to the original boundary-
value problem for the HJB equation.

Proposition 2.5. Let the domain Ω, the parameter set Λ, and the data a, b, c, f
satisfy the conditions from section 2.1. Then, the system (2.10) has a unique solution
(w, u) ∈ X, µ ∈ M . Moreover, µ = 0, u ∈ H2(Ω) ∩ H1

0 (Ω) with w = ∇u, and the
function u satisfies (2.2).

Proof. The result basically follows from the classical Brezzi splitting. For linear
problems, this result is standard and is covered, for example, in [5, 3]. The application
to the nonlinear problem (2.10) under consideration here follows by a similar reasoning
and is briefly summarized below. We begin by defining the kernel of b as

Z := {(w, u) ∈W × U : b(µ, (w, u)) = 0 for all µ ∈M}.

Restricting (2.10) to the kernel Z leads to the problem of finding (w, u) ∈ Z such that

(2.16) a((w, u), (w′, u′)) = 0 for all (w′, u′) ∈ Z.

This problem admits a unique solution: indeed, Lemmas 2.3 and 2.4 ensure that the
nonlinear operator

(v, η) 7→ a((v, η), •) ∈ X?

is strongly monotone and Lipschitz continuous on the whole space X. The Browder–
Minty theorem [45, Thm. 25B] therefore implies the existence of a unique solution
(w, u) ∈ Z to (2.16). In the case M = {0}, the identity Z = X holds, and the
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existence of a unique solution in X directly follows. In the more general case when
M ⊆ H1

0 (Ω), the form b satisfies the following inf-sup condition for some β > 0:

(2.17) β ≤ inf
ξ∈M\{0}

sup
(v,η)∈X\{0}

b(ξ, (v, η))

‖∇ξ‖L2(Ω)|||(v, η)|||λ
.

This follows from the fact that, for any ξ ∈ M , the Poisson-type problem of finding
η ∈M such that (recall the definition of b in (2.9))

b(ζ, (0, η)) = (∇ξ,∇ζ)L2(Ω) for all ζ ∈M

admits a unique solution η ∈ M ⊆ U . Since M ⊆ U is a closed linear subspace, this
may be viewed as a Galerkin approximation in U from M . The choice of η implies
that

b(ξ, (0, η)) = ‖∇ξ‖2L2(Ω).

Clearly, (0, η) ∈ X satisfies

|||(0, η)|||λ =
√

2λ‖∇η‖2L2(Ω) + λ2‖η‖2L2(Ω) . ‖∇ξ‖L2(Ω).

This proves the inf-sup condition (2.17). By a standard application of the closed range
theorem as in [5, Lem. 4.2], the inf-sup condition (2.17) implies that the map

B : M → Z0, η 7→ B(η) := b(η, ·)

is an isomorphism from M to the polar set

Z0 := {F ∈ X? : F (z) = 0 for all z ∈ Z}.

Since (2.16) implies that a((w, u), ·) ∈ Z0, there exists a unique µ ∈M such that

a((w, u), (w′, u′)) + b(µ, (w′, u′)) = 0 for all (w′, u′) ∈ X.

Since (w, u) ∈ Z, (2.10b) is obviously satisfied. This establishes the existence of a
unique solution (w, u) ∈ X to (2.10). Since Ω is convex, the operator (∆ − λ) :
H2(Ω)∩H1

0 (Ω)→ L2(Ω) is surjective (cf. [24, Thm. 3.2.1.2]). This implies that τλ is
a surjective map from the subset

Y := {(w′, u′) ∈ X : w = ∇u} ⊆ X

onto L2(Ω). Testing (2.10a) with pairs (w′, u′) ∈ Y shows that

(Fγ [(w, u)], τλ(w′, u′))L2(Ω) = 0 for all (w′, u′) ∈ Y.

Thus, Fγ [(w, u)] = 0 as an equality in L2(Ω). Testing (2.10a) with (w, u) therefore
results in

σ1‖rotw‖2L2(Ω) + σ2‖w −∇u‖2L2(Ω) = 0.

This implies that w = ∇u and therefore in particular u ∈ H2(Ω)∩H1
0 (Ω). Hence, the

identity Fγ [(w, u)] = 0 can be written as

sup
α∈Λ

[γα(aα : D2u+ bα · ∇u− cαu− fα)] = 0 a.e. in Ω.

Consequently, u solves the HJB equation. The strong solution property also shows
that µ = 0 because (2.16) holds for all (w′, u′) ∈ X.

Remark 2.6. While the reasoning for the saddlepoint problem in the proof of
Proposition 2.5 is somewhat artificial (µ = 0 is known), the same arguments will be
required in the discussion of the discrete problem; see Proposition 3.1 below.
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3. Discretization. This section is devoted to the description and analysis of the
numerical scheme.

3.1. Numerical scheme. Suppose that Wh ⊆W , Uh ⊆ U , and Mh ⊆ Uh ⊆M
are closed linear subspaces and define the space Xh ⊆ X by Xh := Wh × Uh. The
discrete problem seeks (wh, uh) ∈ Xh and µh ∈Mh such that

a((wh, uh), (w′h, u
′
h)) + b(µh, (w

′
h, u
′
h)) = 0 for all (w′h, u

′
h) ∈ Xh,(3.1a)

b((wh, uh), µ′h) = 0 for all µ′h ∈Mh.(3.1b)

Proposition 3.1. There exists a unique solution (wh, uh) ∈ Xh, µh ∈ Mh to
(3.1).

Proof. The arguments in the proof are analogous to those in Proposition 2.5. The
existence of a unique solution to the problem, restricted to the discrete kernel

Zh := {(wh, uh) ∈Wh × Uh : b(µh, (wh, uh)) = 0 for all µ ∈Mh},

follows from the strong monotonicity and Lipschitz continuity of a. The arguments
from the proof of Proposition 2.5 show that the following discrete inf-sup condition
is satisfied:

(3.2) β ≤ inf
ξh∈Mh\{0}

sup
(vh,ηh)∈Xh\{0}

b(ξh, (vh, ηh))

‖∇ξh‖L2(Ω)|||(vh, ηh)|||λ
.

This and the arguments of Proposition 2.5 conclude the proof.

3.2. Error analysis. The next result states an a priori error estimate.

Theorem 3.2 (a priori error estimate). Let (w, u) ∈ X, µ ∈M solve (2.10) and
(wh, uh) ∈ Xh, µh ∈ Mh solve (3.1), respectively, and define e := (w − wh, u − uh).
Then, the following a priori error bound holds:

|||e|||λ ≤ (c−1
monCLip) inf

(vh,ηh)∈Zh

|||(w, u)− (vh, ηh)|||λ

. inf
(vh,ηh)∈Xh

|||(w, u)− (vh, ηh)|||λ.

Proof. The monotonicity property from Lemma 2.3 yields that

cmon|||e|||2λ ≤ a((w, u), e)− a((wh, uh), e).

The fact that (w, u) ∈ X is a solution to (2.10) implies that the first term on the right-
hand side is equal to zero, and so is the expression a((w, u), (w, u)− (vh, ηh)) for any
(vh, ηh) ∈ Zh. Note that, although Zh 6⊆ Z, the last assertion follows because (w, u)
is a strong solution. As (wh, uh) ∈ Xh is a solution to the discrete problem (3.1),
the second term is equal to a((wh, uh), (w, u) − (vh, ηh)) for arbitrary (vh, ηh) ∈ Zh.
Altogether, we infer from the Lipschitz continuity stated in Lemma 2.4 that

(3.3)
cmon|||e|||2λ ≤ a((w, u), (w, u)− (vh, ηh))− a((wh, uh), (w, u)− (vh, ηh))

≤ CLip|||e|||λ|||(w, u)− (vh, ηh)|||λ.

This implies the first inequality in the statement of the theorem.
The remaining part of the proof bounds the expression on the right-hand side

of (3.3) by some constant times the best-approximation in Xh. Let (w?, η?) ∈ Xh
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be the best-approximation to (w, u) from the closed linear subspace Zh ⊆ X with
respect to the norm |||·|||λ. The discrete inf-sup condition (3.2) implies the existence
of a multiplier µ̃? ∈Mh such that the following linear variational problem is satisfied
(recall the scalar product (·, ·)λ from (2.12)):

((w?, u?), (vh, ηh))λ + (vh −∇ηh,∇µ̃?)L2(Ω) = ((w, u), (vh, ηh))λ,

(w? −∇u?,∇ξh)L2(Ω) = 0

for all (vh, ηh) ∈ Xh and all ξh ∈Mh. Obviously, (w, u) satisfies the same system with
multiplier µ = 0 for all test functions (v, η) ∈ X and all ξ ∈M because w = ∇u holds
as an equality in L2(Ω). Moreover, the stability condition (3.2) and Brezzi’s splitting
theorem imply that the linear system satisfies a global inf-sup condition, and, thus,
the theory of mixed finite elements [3, Thm. 5.2.2] shows that there exists a constant
C(λ) such that

|||(w − w?, u− u?)|||λ + ‖∇(µ− µ?)‖L2(Ω)

≤ C(λ) inf
(vh,ηh)∈Xh

ξh∈Mh

(
|||(w − vh, u− ηh)|||λ + ‖∇(µ− ξh)‖L2(Ω)

)
= C(λ) inf

(vh,ηh)∈Xh

|||(w − vh, u− ηh)|||λ,

where the last equality holds because µ = 0. This concludes the proof.

Let us denote by Sk(T) the Lagrange finite element space of degree k over a
shape-regular simplicial triangulation T of Ω and denote by Sk(T;Rd) the space of
d-component vector fields whose components belong to Sk(T).

Corollary 3.3. Let T be a simplicial triangulation of Ω, let k,m ≥ 1 be integers,
let Xh := (Sk(T;Rd) ∩ H1

t (Ω;Rd)) × Sm0 (T), and let Mh ⊆ Sm(T) be an arbitrary
linear subspace. Assume that u ∈ H2+s(Ω) for some s ≥ 0. Then, with the notation
of Theorem 3.2,

|||e|||λ . ‖h‖rL∞(Ω)‖u‖H2+s(Ω),

where r := min{k,m, s}.
Proof. This follows from standard interpolation error bounds [6, p. 123].

The strong monotonicity and the localized Lipschitz continuity properties of the
form a(·, ·) result in the following a posteriori error bound.

Theorem 3.4 (a posteriori error bound). Let (w, u) ∈ X, µ ∈M and (wh, uh) ∈
Xh, µh ∈Mh solve (2.10) and (3.1), respectively, and abbreviate e := (w−wh, u−uh).
Then, the following reliable a posteriori error bound holds:

|||e|||2λ

≤ 2

cmon

( 1

cmon
‖Fγ [(wh, uh)]‖2L2(Ω) + σ1‖rotwh‖2L2(Ω) + σ2‖wh −∇uh‖2L2(Ω)

)
.

Furthermore, for any open subset ω ⊆ Ω, the following local efficiency estimate holds:

‖Fγ [(wh, uh)]‖2L2(ω) + 2σ1‖rotwh‖2L2(ω) + 2σ2‖wh −∇uh‖2L2(ω)

≤ (4C loc
Lip + 1− ε)(|||e|||2λ,ω + ‖w − wh‖2L2(ω)).
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Proof. The monotonicity from Lemma 2.3, the fact that (w, u) ∈ X is a strong
solution to (2.10), and the Cauchy–Schwarz inequality imply that

cmon|||e|||2λ
≤ a((w, u), e)− a((wh, uh), e) = −a((wh, uh), e)

≤ ‖Fγ [(wh, uh)]‖L2(Ω)‖τλe‖L2(Ω) + σ1‖rotwh‖2L2(Ω) + σ2‖wh −∇uh‖2L2(Ω),

where we have used that rotw = 0 and w = ∇u. Since, by (2.14), ‖τλe‖L2(Ω) ≤√
2 |||e|||λ, Young’s inequality yields

‖Fγ [(wh, uh)]‖L2(Ω)‖τλe‖L2(Ω) ≤
√

2‖Fγ [(wh, uh)]‖L2(Ω)|||e|||λ
≤ c−1

mon‖Fγ [(wh, uh)]‖2L2(Ω) + 2−1cmon|||e|||2λ.

The combination of the foregoing estimates concludes the proof of reliability. The
proof of efficiency follows from the Lipschitz continuity stated in Lemma 2.4. Indeed,
since

‖Fγ [(w, u)]‖2L2(ω) = σ1‖rotw‖2L2(ω) = σ2‖w −∇u‖2L2(ω) = 0

and, in particular, the quantities under the norms are equal to zero almost everywhere,
it follows from Lemmas 2.2 and 2.4 that

(3.4)

‖Fγ [(wh, uh)]‖2L2(ω) + σ1‖rotwh‖2L2(ω) + σ2‖wh −∇uh‖2L2(ω)

= aω((w, u), e)− aω((wh, uh), e)

− (Fγ [(wh, uh)], Fγ [(w, u)]− Fγ [(wh, uh)]− τλe)L2(ω)

≤ 2C loc
Lip(|||e|||2λ,ω + ‖w − wh‖2L2(ω)) + ‖Fγ [(wh, uh)]‖L2(ω)

√
1− ε|||e|||λ,ω.

Thanks to Young’s inequality we have that

‖Fγ [(wh, uh)]‖L2(ω)

√
1− ε|||e|||λ,ω ≤

1

2
‖Fγ [(wh, uh)]‖2L2(ω) +

1

2
(1− ε)|||e|||2λ,ω,

which then allows us to absorb the term ‖Fγ [(wh, uh)]‖L2(ω) into the left-hand side of
(3.4), so that

‖Fγ [(wh, uh)]‖2L2(ω) + 2σ1‖rotwh‖2L2(ω) + 2σ2‖wh −∇uh‖2L2(ω)

≤ 4C loc
Lip(|||e|||2λ,ω + ‖w − wh‖2L2(ω)) + (1− ε)|||e|||2λ,ω.

This concludes the proof.

3.3. Convergence of an adaptive algorithm. The remainder of this section
is devoted to the convergence analysis of an adaptive algorithm. The arguments are
similar to those in [21] and are based on the framework of [34]. Since this appears to
be the first convergence proof of an adaptive algorithm applied to a fully nonlinear
problem of HJB-type, we have included the details of the argument. For ease of the
exposition the choice M = {0} has been made so that the problem is positive definite.
For any triangulation T` in the adaptively refined sequence, the space Xh is chosen as
some fixed-order Lagrange finite element space as in Corollary 3.3. In the notation of
this section, quantities related to the level ` ∈ N0 and the triangulation T` are labelled
by the index ` (instead of h from earlier sections).

The algorithm is as follows. The input of the algorithm consists of an initial mesh
T0 and a marking parameter 0 < θ ≤ 1. The algorithm runs the usual SOLVE →
ESTIMATE → MARK → REFINE loop for ` = 0, 1, 2, . . . as follows.
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SOLVE. Solve the discrete problem (3.1) with respect to the mesh T` and the space
X(T`) and denote the corresponding solution by (w`, u`).
ESTIMATE. Compute, for any T ∈ T`, the local error estimator contributions

η2
` (T ) = ‖Fγ [(w`, u`)]‖2L2(T ) + σ1‖rotw`‖2L2(T ) + σ2‖w` −∇u`‖2L2(T )

and set η2
` :=

∑
T∈T`

η2
` (T ).

MARK. Mark a minimal subset M ⊆ T` such that θη2
` ≤

∑
T∈M η2

` (T ).
REFINE. Use the refinement rules from [2, 43] to compute a refined admissible
partition T`+1 of T` such that at least all elements of M are refined.

In the marking step, the bulk selection rule from [13] is chosen, but some other
strategies are possible as well.

Theorem 3.5. The sequence (w`, u`) ∈ X(T`) produced by the adaptive algorithm
converges to the exact solution (w, u) ∈ X, i.e., |||(w, u)− (w`, u`)|||λ → 0 as `→∞.

Proof. The proof begins with the observation that the sequence of discrete solu-
tions x` := (w`, u`) converges to some limit x? = (w?, u?) ∈ X?, which solves, for all
` ∈ N0,

(3.5) a(x?, x
′
`) = 0 for all x′` ∈ X(T`).

For the proof of this claim it suffices to consider the closure X? of ∪`∈N0
X(T`) with

respect to the norm |||·|||λ. Lemmas 2.3 and 2.4 and the density of ∪`∈N0
X(T`) in

X? shows that (3.5) is uniquely solvable. The stated convergence follows from the
monotonicity (Lemma 2.3)

|||x? − x`|||2λ . a(x?, x? − x`)− a(x`, x? − x`),

the Galerkin property

a(x?, x? − x`)− a(x`, x? − x`) = a(x?, x? − x′`)− a(x`, x? − x′`) for any x′` ∈ X(T`),

and the Lipschitz continuity (Lemma 2.4)

a(x?, x? − x′`)− a(x`, x? − x′`) . |||x? − x`||||||x? − x′`||| for any x′` ∈ X(T`).

The density of ∪`∈N0X(T`) in X? implies the convergence of x` to x? as `→∞.
As in [34], the convergence proof employs the subset K ⊆ ∪`≥0T` of never refined

elements, defined by

K :=
⋃
`≥0

⋂
m≥`

Tm.

For any ` ≥ 0, the partition T` can be written as the following disjoint union:

(3.6) T` = K` ∪ R` for K` := K ∩ T` and R` := T` \K`.

This means that each triangulation T` is decomposed in a set K` of never refined
elements and a set R` of elements that are eventually refined. For any T ∈ T`, the
local efficiency from Theorem 3.4 and the triangle inequality yield that

(3.7) η2
` (T ) . |||(w, u)− x?|||2λ,T + ‖w − w?‖2L2(T ) + |||x? − x`|||2λ,T + ‖w? − w`‖2L2(T ).

As, by definition, every element of R` is eventually refined, it can be seen [34, 20] that
for any ρ > 0 there exists an `0 ≥ 0 such that, for all ` ≥ `0,

(3.8) max
T∈R`

meas(T ) < ρ.
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From the convergence of x` to x? and the observation (3.8) that the elements in
R` become, uniformly, arbitrarily small for sufficiently large `, one therefore deduces
using (3.7) that

max
T∈R`

η2
` (T )→ 0 as `→∞.

The marking strategy ensures that

max
T∈K`

η2
` (T ) ≤ max

T∈R`

η2
` (T ).

Thus, for any T ∈ K :=
⋃
`∈N0

K`,

‖Fγ [(w`, u`)]‖2L2(T ) + σ1‖rotw`‖2L2(T ) + σ2‖w` −∇u`‖2L2(T ) → 0 as `→∞.

The convergence of the sum of these contributions over all elements of K follows from
the dominated convergence theorem: since meas(∪K \ ∪Km) → 0 as m → ∞, the
dominated convergence theorem implies that

‖Fγ [(w`, u`)]‖2L2(∪K\∪Km) + σ1‖rotw`‖2L2(∪K\∪Km) + σ2‖w` −∇u`‖2L2(∪K\∪Km) → 0

as m → ∞. Thus, with the triangle inequality, estimate (2.13), and Lemma 2.2, it
follows that

‖Fγ [x`]‖L2(∪K) . ‖Fγ [x`]‖L2(∪Km) + ‖Fγ [x?]− Fγ [x`]− τλ(x? − x`)‖L2(∪K\∪Km)

+ ‖Fγ [x?]‖L2(∪K\∪Km) + |||x? − x`|||λ,∪K\∪Km

. ‖Fγ [x`]‖L2(∪Km) + ‖Fγ [x?]‖L2(∪K\∪Km) + |||x? − x`|||λ,∪K\∪Km

for every m ∈ N0. Since ‖Fγ [x`]‖L2(∪Km) → 0 as ` → ∞ because this term is
composed of error estimator contributions on a finite subset of K, one has from the
convergence of x` to x? that

lim sup
`→∞

‖Fγ [x`]‖L2(∪K) ≤ ‖Fγ [x?]‖L2(∪K\∪Km).

The right-hand side becomes arbitrarily small for large m, as can be seen using the
dominated convergence theorem. Similar arguments for the remaining error estimator
contributions yield that∑

T∈K

(
‖Fγ [(w`, u`)]‖2L2(T ) + σ1‖rotw`‖2L2(T ) + σ2‖w` −∇u`‖2L2(T )

)
→ 0

as `→∞.
The global efficiency of the error estimator (Theorem 3.4) and the monotonicity

from Lemma 2.3 imply, with the Galerkin property, that

(3.9)

∑
T∈T`

η2
` (T ) . a((w, u), (w, u)− (w`, u`))− a((w`, u`), (w, u)− (w`, u`))

= a((w, u), (w, u)− (I`w, J`u))− a((w`, u`), (w, u)− (I`w, J`u))

for quasi-interpolation operators I` and J` [10] which yield quasi-local quasi-best
approximations in W` and U`, respectively. The strong solution property of (w, u)
shows that the term

(3.10) aω((w, u), (w, u)− (I`w, J`u))− aω((w`, u`), (w, u)− (I`w, J`u))
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for ω = ∪K is controlled by error estimator contributions times quasi-interpolation
errors. It converges to zero because the error estimator contributions are driven to
zero in that region while the quasi-interpolation is stable. The term (3.10) converges
to zero for the choice ω = ∪R`, too. The reason is that (w, u) is approximated
by its quasi-interpolant on elements whose diameter becomes arbitrarily small. In
conclusion, the expression (3.10) converges to zero as ` → ∞ for the domain ω = Ω.
The estimate (3.9) and the reliability of the error estimator therefore conclude the
convergence proof.

4. Numerical results. In this section we present numerical results in planar
domains. The spaces Wh, Uh, and Mh consist of piecewise affine functions on a
triangulation T of mesh size h of Ω. The coefficients in the partial differential equation
are approximated with piecewise constant functions over the same triangulation in the
sense that the pointwise-in-Ω supremization over Λ is replaced by an elementwise-in-T
supremization where uh is replaced by its integral mean over every element in T. We
shall compare uniform and adaptive mesh refinements (with θ = 0.3). The discrete
problems are solved using the semismooth Newton described in the next subsection.

4.1. Semismooth Newton method. The solution algorithm used to solve the
nonlinear problems belongs to the class of semismooth Newton methods [44]. The
use of such methods for problems of HJB-type dates back to the early reference [26].
The presentation most relevant to ours is [40], where, in particular, semismoothness
of the HJB operator was shown and the proof of local (mesh-dependent) convergence
was given. The arguments in [40] transfer to the present situation. Since adapting
those proofs to our setting is quite straightforward, this section merely describes the
algorithm and briefly highlights some of the steps in the convergence analysis.

In each iteration step of the semismooth Newton scheme, the parameter α ∈ Λ is
supremized pointwise in Ω. It determines the PDE coefficients for the solution of a
linear problem that defines the updated approximation to the PDE solution. Given
any (w, u) ∈ X, the set of admissible maximizers is denoted by

(4.1) Λ[(w, u)] :=

g : Ω→ Λ

measurable

∣∣∣∣∣∣
g(x) ∈ arg max

α∈Λ
(Lα(u,w)(x)− fα)

for almost every x ∈ Ω

 .

As discussed in [40], an application of a result from [31] shows that the sets Λ[(w, u)]
are indeed nonempty. The semismooth Newton algorithm is defined as follows:

Input: Initial guess (w0
h, u

0
h) ∈ Xh and a termination criterion.

for k = 0, 1, 2, . . . until termination do

Choose any αk ∈ Λ[(wkh, u
k
h)] and compute (wk+1

h , uk+1
h ) ∈ Xh and µk+1

h ∈Mh as
the solution to the linear problem

(γαk
(Lαk

(wk+1
h , uk+1

h )− fαk
), τλ(w′h, u

′
h))L2(Ω) + b(µk+1

h , (w′h, u
′
h)) = 0,

b((wk+1
h , uk+1

h ), µ′h) = 0

for all (w′h, u
′
h) ∈ Xh and all µ′h ∈Mh.

end do
Some comments are in order to explain why this procedure can be seen as a

semismooth Newton iteration. In the notation of [40, Def. 12], the definition of semis-
moothness [44] is as follows.
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Definition 4.1. Let X, Y be Banach spaces, let U ⊆ X be an open nonempty
subset, and let F : X → Y. Let DF : U → 2L(X,Y) be a set-valued map from U to
the space of bounded linear operators from X to Y. Given x ∈ U, the map F is said
to be DF -semismooth at x if

lim
‖s‖X→0

‖s‖−1
X sup

B∈DF (x+s)

‖F (x + s)− F (x)−Bs‖Y = 0.

The map F is called DF -semismooth on U if it is DF -semismooth at every x ∈ U.
In this case, DF is called a generalized differential of F on U.

Let 1 ≤ q < r ≤ ∞ be integrability indices, and consider the Banach spaces
X := W 1,r(Ω;Rd)×W 1,r(Ω) and Y := Lq(Ω)) and the map

DFγ : X→ 2L(X,Y)

defined, for any (w, u) ∈ X, by

DFγ [(w, u)] := {γαLα : α ∈ Λ[(w, u)]},

where Λ[(w, u)] is defined in (4.1). This property explains the structure of the linear
problems in the above iterative loop. It can be shown with the arguments of [39,
Thm. 13] that the operator Fγ from (2.5) is DFγ semismooth as a map from X
to Y, but this property requires the stronger assumption q < r, which is generally
not valid when DFγ is viewed as a map from X ⊇ X to L2(Ω) ⊆ Y (see [25, 40]).
Thus, the scheme cannot be directly analyzed on the infinite-dimensional level. On
finite-dimensional subspaces of X, equivalence of norms can be employed so that the
required mapping property is satisfied. However, the constants involved in the norm-
equivalence will generally depend on the mesh-size. This is the reason why in the
convergence analysis of the nonlinear solver, the closeness requirement for the choice
of an initial guess is mesh-dependent. The result is as follows.

Proposition 4.2. Let T be a simplicial triangulation of Ω of mesh size h, and
let Xh and Mh be finite-dimensional subspaces based on piecewise polynomials, as in
Corollary 3.3. Then, there exists a constant R > 0 that may depend on the mesh-size of
T as well as on the polynomial degree, such that for |||(wh, uh)−(wh,0, uh,0)|||λ < R, the
sequence ((wh,k, uh,k))k∈N generated by the semismooth Newton algorithm converges,
with a superlinear rate, to the unique solution (wh, uh) ∈ Xh of the discrete problem
(3.1).

Proof. The proof is very similar to [40, Thm. 11] and it is therefore omitted.

4.2. Experiment 1. The first example considers a test case from [40] with near-
degenerate diffusion and a boundary layer in the solution. Let Ω := (0, 1)2 be the
unit square and let Λ := SO(2) be the special orthogonal group (describing rotations
in the plane). The elementwise supremization problems are solved by sampling over
a sufficiently fine subdivision of Λ. Let bα = (0, 1), cα = 10, and

aα := αT

(
20 1
1 1/10

)
α for α ∈ Λ.

For this choice of parameters and λ = 1/2, the Cordes condition (1.2) is satisfied for
ε = 0.0024 [40]. Let δ = 0.01 and let fα := L̃α(u) for the exact solution

u(x) = (2x1 − 1)
(

exp(1− |2x1 − 1|)− 1
)(

x2 +
1− exp(x2/δ)

exp(1/δ)− 1

)
.
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η unif

‖D2u − Dwh‖ unif
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‖u − uh‖ unif

η adapt

‖D2u − Dwh‖ adapt

‖∇u − wh‖ adapt

‖u − uh‖ adapt

O(ndof−1/2)

Fig. 1. Convergence history for Experiment 1.

The solution exhibits a sharp boundary layer near the line Ω̄ ∩ {x2 = 1}. Ideally,
such problems are approximated with anisotropic meshes, as was done in [40] (even
with δ = 0.005) by using an exponentially accurate hp-version discontinuous Galerkin
scheme. Here, the focus is on automatic mesh refinement driven by the a posteriori
error estimator from Theorem 3.4 with isotropic meshes. The solution u in this ex-
ample belongs to C1

0 (Ω)∩H2(Ω) (but u 6∈ H3(Ω)), so uniform mesh refinement might
not be expected to be optimal in terms of asymptotic rates in general. In addition,
the preasymptotic range can be arbitrarily large and, indeed, the convergence rates
for uniform meshes displayed in Figure 1 are only visible for very fine meshes. In
particular, the error is observed to increase when the coarsest meshes are refined.
The adaptive algorithm can improve the approximation in this example and leads
to approximations that exhibit a convergence rate beginning from approximately 700
degrees of freedom. Accordingly, the adaptive mesh in Figure 2 shows a strong refine-
ment toward the layer. While the observed convergence is justified by Theorem 3.5,
these additional empirical findings indicate that adaptivity may significantly improve
efficiency. The (square-root of the) constant in the reliable error estimate from The-
orem 3.4 scales like c−1

mon, and for this value of ε it is of the order of magnitude of
4×103, which means an overestimation of the actual error. From the successful mesh
adaptation we can, however, infer that the error estimation still adequately indicates
the error distribution over the domain.

In the convergence history reported in Figure 1, no higher-order convergence
in weaker norms is observed. This could possibly be due to the fact that in the
implementation the quadrature is chosen so that uh is replaced by its piecewise integral
mean over the triangulation in the supremization process over Λ. On the other hand,
there is no proof of higher-order rates even in an idealized version of the algorithm
with exact quadrature, and the absence of improved L2 rates could also be caused by
other features of the nonlinear problem. We also do not observe an improvement of the
L2 approximation through adaptivity in this example. This might be due to the fact
that the solution is piecewise smooth and the mesh is aligned with the discontinuity
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Fig. 2. Adaptive meshes. Left: Experiment 1, 2,905 vertices, 10,932 degrees of freedom, level
36. Right: Experiment 2; 3,431 vertices, 13,464 degrees of freedom, level 16.
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100
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‖D2u − Dwh‖ unif

‖∇u − wh‖ unif

‖u − uh‖ unif

η adapt

‖D2u − Dwh‖ adapt

‖∇u − wh‖ adapt

‖u − uh‖ adapt

O(ndof−1/3)

O(ndof−1/2)

Fig. 3. Convergence history for Experiment 2.

of the second derivative, so that the adaptivity is primarily of importance in the
preasymptotic regime.

4.3. Experiment 2. Let Ω be the square Ω := (−1, 1)2 and let again Λ := SO(2)
and aα, bα, cα be as in Experiment 1. Let fα := L̃α(u) for the exact solution u given
in polar coordinates as

u(r, θ) =

{
r5/3(1− r)5/2 sin(2θ/3)5/2 if 0 < r ≤ 1 and 0 < θ < 3π/2,

0 otherwise.

In contrast with the first experiment, the asymptotic approximation rate on uniform
meshes is suboptimal in this example because the solution has a point singularity at
(0, 0). Figure 3 compares the convergence rates for uniform and adaptive mesh refine-
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Fig. 4. Comparison of semismooth Newton iterations in Experiment 1 dependent on the H2

error: saddlepoint formulation (saddlepoint) and positive definite formulation (posdef).

ments. As in the first example, a clear improvement by adaptivity can be observed.
Uniform mesh-refinement leads to a convergence rate of 1/3 while for adaptive mesh-
refinement the optimal rate of 1/2 is observed for the H2(Ω) norm error. In contrast
to the first experiment, in this example we see an improved L2 approximation by
adaptivity. The adaptive mesh displayed in Figure 2 shows strong refinement around
the singularity.

4.4. Comparison of semismooth Newton iterations. As mentioned earlier,
the discrete formulation does not require a nontrivial space M of Lagrange multipli-
ers, and the choice M = {0} leading to a positive definite problem is admissible.
However, when comparing the number of semismooth Newton iterations required to
reach the desired tolerance, the saddlepoint formulation corresponding to a nontrivial
M appears to be more robust. In the following, the choices Mh = {0} and Mh = Uh
are compared. The termination criterion in all examples was chosen as

max{‖αk − αk−1‖L2(Ω), ‖Dwk −Dwk−1‖L2(Ω)} < 10−8

with a maximum number of iterations kmax = 30. The initial guess α0 on the coarse
mesh was chosen as α0 = 0. On finer meshes, the initial guess α0 was taken as the
solution on the previous mesh (nested iteration).

Figure 4 compares the number of iterations in the semismooth Newton method
against the H2 error for Experiment 1. It can be observed that in the saddlepoint
formulation with Mh = Uh these numbers robustly stay in a moderate range. In the
positive definite formulation with Mh = {0}, especially in the adaptive method, the
termination by 30 iterations is reached several times. A similar behavior is observable
in Experiment 2 (see Figure 5). While on uniform meshes the iteration numbers
are comparable, the semismooth Newton method for the positive definite formulation
seems to be less robust when adaptive mesh-refinement is used. In conclusion, in
this nonlinear problem the saddlepoint formulation may have advantages that are not
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Fig. 5. Comparison of semismooth Newton iterations in Experiment 2 dependent on the H2

error; saddlepoint formulation (saddlepoint) and positive definite formulation (posdef).

apparent from the numerical analysis of the scheme we have performed, but can be
observed in practical computations employing an iterative scheme.
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