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A POSTERIORI ERROR ANALYSIS OF THE INF-SUP CONSTANT
FOR THE DIVERGENCE\ast 
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Abstract. Two a posteriori error estimates for a numerical approximation scheme for the inf-
sup constant for the divergence (also known as the LBB constant) are shown. Under the assumption
that the inf-sup constant is an eigenvalue of the Cosserat operator separated from the essential
spectrum and that the mesh size is sufficiently small, the first estimate bounds the eigenvalue and
eigenfunction errors from above and below by an error estimator up to multiplicative constants. In
the second error estimate the reliability constant converges to 1 as the mesh size decreases, at the
expense of a suboptimal efficiency estimate, and so allows for guaranteed enclosures of the inf-sup
constant on sufficiently fine meshes.
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1. Introduction. The inf-sup constant \beta , sometimes also called the LBB con-
stant, determines the continuity constant \beta  - 1 of a right-inverse to the divergence
operator div : V \rightarrow Q. In the L2 setting with \Omega \subseteq \BbbR n for n \geq 2 being an open,
bounded, connected Lipschitz polytope, V := H1

0 (\Omega ;\BbbR n) is the space of vector-valued
first-order Sobolev functions with zero boundary conditions and Q := L2

0(\Omega ) denotes
the L2 functions with vanishing mean over \Omega . The inf-sup constant is defined by

(1.1) \beta := inf
q\in Q\setminus \{ 0\} 

| \nabla q|  - 1

\| q\| L2(\Omega )
= inf

q\in Q\setminus \{ 0\} 
sup

v\in V \setminus \{ 0\} 

(q,div v)L2(\Omega )

\| q\| L2(\Omega )\| Dv\| L2(\Omega )
.

Here, | \nabla q|  - 1 denotes the norm in the dual of V and is given by the more explicit
expression on the right-hand side of (1.1), \nabla is the gradient operator acting on scalar
functions, and D denotes the derivative (matrix) of vector fields; more details on the
notation can be found at the end of this section. The condition \beta > 0 is critical for
stability considerations in fluid mechanics and elasticity theory [19, 13, 7]. It is well
known [1] that, for a large class of domains, which in particular includes Lipschitz
polytopes, the inf-sup constant is indeed positive \beta > 0. In this case there is an
equivalent characterization of \beta 2 as the least nonzero element in the spectrum of the
Cosserat operator \Delta  - 1\nabla div : V \rightarrow V , and the Rayleigh quotient reads

(1.2) \beta 2 = inf
v \not =0

\| div v\| 2L2(\Omega )

\| Dv\| 2L2(\Omega )

,

where the infimum is taken over the V -orthogonal complement of the divergence-free
functions in V ; here and throughout this work, V -orthogonality refers to orthogonality
with respect to the scalar product (D\cdot , D\cdot )L2(\Omega ).
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It is immediate from the Rayleigh quotient representation that the underlying
eigenvalue problem is noncompact, and so the usual tools from the numerical ap-
proximation of compact symmetric eigenvalue problems [2, 4] are not directly ap-
plicable. On nonsmooth domains, the spectrum of the Cosserat operator admits
nontrivial essential parts [3, 11]. Moreover, even if \beta 2 is an isolated eigenvalue, the
usual continuous-velocity finite element pairs (see., e.g., [5]) may have discrete inf-sup
constants that do not converge to \beta . These and other remarkable properties as well
as striking examples were provided and studied in [3, 8]. In view of these results,
compatible discretizations are desirable. The numerical method from [12] provably
produces monotonically decreasing approximations to \beta under mesh refinement and
can thus be viewed as a Rayleigh--Ritz method, or more precisely as a variant thereof
because the numerator in (1.1) is not computable (even for discrete quantities) and
requires a further approximation step, namely the use of a discrete H - 1 norm. It
was shown in [12] that the approximation converges to \beta , and convergence rates were
established for the case of \beta being an eigenvalue well separated from the essential
spectrum. Experimental numerical results from [12] furthermore empirically showed
reliability and efficiency of an a posteriori error estimator, which was derived using
heuristic arguments. The aim of this paper is to theoretically justify this observation
by complementing the a priori error analysis of [12] by a posteriori error estimates
that relate the eigenvalue error to computationally accessible residuals. Under the
assumption that the squared inf-sup constant \mu = \beta 2 is an isolated eigenvalue of the
Cosserat operator, it is shown that the eigenvalue error is proportional to a comput-
able quantity up to mesh-independent constants that depend on the spectral gap.
That a posteriori quantity is the L2 norm of the divergence-free part in a Helmholtz
decomposition of the discrete eigenfunction, which is a discrete gradient, but not nec-
essarily a gradient in a pointwise sense, and it can thus be seen as a nonconformity
residual, which can be bounded by well-known residual-based error estimators or by
a gradient reconstruction, which gives better control over the involved constants. A
second reliability error estimate is furthermore shown that establishes an upper bound
for the eigenvalue error with a multiplicative constant that is asymptotically equal to
1. This gives rise to an asymptotic lower eigenvalue bound, at the expense of a sub-
optimal efficiency estimate. The asymptotic character of the lower bound lies in the
fact that, for the estimate to hold, the projection \Pi \xi h of the L2-normalized discrete
eigenfunction on the continuous eigenspace needs to satisfy the closeness assumption
b(\Pi \xi h, \xi h) \geq \lambda for the L2 inner product b and some constant 0 < \lambda \leq 1. This will
usually require the mesh to be fine enough, which is difficult to quantify in practice.
Both variants are practically computed in numerical experiments, where it is observed
that the method gives convincing results even on coarse meshes that might not meet
all assumptions of the theory.

Besides the method in [12] discussed above, there are only a few methods avail-
able for approximating the inf-sup constant. The first contribution to the convergence
analysis for the inf-sup constant is [3], where sufficient conditions on continuous-
velocity pairings were formulated which guarantee (plain) convergence of the cor-
responding inf-sup constants towards \beta . Another approach based on a least-squares
formulation was presented in [17]. The results of this paper form the first contribution
to a posteriori error control and two-sided enclosures of the inf-sup constant. Those
are not only relevant to the Stokes equations, their stability analysis, and a posteriori
error estimation [14, 15], but also to precise bounds for Korn's constant in elasticity
[7]. The difference of the present error analysis with respect to existing works on
a posteriori error bounds for eigenvalue problems is that, in the absence of a compact
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embedding, the eigenvalue problem is not a mere perturbation of the related linear
problem by a higher-order term. Instead, a careful choice of the discrete setting is
needed to grant compatibility of the numerical scheme.

The remaining parts of this article are organized as follows: section 2 provides the
formulation of the eigenvalue problem related to the inf-sup constant and presents a
short review of the numerical method of [12]. The lemmas of section 3 provide several
identities that are used in the a posteriori error analysis of section 4. The error bounds
are empirically investigated in the numerical experiments of section 5.

Standard notation on Lebesgue and Sobolev spaces applies throughout this paper.
Given an open domain \omega \subseteq \Omega , the L2 inner product and norm are denoted by (\cdot , \cdot )L2(\omega )

and \| \cdot \| L2(\omega ); the spaces of scalar, vector-valued, and matrix-valued L2 functions over
\omega are denoted by L2(\omega ), L2(\omega ;\BbbR n), and L2(\omega ;\BbbR n\times n), respectively; the subspace of
L2(\Omega ) of functions with vanishing global average is denoted by Q = L2

0(\Omega ). The
derivative (matrix) of a vector-valued function v is denoted by Dv, the trace of a
square matrix A is denoted by trA, and the divergence of a vector field \phi is denoted
by div \phi and satisfies div \phi = trD\phi provided D\phi exists. The gradient of a scalar-
valued function v reads \nabla v, and the Laplacian of a (scalar- or vector-valued) function
v reads \Delta v. The space V = H1

0 (\Omega ;\BbbR n) is equipped with the energy inner product
(D\cdot , D\cdot )L2(\Omega ) and its norm | \cdot | 1, and its dual space is endowed with the corresponding
dual norm | \cdot |  - 1 as in (1.1). The space of L2 vector fields with divergence in L2(\Omega )
is denoted by H(div,\Omega ).

2. Statement of the problem and review of the numerical scheme. On
L2(\Omega ;\BbbR n\times n) define the following two bilinear forms:

a(\sigma , \tau ) := (tr\sigma , tr \tau )L2(\Omega ) and b(\sigma , \tau ) := (\sigma , \tau )L2(\Omega ) for any \sigma , \tau \in L2(\Omega ;\BbbR n\times n).

The induced (semi)norms are denoted by

\| \tau \| a :=
\sqrt{} 

a(\tau , \tau ) and \| \tau \| b :=
\sqrt{} 
b(\tau , \tau ) for all \tau \in L2(\Omega ;\BbbR n\times n).

The subspace of divergence-free elements in V is denoted by Z := \{ v \in V : div v = 0\} ,
and its V -orthogonal complement is denoted by Z\bot 1 . Given the space \Gamma := DV of
vector gradients, the space X := D(Z\bot 1) is characterized as

X = \{ \tau \in \Gamma : b(\tau , \eta ) = 0 for all \eta \in \Gamma with tr \eta = 0\} .

With this notation, the squared inf-sup constant \mu := \beta 2 from (1.2) reads

(2.1) \mu = inf
\tau \in X\setminus \{ 0\} 

\| \tau \| 2a
\| \tau \| 2b

.

The eigenvalue problem related to the Rayleigh quotient (2.1) is to find a nonzero
eigenfunction \xi \in X and an eigenvalue \xi \in \BbbR such that

(2.2) a(\xi , \tau ) = \mu b(\xi , \tau ) for all \tau \in X.

In case that the bottom of the spectrum of the Cosserat operator is an eigenvalue, the
minimum (2.1) is attained and the minimizer satisfies (2.2) with the same number \mu .
It is unknown in general whether the infimum in (2.1) is actually a minimum, and
this property will depend on the domain. The theory in this paper is based on the
assumption that the minimum is achieved and that \mu is an isolated eigenvalue. This
property is stated as Assumption A in section 4 below.
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The discretization from [12] is based on a space \Gamma h of so-called discrete gradients,
which are not gradients in a pointwise sense. The space was introduced in [16] where
it was used to generalize the nonconforming P1 finite element [6] (Crouzeix--Raviart
method) to higher polynomial degrees. It is based on the implicit definition of discrete
gradients as the orthogonal complement of divergence-free objects within the space of
piecewise polynomial vector fields with respect to a regular simplicial partition T of
the domain \Omega . Given a fixed polynomial degree k \geq 0, the space of polynomials with
respect to a domain \omega \subseteq \BbbR n of degree not larger than k with values in \BbbR , \BbbR n, \BbbR n\times n

is denoted by Pk(\omega ), Pk(\omega ;\BbbR n), Pk(\omega ;\BbbR n\times n), respectively. The L2 functions over \Omega 
that are piecewise polynomials with respect to T are analogously denoted by Pk(T),
Pk(T;\BbbR n), Pk(T;\BbbR n\times n). The Raviart--Thomas finite element space [5] is defined by

\itR \itT k(T) :=

\Biggl\{ 
q \in H(div,\Omega )

\bigm| \bigm| \bigm| \bigm| \bigm| \forall T \in T \exists (\alpha , \beta ) \in Pk(T ;\BbbR n)\times Pk(T ),

\forall x \in T q| T (x) = \alpha (x) + \beta (x)x

\Biggr\} 
.

It is well known and follows from the definition of the weak derivative that the space
\Gamma is the L2-orthogonal complement of the space Z := \{ v \in H(div,\Omega )n : div v = 0\} 
(where div acts row-wise on matrix fields), written \Gamma = Z\bot L2 . The definition of \Gamma h

is given by the following discrete analogue. Let Zh := \itR \itT k(T)
n \cap Z denote the space

of divergence-free Raviart--Thomas fields. It is known [10, Lemma 3.1] that Zh is
a subset of Pk(T;\BbbR n\times n). The space \Gamma h of discrete gradients is then defined as the
L2-orthogonal complement of Zh within Pk(T;\BbbR n\times n), written

\Gamma h := Z
\bot L2

h \subseteq Pk(T;\BbbR n\times n).

It is important to note that \Gamma h may contain functions that are not pointwise gra-
dients, i.e., \Gamma h \not \subseteq \Gamma . Let \Pi h : L2(\Omega ) \rightarrow Pk(T) denote the L2 projection onto the
piecewise polynomials of degree k. If applied to tensors, the action of \Pi h is under-
stood componentwise. The discrete gradients satisfy the following projection property
[12]:

(2.3) \Pi h\Gamma \subseteq \Gamma h.

The discrete analogue to the space X reads

Xh := \{ \tau h \in \Gamma h : b(\tau h, \eta h) = 0 for all \eta h \in \Gamma h with tr \eta h = 0\} .

Again, it is to be expected that Xh \not \subseteq X is a nonconforming approximation. The
orthogonal projection to the subspace Xh is denoted by \frakP h. It was shown in [12,
Lemma 7] that \frakP h preserves the trace in the following sense:

(2.4) tr(\frakP h\gamma ) = tr(\Pi h\gamma ) for any \gamma \in \Gamma .

The numerical approximation \mu h to \mu from (2.1) is defined by the discrete Rayleigh
quotient

\mu h = inf
\tau h\in Xh\setminus \{ 0\} 

\| \tau h\| 2a
\| \tau h\| 2b

.

In the discrete setting, this is equivalent to finding the first eigenpair (\mu h, \xi h) \in \BbbR \times Xh

with \| \xi h\| b = 1 to the discrete Cosserat eigenvalue problem

(2.5) a(\xi h, \tau h) = \mu hb(\xi h, \tau h) for all \tau h \in Xh.
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In what follows, the choice of the normalized discrete eigenfunction \xi h defining the
first eigenpair (also in the case of nontrivial multiplicity) is arbitrary. It was shown

in [12] that, alternatively, \beta h := \mu 
1/2
h is characterized in the format of an inf-sup

constant as in (1.1). This is based on a conforming pressure discretization Qh \subseteq Q
with Qh := Pk(T) \cap Q and a (computable) discrete version of the H - 1 norm of any
\nabla qh with qh \in Qh, which is defined by

| \nabla qh|  - 1,h := sup
\gamma h\in \Gamma h\setminus \{ 0\} 

(qh, tr \gamma h)L2(\Omega )

\| \gamma h\| L2(\Omega )
.

The discrete inf-sup constant is then given by

(2.6) \beta h = inf
ph\in Qh\setminus \{ 0\} 

| \nabla ph|  - 1,h

\| ph\| L2(\Omega )

and qh \in Qh minimizes (2.6) if and only if

(2.7) qh = tr \xi h

for some nonzero eigenfunction \xi h of (2.5); see [12, Proposition 6]. The discrete norm
possesses the monotonicity property

(2.8) | \nabla qh|  - 1 \leq | \nabla qh|  - 1,h for any qh \in Qh,

and, accordingly, the approximations \beta h converge to \beta monotonically from above un-
der shape-regular mesh refinement [12, Theorem 2.1]. Provided that \beta 2 is a separated
eigenvalue with an eigenfunction u of class H1+s(\Omega ), the eigenvalue error decreases
at rate 2min\{ k + 1, s\} with respect to the maximum mesh size [12].

3. Preparatory identities. This section is devoted to the proofs of several
lemmas that provide identities for discrete eigenpairs. The first lemma states that
discrete eigenpairs may be tested against continuous quantities.

Lemma 3.1 (consistency of discrete eigenpairs). \itA \itn \ity \itd \iti \its \itc \itr \ite \itt \ite \ite \iti \itg \ite \itn \itp \ita \iti \itr (\mu h, \xi h)\in 
\BbbR \times Xh \ito \itf (2.5) \its \ita \itt \iti \its fi\ite \its 

a(\xi h, \gamma ) = \mu hb(\xi h, \gamma ) \itf \ito \itr \ita \itl \itl \gamma \in \Gamma .

\itP \itr \ito \ito \itf . The definition of \Pi h, property (2.4) of the projection \frakP h, and the discrete
eigenvalue problem (2.5) yield

a(\xi h, \gamma ) = (tr \xi h,\Pi h tr \gamma )L2(\Omega ) = (tr \xi h, tr\frakP h\gamma )L2(\Omega ) = a(\xi h,\frakP h\gamma ) = \mu hb(\xi h,\frakP h\gamma ).

Relation (2.3) states that \Pi h\gamma \in \Gamma h, and identity (2.4) implies tr(\frakP h  - \Pi h)\gamma = 0,
whence (\frakP h  - \Pi h)\gamma is b-orthogonal to any element of Xh. Therefore,

\mu hb(\xi h,\frakP h\gamma ) = \mu hb(\xi h, (\frakP h  - \Pi h)\gamma ) + \mu hb(\xi h,\Pi h\gamma ) = \mu hb(\xi h, \gamma ).

The combination with the first chain of identities proves the assertion.

Lemma 3.2. \itL \ite \itt (\mu h, \xi h) \in \BbbR \times Xh \itb \ite \ita \itd \iti \its \itc \itr \ite \itt \ite \ite \iti \itg \ite \itn \itp \ita \iti \itr \ito \itf (2.5) \itw \iti \itt \ith \| \xi h\| b = 1,

\ita \itn \itd \itl \ite \itt \^\xi \in \Gamma \setminus \{ 0\} \itw \iti \itt \ith \^\mu := \| \^\xi \| 2a/\| \^\xi \| 2b . \itT \ith \ite \itn 

\mu h  - \^\mu + \| \xi h  - \^\xi \| 2a = \mu h\| \xi h  - \^\xi \| 2b + (\mu h  - \^\mu )(1 - \| \^\xi \| 2b).
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\itP \itr \ito \ito \itf . The normalization of \xi h, the definition of \^\mu , and elementary computations
yield

(3.1)

\mu h  - \^\mu = \| \xi h\| 2a  - 
\| \^\xi \| 2a
\| \^\xi \| 2b

= \| \xi h\| 2a  - \| \^\xi \| 2a +
\| \^\xi \| 2b  - 1

\| \^\xi \| 2b
\| \^\xi \| 2a = \| \xi h\| 2a  - \| \^\xi \| 2a  - (1 - \| \^\xi \| 2b)\^\mu .

Elementary algebraic manipulations with the symmetric form a reveal for the first
two terms on the right-hand side

(3.2) \| \xi h\| 2a  - \| \^\xi \| 2a = a(\xi h + \^\xi , \xi h  - \^\xi ) = 2a(\xi h, \xi h  - \^\xi ) - \| \xi h  - \^\xi \| 2a.

The discrete eigenvalue problem (2.5) and Lemma 3.1 together with direct computa-
tions based on \| \xi h\| b = 1 show that

(3.3)
2a(\xi h, \xi h  - \^\xi ) = 2\mu hb(\xi h, \xi h  - \^\xi ) = \mu h(1 - 2b(\xi h, \^\xi ) + \| \^\xi \| 2b) + \mu h(1 - \| \^\xi \| 2b)

= \mu h\| \xi h  - \^\xi \| 2b + \mu h(1 - \| \^\xi \| 2b).

The combination of (3.2) and (3.3) results in

\| \xi h\| 2a  - \| \^\xi \| 2a = \mu h\| \xi h  - \^\xi \| 2b + \mu h(1 - \| \^\xi \| 2b) - \| \xi h  - \^\xi \| 2a.

Inserting this identity on the right-hand side of (3.1) yields the assertion.

The following results relate error quantities to a residual. Given a pair (\^\mu , \^\xi ) \in 
\BbbR \times \Gamma , the residual evaluated at \xi h \in Xh is defined by

(3.4) Res\^\mu ,\^\xi (\xi h) := \^\mu b(\^\xi , \xi h) - a(\^\xi , \xi h).

The following lemma states a residual identity for the eigenvalue approximation
error.

Lemma 3.3. \itL \ite \itt (\mu h, \xi h) \in \BbbR \times Xh \itb \ite \ita \itd \iti \its \itc \itr \ite \itt \ite \ite \iti \itg \ite \itn \itp \ita \iti \itr \ito \itf (2.5), \ita \itn \itd \itl \ite \itt \^\xi \in \Gamma 
\ita \itn \itd \^\mu \in \BbbR . \itT \ith \ite \itn 

(\mu h  - \^\mu )b(\^\xi , \xi h) =  - Res\^\mu ,\^\xi (\xi h).

\itP \itr \ito \ito \itf . The symmetry of b and Lemma 3.1 show that

(\mu h  - \^\mu )b(\^\xi , \xi h) = \mu hb(\xi h, \^\xi ) - \^\mu b(\^\xi , \xi h) = a(\xi h, \^\xi ) - \^\mu b(\^\xi , \xi h).

The symmetry of a and the definition in (3.4) show that this equals  - Res\^\mu ,\^\xi (\xi h).

By the L2-orthogonal decomposition (Helmholtz decomposition) into a gradient
and a divergence-free part, there exist \alpha \in \Gamma and R \in L2(\Omega ;\BbbR n) with divR = 0 (that
is, R \in Z in the previous notation) such that \xi h is decomposed as

(3.5) \xi h = \alpha +R.

In this decomposition, \alpha \in \Gamma is the L2 projection of \xi h on \Gamma , and R is the remainder
accounting for the expected nonconformity \xi h /\in \Gamma . The following identities relate the
residual of an exact eigenpair to expressions containing R.
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Z\bot 1

L2
0(\Omega ) = Q Qh

(Z\bot 1)\ast 

div

\Delta  - 1

\nabla 

Xh

(Xh)
\ast 

tr

\nabla 

Fig. 1. \itO \itv \ite \itr \itv \iti \ite \itw \ito \itf \itt \ith \ite \itr \ite \itl \ite \itv \ita \itn \itt \its \itp \ita \itc \ite \its \ita \itn \itd \ito \itp \ite \itr \ita \itt \ito \itr \its .

Lemma 3.4. \itL \ite \itt (\mu h, \xi h) \in \BbbR \times Xh \itb \ite \ita \itd \iti \its \itc \itr \ite \itt \ite \ite \iti \itg \ite \itn \itp \ita \iti \itr \ito \itf (2.5) \itw \iti \itt \ith \| \xi h\| b = 1,
\ita \itn \itd \itl \ite \itt (\mu , \xi ) \in \BbbR \times \Gamma \itb \ite \ita \itn \ite \iti \itg \ite \itn \itp \ita \iti \itr \ito \itf (2.2). \itT \ith \ite \itn 

 - Res\mu ,\xi (\xi h) = a(\xi ,R) = a(\xi  - \xi h, R) + \mu h\| R\| 2b .

\itP \itr \ito \ito \itf . The definition of the residual (3.4) and the decomposition (3.5) yield

(3.6)  - Res\mu ,\xi (\xi h) = a(\xi , \alpha +R) - \mu b(\xi , \alpha +R) = a(\xi , \alpha ) + a(\xi ,R) - \mu b(\xi , \alpha ),

where it was used that R is b-orthogonal to \xi . The field \alpha admits an L2-orthogonal
decomposition into a trace-free vector gradient Dz with z \in V and a gradient field
\sigma \in X so that \alpha = Dz + \sigma . Since \xi \in X is b-orthogonal to Dz and Dz is trace-free,
the eigenvalue problem (2.2) shows that

a(\xi , \alpha ) - \mu b(\xi , \alpha ) = a(\xi ,Dz) + a(\xi , \sigma ) - \mu b(\xi ,Dz) - \mu b(\xi , \sigma ) = a(\xi , \sigma ) - \mu b(\xi , \sigma ) = 0.

The combination of this with (3.6) establishes the first asserted identity. It further-
more follows from elementary manipulations with (3.5) that

a(\xi ,R) = a(\xi  - \xi h, R) + a(\xi h, \xi h) - a(\xi h, \alpha ).

The discrete eigenvalue problem (2.5) and Lemma 3.1 together with the b-orthogonal
decomposition (3.5) show that this equals

a(\xi  - \xi h, R) + \mu hb(\xi h, R) = a(\xi  - \xi h, R) + \mu h\| R\| 2b ,

which establishes the second claimed identity.

4. A posteriori error analysis. The relevant operators used in the error analy-
sis are illustrated in the diagram of Figure 1. It is well known that the Cosserat
operator \Delta  - 1\nabla div : Z\bot 1 \rightarrow Z\bot 1 and the Schur complement of the Stokes system
div\Delta  - 1\nabla : L2

0(\Omega ) \rightarrow L2
0(\Omega ) have the same spectrum. The usefulness of this observa-

tion lies in the fact that Qh \subseteq Q is a conforming approximation.

Lemma 4.1. \itT \ith \ite \its \itp \ite \itc \itt \itr \ita \ito \itf \itt \ith \ite \itC \ito \its \its \ite \itr \ita \itt \ito \itp \ite \itr \ita \itt \ito \itr C := \Delta  - 1\nabla div : Z\bot 1 \rightarrow Z\bot 1

\ita \itn \itd \itt \ith \ite \itS \itc \ith \itu \itr \itc \ito \itm \itp \itl \ite \itm \ite \itn \itt \ito \itf \itt \ith \ite \itS \itt \ito \itk \ite \its \its \ity \its \itt \ite \itm S := div\Delta  - 1\nabla : L2
0(\Omega ) \rightarrow L2

0(\Omega ) \ita \itr \ite 
\iti \itd \ite \itn \itt \iti \itc \ita \itl . \itA \itf \itu \itn \itc \itt \iti \ito \itn u \in Z\bot 1 \iti \its \ita \itn \ite \iti \itg \ite \itn \itf \itu \itn \itc \itt \iti \ito \itn \itw \iti \itt \ith \ite \iti \itg \ite \itn \itv \ita \itl \itu \ite \mu \ito \itf C \iti \itf \ita \itn \itd \ito \itn \itl \ity 
\iti \itf div u \iti \its \ita \itn \ite \iti \itg \ite \itn \itf \itu \itn \itc \itt \iti \ito \itn \ito \itf S \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \mu .
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\itP \itr \ito \ito \itf . A proof is given for convenient reading. Since div : Z\bot 1 \rightarrow L2
0(\Omega ) is an

isomorphism, and so is its negative adjoint \nabla : L2
0(\Omega ) \rightarrow (Z\bot 1)\ast , the claim on the

spectra is a consequence of the diagram of Figure 1. Indeed, (C - \mu ) = (\Delta  - 1\nabla div - \mu )
is invertible if and only if (\Delta  - 1\nabla  - \mu div - 1) is invertible (multiply with div - 1 from
the right) if and only if (div\Delta  - 1\nabla  - \mu ) - \mu = (S - \mu ) is invertible (multiply with div
from the left). If (\mu , u) is an eigenpair of C, then div u belongs to L2

0(\Omega ). Applying the
div operator to Cu = \mu u shows div\Delta  - 1\nabla (div u) = \mu (div u), which is the eigenvalue
relation for S. Conversely, if (\mu , q) is an eigenpair of S, the inf-sup condition shows
that q = div u for some u \in Z\bot 1 . Thus, div\Delta  - 1\nabla (div u) = \mu (div u), and applying
div - 1 yields the eigenvalue relation for C.

The error analysis of this paper makes use of the following separation assumption.

Assumption A. \itT \ith \ite \itr \ite \ite \itx \iti \its \itt \its \ita \itm \iti \itn \iti \itm \iti \itz \iti \itn \itg \itf \itu \itn \itc \itt \iti \ito \itn \tau \iti \itn (2.1) \ita \itn \itd \mu \iti \its \ita \itn \iti \its \ito -
\itl \ita \itt \ite \itd \ite \iti \itg \ite \itn \itv \ita \itl \itu \ite \ito \itf \itt \ith \ite \itC \ito \its \its \ite \itr \ita \itt \ito \itp \ite \itr \ita \itt \ito \itr \iti \itn \itt \ith \ite \its \ite \itn \its \ite \itt \ith \ita \itt \itt \ith \ite \itr \ite \ite \itx \iti \its \itt \its \delta > 0 \its \itu \itc \ith \itt \ith \ita \itt 
(\mu , \mu + \delta ] \cap \sigma = \emptyset , \itw \ith \ite \itr \ite \sigma \itd \ite \itn \ito \itt \ite \its \itt \ith \ite \itC \ito \its \its \ite \itr \ita \itt \its \itp \ite \itc \itt \itr \itu \itm .

Note that Assumption A does not require that \mu be a simple eigenvalue.

Lemma 4.2. \itL \ite \itt (\mu h, \xi h) \in \BbbR \times Xh \itb \ite \itt \ith \ite fi\itr \its \itt \ite \iti \itg \ite \itn \itp \ita \iti \itr \ito \itf (2.5) \itw \iti \itt \ith qh := tr \xi h.
\itL \ite \itt \itA \its \its \itu \itm \itp \itt \iti \ito \itn \itA \ith \ito \itl \itd , \ita \itn \itd \itl \ite \itt \mu \itd \ite \itn \ito \itt \ite \itt \ith \ite \itl \ite \ita \its \itt \ite \iti \itg \ite \itn \itv \ita \itl \itu \ite \ito \itf (2.2). \itL \ite \itt W \subseteq Z\bot 1

\itd \ite \itn \ito \itt \ite \itt \ith \ite \ite \iti \itg \ite \itn \its \itp \ita \itc \ite \itr \ite \itl \ita \itt \ite \itd \itt \ito \mu , \ita \itn \itd \itd \ite \itn \ito \itt \ite M := \{ tr\sigma : \sigma \in W\} . \itL \ite \itt P \itb \ite \itt \ith \ite L2

\itp \itr \ito \itj \ite \itc \itt \iti \ito \itn \ito \itn \itt \ito \itM . \itT \ith \ite \itn ,

\delta \| (1 - P )qh\| 2L2(\Omega ) \leq (\mu h  - \mu )\| qh\| 2L2(\Omega ) = (\mu h  - \mu )\mu h\| \xi h\| 2b .

\itP \itr \ito \ito \itf . Parts of the proof follow the ideas of [3, Theorem 5.3]. The spectral gap
property [20, section 4.3] and the self-adjointness of S imply

(\mu + \delta )\| (1 - P )qh\| 2L2(\Omega ) \leq (S(1 - P )qh, (1 - P )qh)L2(\Omega )

= (SPqh, P qh)L2(\Omega )  - 2(Sqh, P qh)L2(\Omega ) + (Sqh, qh)L2(\Omega ).

Since Pqh is an eigenfunction of S with eigenvalue \mu , and S is self-adjoint, the sum
of the first two terms on the right-hand side equals

\mu (Pqh, P qh)L2(\Omega )  - 2\mu (qh, P qh)L2(\Omega ) =  - \mu \| Pqh\| 2L2(\Omega ),

while the last term satisfies, due to the definition of S and the isometry property of
the Laplacian,

(Sqh, qh)L2(\Omega ) =  - (\Delta  - 1\nabla qh,\nabla qh)L2(\Omega ) = | \Delta  - 1\nabla qh| 21 = | \nabla qh| 2 - 1.

Altogether,

(\mu + \delta )\| (1 - P )qh\| 2L2(\Omega ) \leq | \nabla qh| 2 - 1  - \mu \| Pqh\| 2L2(\Omega ).

The monotonicity (2.8) and relation (2.7) imply

| \nabla qh|  - 1 \leq | \nabla qh|  - 1,h = \mu 
1/2
h \| qh\| L2(\Omega ),

so that

(\mu + \delta )\| (1 - P )qh\| 2L2(\Omega ) \leq \mu h\| qh\| 2L2(\Omega )  - \mu \| Pqh\| 2L2(\Omega ).
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After expanding \mu \| (1 - P )qh\| 2L2(\Omega ) = \mu \| qh\| 2L2(\Omega )  - \mu \| Pqh\| 2L2(\Omega ) one thus finds that

\delta \| (1 - P )qh\| 2L2(\Omega ) \leq (\mu h  - \mu )\| qh\| 2L2(\Omega ),

which, together with \| qh\| 2L2(\Omega ) = \| \xi h\| 2a = \mu h\| \xi h\| 2b , proves the lemma.

Under Assumption A, the eigenfunctions related to the smallest eigenvalue of
(2.2) form a finite-dimensional subspace W \subseteq Z\bot 1 . The a-orthogonal projection on
W is denoted by \Pi ; that is, given any \tau \in L2(\Omega ;\BbbR n\times n), the element \Pi \tau \in W satisfies

a(\Pi \tau , \sigma ) = a(\tau , \sigma ) for all \sigma \in W.

Since, by Lemma 4.1, M = \{ tr\sigma : \sigma \in W\} is the eigenspace of S with respect to \mu , it
follows that

a(\Pi \tau , \sigma ) = a(\tau , \sigma ) = (tr \tau , tr\sigma )L2(\Omega ) = (P tr \tau , tr\sigma )L2(\Omega ) for any \sigma \in W.

This proves the relation

(4.1) tr\Pi \tau = P tr \tau for all \tau \in L2(\Omega ;\BbbR n\times n).

In what follows, the discrete spaces are related to a sequence of simplicial meshes
(labeled by the index h) within a shape-regular family whose maximum mesh size
converges to 0, written h \rightarrow 0. The next lemma ensures that, under Assumption A,
the critical constant b(\Pi \xi h, \xi h) converges to 1 under mesh refinement.

Lemma 4.3. \itL \ite \itt (\mu h, \xi h) \in \BbbR \times Xh \itb \ite \itt \ith \ite fi\itr \its \itt b-\itn \ito \itr \itm \ita \itl \iti \itz \ite \itd \ite \iti \itg \ite \itn \itp \ita \iti \itr \ito \itf (2.5).
\itA \its \its \itu \itm \itp \itt \iti \ito \itn \itA \iti \itm \itp \itl \iti \ite \its 

b(\Pi \xi h, \xi h) \rightarrow 1 \ita \its h \rightarrow 0.

\itP \itr \ito \ito \itf . Lemma 3.1, the symmetry of a and b, the projection property of \Pi , and
the Pythagorean identity with \mu h = \| \xi h\| 2a imply

b(\Pi \xi h, \xi h) =
a(\Pi \xi h, \xi h)

\mu h
=

\| \Pi \xi h\| 2a
\mu h

=
\mu h  - \| (1 - \Pi )\xi h\| 2a

\mu h
= 1 - \| (1 - \Pi )\xi h\| 2a

\mu h
.

This implies in particular that b(\Pi \xi h, \xi h) \leq 1. Lemma 4.2 and identity (4.1) show
that

\| (1 - \Pi )\xi h\| 2a
\mu h

\leq \mu h  - \mu 

\delta 
.

The combination of the foregoing two displayed formulas results in

1 - \mu h  - \mu 

\delta 
\leq 1 - \| (1 - \Pi )\xi h\| 2a

\mu h
\leq b(\Pi \xi h, \xi h) \leq 1,

and the stated convergence follows from the convergence \mu h \searrow \mu as h \rightarrow 0, which was
established in [12].

Assumption B. \itT \ith \ite \itm \ite \its \ith \its \iti \itz \ite \iti \its \its \ito \its \itm \ita \itl \itl \itt \ith \ita \itt \itt \ith \ite \itr \ite \ite \itx \iti \its \itt \its \lambda > 0 \its \itu \itc \ith \itt \ith \ita \itt \itt \ith \ite 
fi\itr \its \itt b-\itn \ito \itr \itm \ita \itl \iti \itz \ite \itd \ite \iti \itg \ite \itn \itp \ita \iti \itr (\mu h, \xi h) \in \BbbR \times Xh \ito \itf (2.5) \its \ita \itt \iti \its fi\ite \its 

\lambda \leq b(\Pi \xi h, \xi h) \leq 1

\itf \ito \itr \ita \itl \itl \itm \ite \its \ith \ite \its \iti \itn \itt \ith \ite \its \ith \ita \itp \ite -\itr \ite \itg \itu \itl \ita \itr \itf \ita \itm \iti \itl \ity \ito \itf \itp \ito \its \its \iti \itb \itl \ite \itr \ite fi\itn \ite \itm \ite \itn \itt \its .
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The following result states upper bounds of the eigenvalue error in terms of infor-
mation on R. Examples for two-sided computable bounds on the remaining quantity
\| R\| b are well known and commented on in section 5.

Theorem 4.4 (reliability I). \itL \ite \itt \itA \its \its \itu \itm \itp \itt \iti \ito \itn \its \itA \ita \itn \itd \itB \ith \ito \itl \itd . \itL \ite \itt (\mu h, \xi h) \in 
\BbbR \times Xh \itd \ite \itn \ito \itt \ite \itt \ith \ite fi\itr \its \itt b-\itn \ito \itr \itm \ita \itl \iti \itz \ite \itd \ite \iti \itg \ite \itn \itp \ita \iti \itr \ito \itf (2.5), \ita \itn \itd \itl \ite \itt \mu \itd \ite \itn \ito \itt \ite \itt \ith \ite \itl \ite \ita \its \itt 
\ite \iti \itg \ite \itn \itv \ita \itl \itu \ite \ito \itf (2.2). \itT \ith \ite \itn , \itf \ito \itr \ita \itn \ity \itp \ito \its \iti \itt \iti \itv \ite 0 < \varepsilon < \infty ,

(\mu h  - \mu )
\Bigl[ 
b(\Pi \xi h, \xi h) - 

\varepsilon 

2

\Bigr] 
\leq \mu h

\Bigl[ n

2\varepsilon \delta 
+ 1

\Bigr] 
\| R\| 2b .

\itP \itr \ito \ito \itf . The combination of Lemma 3.3 and Lemma 3.4 with \xi := \Pi \xi h yields

(4.2) (\mu h  - \mu )b(\Pi \xi h, \xi h) = a(\Pi \xi h  - \xi h, R) + \mu h\| R\| 2b .

The property (4.1) together with the Cauchy inequality and Lemma 4.2 show for the
first term on the right-hand side of (4.2) that

a(\Pi \xi h  - \xi h, R) \leq \| (1 - P ) tr \xi h\| L2(\Omega )\| R\| a \leq \surd 
\mu h

\sqrt{} 
\mu h  - \mu 

\delta 
\| R\| a.

This proves

(\mu h  - \mu )b(\Pi \xi h, \xi h) \leq 
\surd 
\mu h

\sqrt{} 
\mu h  - \mu 

\delta 
\| R\| a + \mu h\| R\| 2b .

The asserted estimate thus follows from Young's inequality

\surd 
\mu h

\sqrt{} 
\mu h  - \mu 

\delta 
\| R\| a + \mu h\| R\| 2b \leq \varepsilon 

\mu h  - \mu 

2
+ \mu h

\| R\| 2a
2\varepsilon \delta 

+ \mu h\| R\| 2b

and H\"older's inequality \| R\| 2a \leq n\| R\| 2b for finite sums.

The following theorem states efficiency of \| R\| 2b .
Theorem 4.5 (efficiency). \itL \ite \itt \itA \its \its \itu \itm \itp \itt \iti \ito \itn \its \itA \ita \itn \itd \itB \ith \ito \itl \itd . \itL \ite \itt (\mu h, \xi h) \in \BbbR \times Xh

\itd \ite \itn \ito \itt \ite \itt \ith \ite fi\itr \its \itt b-\itn \ito \itr \itm \ita \itl \iti \itz \ite \itd \ite \iti \itg \ite \itn \itp \ita \iti \itr \ito \itf (2.5), \ita \itn \itd \itl \ite \itt \mu \itd \ite \itn \ito \itt \ite \itt \ith \ite \itl \ite \ita \its \itt \ite \iti \itg \ite \itn \itv \ita \itl \itu \ite 
\ito \itf (2.2). \itT \ith \ite \itn ,

\| R\| 2b \leq (\mu h  - \mu )

\biggl( 
1

\mu 
+

1

\delta 

\biggr) 
.

\itP \itr \ito \ito \itf . From the orthogonality of the Helmholtz decomposition (3.5), it follows
that

\| R\| 2b \leq \| \alpha  - \Pi \xi h\| 2b + \| R\| 2b = \| \alpha  - \Pi \xi h +R\| 2b = \| (1 - \Pi )\xi h\| 2b ,
which proves efficiency for the eigenfunction approximation.

The application of Lemma 3.2 with \^\xi := \Pi \xi h, identity (4.1), and Lemma 4.2
furthermore shows

\mu h\| (1 - \Pi )\xi h\| 2b = \| \xi h  - \Pi \xi h\| 2a + \| \Pi \xi h\| 2b(\mu h  - \mu ) \leq \mu h  - \mu 

\delta 
\mu h + \| \Pi \xi h\| 2b(\mu h  - \mu ).

Furthermore, from the Rayleigh quotient for \mu and the nonexpansivity \| \Pi \xi h\| 2a \leq 
\| \xi h\| 2a = \mu h, it follows that

\| \Pi \xi h\| 2b = \mu  - 1\| \Pi \xi h\| 2a \leq \mu h/\mu .

The combination of the above estimates concludes the proof.
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The following result provides a reliability bound which allows for more precise
control of the involved constants, at the expense of suboptimal efficiency.

Theorem 4.6 (reliability II). \itL \ite \itt \itA \its \its \itu \itm \itp \itt \iti \ito \itn \its \itA \ita \itn \itd \itB \ith \ito \itl \itd . \itL \ite \itt (\mu h, \xi h) \in 
\BbbR \times Xh \itd \ite \itn \ito \itt \ite \itt \ith \ite fi\itr \its \itt b-\itn \ito \itr \itm \ita \itl \iti \itz \ite \itd \ite \iti \itg \ite \itn \itp \ita \iti \itr \ito \itf (2.5), \ita \itn \itd \itl \ite \itt \mu \itd \ite \itn \ito \itt \ite \itt \ith \ite \itl \ite \ita \its \itt 
\ite \iti \itg \ite \itn \itv \ita \itl \itu \ite \ito \itf (2.2). \itT \ith \ite \itn ,

\lambda (\mu h  - \mu ) \leq (\mu h  - \mu )b(\Pi \xi h, \xi h) \leq 
\surd 
\mu h\| R\| a \leq \surd 

n\mu h\| R\| b.

\itP \itr \ito \ito \itf . Lemma 3.3 with \^\xi := \Pi \xi h and Lemma 3.4 imply

(\mu h  - \mu )b(\Pi \xi h, \xi h) =  - Res\mu ,\Pi \xi h(\xi h) = a(\Pi \xi h, R).

The assertion of the theorem then follows from the Cauchy inequality and the bounds
\| \Pi \xi h\| a \leq \| \xi h\| a =

\surd 
\mu h and \| R\| a \leq 

\surd 
n\| R\| b.

A comparison of Theorem 4.6 with Theorem 4.5 reveals that the reliable bound
of Theorem 4.6 is not efficient in the sense that the upper bound is expected to rather
behave like the square root of the eigenvalue error. On the other hand, the bound of
Theorem 4.6 is close to being explicit, and the remaining unknown constant b(\Pi \xi h, \xi h)
converges to 1 under mesh refinement, as shown in Lemma 4.3. If the mesh size is
small enough, the eigenvalue error is bounded from above by

\surd 
n\mu h\| R\| b/\lambda , and a

computable bound thus requires an estimate on \lambda (which is generally not available)
and a computable upper bound on \| R\| b, which is not difficult to achieve, as shown
in section 5.

5. Practical error estimators and numerical results. This section presents
practical bounds for the quantity \| R\| b and numerical experiments on adaptive meshes.

5.1. Error estimator. Reliable and efficient bounds for \| R\| b have been estab-
lished in the literature; see [21, section 4.12] for the lowest-order case and [16] for
arbitrary polynomial degree. In the two-dimensional case n = 2, given a triangle
T \in T of the triangulation T with diameter hT and set of edges F(T ), the local
contribution to the error estimator is defined by

(5.1) \eta 2res(T ) := h2
T \| rot \xi h\| 2L2(T ) + hT

\sum 
F\in F(T )

\| [\xi h]F tF \| 2L2(F ).

Here, rot \xi h = \partial 1(\xi h)2  - \partial 2(\xi h)1, tF is a unit tangent vector to the edge F , and the
brackets [\cdot ]F denote the jump across F for any interior edge F and the trace for any
boundary edge. It is known [16] that

c\| R\| b \leq \eta res \leq C\| R\| b with \eta res :=

\sqrt{} \sum 
T\in T

\eta 2res(T )

with mesh-independent positive constants c, C, provided the domain is simply con-
nected. Analogous estimators can be derived in higher space dimensions. This is a
typical residual-based error estimator, and its effect on adaptive mesh refinement was
already tested and documented in [12], where the error estimator had been derived
on a heuristic level.

The results presented in this section shall shed light on the dependence of the
reliability and efficiency estimates and the respective constants in the presence of
coarse meshes or a narrow spectral gap. For better control over the reliability constant
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(which is relevant for the numerical lower bound), the experimental computations will
focus on a different error estimator \eta based on an explicit gradient reconstruction. The
orthogonal decomposition (3.5) implies that \| R\| b is the L2 distance of \xi h to \Gamma ,

\| R\| b = min
\gamma \in \Gamma 

\| \xi h  - \gamma \| b.

Thus, the explicit design of an approximation \gamma to \xi h provides an upper bound. A
direct approach for a reconstruction is to solve a discrete Laplacian so that vh \in 
Pk+1(T ;\BbbR n) \cap V solves

(Dvh, Dwh)b = (\xi h, Dwh)b for all wh \in Pk+1(T ;\BbbR n) \cap V.

With \alpha h := Dvh, the resulting computable error estimator reads

\eta := \| \alpha h  - \xi h\| b
and satisfies

(5.2) \| R\| b \leq \eta .

A standard efficiency analysis under smoothness assumptions shows that \eta can be
expected to decrease at the same asymptotic rate as \| R\| b. The design of \alpha h involves
the solution of a global linear problem and should be understood as a proof of concept
and not as the most efficient way of a gradient reconstruction.

5.2. Numerical experiments. The numerical experiments of this paper are
concerned with rectangular two-dimensional domains. It was shown in [8] that on
rectangular domains the nonzero part of the essential spectrum of the Cosserat oper-
ator equals

(5.3) \{ 1\} \cup 
\biggl[ 
1

2
 - 1

\pi 
,
1

2
+

1

\pi 

\biggr] 
,

and, consequently, there is a universal upper bound

\beta 2 \leq 1

2
 - 1

\pi 

for all rectangular domains. It was analytically shown in [8] that isolated eigen-
functions exhibit strong corner singularities when the aspect ratio of the rectangle
approaches 1. Thus, adaptive mesh refinement is used (as was done in [12]) in the
numerical experiments. The refinement indicator is the residual-based error estimator
\eta res from (5.1), and the refinement is based on newest-vertex bisection with D\"orfler
marking [21] with bulk parameter \theta = 0.3. The polynomial degree is chosen as k = 4.
Three aspect ratios are chosen, namely 2, 1.61, and 1. The tables display the number
of elements in the triangulation, the computed eigenvalue \mu h, the eigenvalue error,
and the empirical order of convergence (eoc), which compares the eigenvalue error
with the number of triangles on two consecutive levels. The asymptotic lower bound
(denoted by \mu lb

h ) is computed based on \lambda = 1/2 in Assumption B, and reads, for n = 2
and the bound (5.2),

\mu lb
h = \mu h  - 2

\sqrt{} 
2\mu h\eta 

and satisfies \mu lb
h \leq \mu provided b(\Pi \xi h, \xi h) \geq 1/2 for the discrete b-normalized eigen-

function \xi h. Furthermore, the error estimator \eta 2 as well as the ratio of \eta 2 and the
eigenvalue error are shown.
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Table 1
\itR \ite \its \itu \itl \itt \its \ito \itn \itt \ith \ite \itr \ite \itc \itt \ita \itn \itg \itl \ite \itd \ito \itm \ita \iti \itn \itw \iti \itt \ith \ita \its \itp \ite \itc \itt \itr \ita \itt \iti \ito 2.

card(T) 10\times \mu h \mu h  - \mu eoc 10\times \mu lb
h \eta 2 \eta 2

\mu h - \mu 

4 1.54455 4.48e-03 --- 0.98980 2.49e-03 5.55e-01
8 1.53219 3.24e-03 4.65e-01 1.07879 1.67e-03 5.16e-01
12 1.52050 2.07e-03 1.10e+00 1.18206 9.41e-04 4.52e-01
20 1.51395 1.42e-03 4.28e-01 1.24489 5.97e-04 4.19e-01
39 1.51175 1.20e-03 5.68e-01 1.26869 4.88e-04 4.05e-01
64 1.50711 7.39e-04 9.82e-01 1.31912 2.93e-04 3.96e-01
70 1.50603 6.31e-04 9.20e-01 1.33477 2.43e-04 3.85e-01
100 1.50346 3.74e-04 1.90e+00 1.37074 1.46e-04 3.90e-01
112 1.50292 3.20e-04 1.37e+00 1.38169 1.22e-04 3.81e-01
136 1.50163 1.91e-04 2.64e+00 1.40692 7.46e-05 3.89e-01
148 1.50136 1.64e-04 1.81e+00 1.41466 6.25e-05 3.80e-01
172 1.50070 9.90e-05 3.37e+00 1.43250 3.87e-05 3.91e-01
192 1.50045 7.38e-05 2.66e+00 1.44187 2.85e-05 3.86e-01
226 1.50023 5.12e-05 2.24e+00 1.45104 2.01e-05 3.93e-01
246 1.50010 3.83e-05 3.42e+00 1.45773 1.49e-05 3.90e-01
284 1.49998 2.64e-05 2.56e+00 1.46459 1.04e-05 3.93e-01
304 1.49991 1.98e-05 4.24e+00 1.46938 7.76e-06 3.91e-01
328 1.49985 1.39e-05 4.67e+00 1.47385 5.63e-06 4.04e-01
348 1.49982 1.04e-05 4.78e+00 1.47721 4.25e-06 4.06e-01
372 1.49979 7.42e-06 5.17e+00 1.48031 3.16e-06 4.25e-01
396 1.49977 5.65e-06 4.36e+00 1.48262 2.45e-06 4.33e-01

5.3. Rectangle domain with aspect ratio 2. The rectangle \Omega := (0, 2)\times (0, 1)
with aspect ratio 2 is known to have a squared inf-sup constant \mu = \beta 2 that is well
separated from the essential spectrum. There is an analytical upper bound due to
[8, equation (5.5)] which reads \mu \leq 0.166. The reference value \mu = 0.1499718 was
provided by [3], which together with (5.3) implies that Assumption A is satisfied
with \delta > 0.0317. The velocity field belonging to the first eigenfunctions is known [8]
to be not smoother than of class H1.4760291, which together with the a priori error
estimates from [12] implies an expected observed convergence rate of 0.47 for the error
\mu h  - \mu of eigenvalues under uniform mesh refinement, which was indeed observed in
the computations of [12]. The computational results for adaptive meshes are displayed
in Table 1. It was already observed in [12] that the mesh sequence is strongly refined
near the corners of the rectangle and stays quite coarse in the interior (see [12] for
a plot). Accordingly, the growth of the number of triangles card(T) with respect
to the refinement level is rather slow. From the coarsest mesh on, the asymptotic
lower bound \mu lb

h appears to be a true lower bound to \mu . After 16 refinements, the
adaptive algorithm shows the optimal rate of convergence with respect to the number
of triangles. The ratio of the estimator \eta 2 and the eigenvalue error, however, is close
to constant beginning from the first mesh.

5.4. Rectangle with aspect ratio 1.61. For the rectangle \Omega := (0, 1.61) \times 
(0, 1) it is unknown whether the bottom of the Cosserat spectrum is an eigenvalue, but
numerical evidence [12] indicates that there is indeed a spectral gap. The reference
value from [12] reads \mu = 0.18159009 and implies an estimate \delta > 10 - 4 for the
spectral gap. The computational results are displayed in Table 2. The singularity of
the eigenfunction is expected to be stronger than in the previous example, and, in this
pre-asymptotic test, the optimal convergence rate is not attained within the first 19
refinements. As in the previous example, \mu lb

h converges to \mu from below starting from
the coarsest mesh, and the estimator \eta 2 appears to be reliable. In view of the small
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Table 2
\itR \ite \its \itu \itl \itt \its \ito \itn \itt \ith \ite \itr \ite \itc \itt \ita \itn \itg \itl \ite \itd \ito \itm \ita \iti \itn \itw \iti \itt \ith \ita \its \itp \ite \itc \itt \itr \ita \itt \iti \ito 1.61.

card(T) 10\times \mu h \mu h  - \mu eoc 10\times \mu lb
h \eta 2 \eta 2

\mu h - \mu 

4 2.03623 2.20e-02 --- 0.95309 7.20e-03 3.26e-01
8 1.99637 1.80e-02 2.87e-01 1.10623 4.96e-03 2.74e-01
12 1.96334 1.47e-02 4.98e-01 1.24683 3.26e-03 2.21e-01
31 1.94105 1.25e-02 1.72e-01 1.34014 2.32e-03 1.85e-01
54 1.91863 1.02e-02 3.55e-01 1.40864 1.69e-03 1.64e-01
78 1.89910 8.32e-03 5.73e-01 1.46206 1.25e-03 1.51e-01
102 1.88424 6.83e-03 7.33e-01 1.50502 9.54e-04 1.39e-01
126 1.87300 5.71e-03 8.50e-01 1.53899 7.44e-04 1.30e-01
150 1.86410 4.82e-03 9.71e-01 1.56739 5.90e-04 1.22e-01
174 1.85703 4.11e-03 1.06e+00 1.59109 4.76e-04 1.15e-01
198 1.85127 3.53e-03 1.16e+00 1.61126 3.88e-04 1.09e-01
222 1.84660 3.07e-03 1.23e+00 1.62813 3.23e-04 1.05e-01
246 1.84270 2.68e-03 1.32e+00 1.64285 2.70e-04 1.01e-01
270 1.83944 2.35e-03 1.39e+00 1.65569 2.29e-04 9.74e-02
294 1.83667 2.07e-03 1.47e+00 1.66699 1.95e-04 9.43e-02
318 1.83434 1.84e-03 1.51e+00 1.67674 1.69e-04 9.17e-02
342 1.83232 1.64e-03 1.59e+00 1.68544 1.47e-04 8.96e-02
366 1.83058 1.46e-03 1.65e+00 1.69323 1.28e-04 8.77e-02
390 1.82906 1.31e-03 1.72e+00 1.70022 1.13e-04 8.62e-02

value of \delta in the order of 10 - 4, this observation cannot be justified with Theorem 4.4,
which provides a more pessimistic pre-asymptotic bound.

5.5. Square domain. For the square \Omega := (0, 1)\times (0, 1), it is conjectured [9, 18]
that \mu = 1/2  - 1/\pi , although the proof is still open. This experiment assumes that
\mu takes this value. In this case, Assumption A is not satisfied so that the numerical
results are purely experimental and lack any justification by the proofs of this paper.
The computational results are displayed in Table 3. The strong refinement close to
one of the corners (see [12] for a plot) makes the number of triangles increase very
slowly with respect to the levels, and, thus, not all refinement levels are shown. It
can be seen that \mu lb

h converges monotonically from below starting from the coarsest
mesh and that, remarkably, the error estimator \eta 2 shows reliability.

5.6. Conclusions from the computations. Beyond what is proven in this
paper, the computational work gives insight into the performance of the numerical
scheme in cases where the assumptions are questionable or at least not verifiable.
The proofs of section 4 assume separation of \beta 2 = \mu from the essential spectrum (As-
sumption A) and a sufficiently fine mesh-size so that b(\Pi \xi h, \xi h) is larger than a certain
constant. The pre-asymptotic experimental computations show that equivalence of
the error with the error estimator is still observable when the gap \delta is close or even
equal to 0. Furthermore, the asymptotic lower eigenvalue bound is an actual lower
bound in all computations.
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Table 3
\itR \ite \its \itu \itl \itt \its \ito \itn \itt \ith \ite \its \itq \itu \ita \itr \ite \itd \ito \itm \ita \iti \itn .

card(T) 10\times \mu h \mu h  - \mu eoc 10\times \mu lb
h \eta 2 \eta 2

\mu h - \mu 

4 2.71586 8.98e-02 --- 0.35988 2.55e-02 2.84e-01
12 2.56125 7.44e-02 1.71e-01 0.58033 1.91e-02 2.57e-01
24 2.36605 5.49e-02 4.38e-01 1.06010 9.01e-03 1.64e-01
44 2.23784 4.20e-02 4.38e-01 1.22345 5.74e-03 1.36e-01
52 2.16516 3.48e-02 1.13e+00 1.30232 4.29e-03 1.23e-01
60 2.10071 2.83e-02 1.43e+00 1.37300 3.15e-03 1.10e-01
68 2.05156 2.34e-02 1.51e+00 1.42838 2.36e-03 1.00e-01
76 2.01385 1.96e-02 1.57e+00 1.47236 1.81e-03 9.23e-02
84 1.98444 1.67e-02 1.61e+00 1.50801 1.42e-03 8.52e-02
92 1.96110 1.44e-02 1.64e+00 1.53745 1.14e-03 7.92e-02
100 1.94229 1.25e-02 1.67e+00 1.56212 9.30e-04 7.41e-02

...
(25 refinement levels not displayed)

...
308 1.83337 1.64e-03 1.88e+00 1.74102 5.81e-05 3.52e-02
316 1.83259 1.56e-03 1.88e+00 1.74272 5.50e-05 3.50e-02
324 1.8318 1.49e-03 1.88e+00 1.74430 5.23e-05 3.49e-02
332 1.8311 1.42e-03 1.88e+00 1.74577 4.98e-05 3.48e-02
340 1.83056 1.36e-03 1.89e+00 1.74715 4.75e-05 3.48e-02
348 1.82998 1.30e-03 1.87e+00 1.74845 4.54e-05 3.46e-02
356 1.82943 1.25e-03 1.90e+00 1.74966 4.34e-05 3.47e-02
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