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TAYLOR--HOOD DISCRETIZATION OF THE
REISSNER--MINDLIN PLATE\ast 

DIETMAR GALLISTL\dagger AND MIRA SCHEDENSACK\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . A shear-locking free finite element discretization of the Reissner--Mindlin plate model
is introduced. The rotation is discretized with piecewise polynomials of degree k+2 while the degree
k \geq 0 is used for the displacement gradient. The method is closely related to the (generalized)
Taylor--Hood pairing. In this case the general theory of saddle-point problems with penalty cannot
exclude that the convergence speed for the rotation is limited by the lower rate expected for the
displacement. However, in this paper, it is shown that the rotations are approximated at optimal
order of accuracy. This superconvergence phenomenon is proved by means of the approximation
properties of the Fortin operator for the Taylor--Hood element and the Galerkin projection.
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\bfD \bfO \bfI . 10.1137/20M1343397

1. Introduction. The Reissner--Mindlin model is a classical description for the
elastic response of a moderately thick plate whose mid-surface \Omega is a subset of the
xy plane subject to some load in z direction. More precisely, let \Omega \subseteq \BbbR 2 be a
simply connected, open, and polygonal Lipschitz domain. Given the plate's thickness
t > 0 and a scalar function f \in L2(\Omega ) representing the vertical force, the vertical
displacement w \in H1

0 (\Omega ) and the rotation vector \phi \in \Phi := [H1
0 (\Omega )]

2 are the solution
to the following variational problem,

a(\phi , \psi ) + t - 2(\nabla w  - \phi ,\nabla v  - \psi )L2(\Omega ) = (f, v)L2(\Omega ) for all (v, \psi ) \in H1
0 (\Omega )\times \Phi .

(1.1)

Here, a(\cdot , \cdot ) is a coercive and continuous bilinear form on \Phi , and the thickness t is
rescaled by certain material constants (details in section 2). The phenomenon that
low-order finite element methods (FEMs) behave poorly for this model when t is small
compared to the mesh size, is known as shear locking. There is a vast literature on the
numerical approximation of (1.1), and we refer to [11, 9] and the references therein
for an overview. Since [10], the error analysis is usually based on the shear variable

\zeta := t - 2(\nabla w  - \phi )(1.2)

and its Helmholtz decomposition

\zeta = \nabla r +Curl p.(1.3)

It is well known [9] that (1.1) can be decomposed in a system of simpler equations.
Most importantly, (\phi , p) can be interpreted as a velocity-pressure pair in a Stokes
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system with penalty term. The method by [5] was the first to mimic this equivalence
on the finite element level with pointwise relations, namely, with a discrete Helmholtz
decomposition. Therein the variables w, r are discretized with first order (nonconform-
ing) finite elements, and (\phi , p) is discretized with the Mini (or stabilized P1 - P1) pair.
The recent work [24] formulated a generalization of the discrete Helmholtz decompo-
sition to higher polynomial degrees and thereby established higher-order analogues of
the nonconforming P1 FEM. In view of the original purpose of the discrete Helmholtz
decomposition, the results of [24] appear to be an appropriate tool for the numerical
analysis of the Reissner--Mindlin plate. With this idea it is possible to modify the
original scheme by Arnold and Falk in two respects. The first novelty lies in the
possibility to use arbitrary polynomial degrees. Secondly, instead of the Mini element
used in [5] we propose the use of the Taylor--Hood pair. Since the singular perturba-
tion in the Stokes-like system involves the Laplacian t2\Delta p, continuous pressure pairs
appear as the first choice. For the Stokes problem the polynomial degree is optimally
chosen one degree higher for the velocity than for the pressure so that the asymptotic
approximation properties are correctly balanced. These Pm+1  - Pm elements with
continuous pressure are known as (generalized) Taylor--Hood elements [8]. In this
sense, the stabilized Pm  - Pm pairs are somewhat suboptimal. On the other hand,
the decomposition (1.3) naturally has its finite element equivalent in a subspace of
vector-valued piecewise Pm - 1 polynomials, which requires discrete analoga of (1.2)
to involve some degree-lowering projection (or reduced integration) operator. An im-
mediate use of the saddle-point theory with penalty terms therefore predicts that the
globalH1 norm of the error in the \phi variable is bounded from above by the sum of best
approximation errors of the involved variables w, r, \phi in H1 and p in a t-weighted H1

norm. Hence, choosing \phi one degree higher than the other variables does not improve
the convergence rate predicted by this error estimate that has a global character with
norms involving all unknowns.

In this paper, we prove that the variable \phi is indeed approximated in a super-
convergent way. That is, the seeming loss in accuracy is just an artifact of the too
general error analysis. In the setting of [5], for instance, this means that keeping the
approximation space for w unchanged and replacing the bubble-enriched P1 elements
by piecewise quadratic vector fields, the approximation of \phi is in fact improved by
one order. This lowest-order case is discussed in section 3 separately. On the one
hand, that section illustrates the error analysis without the need of introducing the
generalized nonconforming FEM. On the other hand, the result in the lowest-order
case is slightly sharper than in the general situation. The convergence analysis is valid
under minimal regularity assumptions.

An important aspect of the proposed method is that it is shear-locking free; that
is, the constants appearing in the error estimates are robust with respect to small
plate thickness t. The only t-dependence in the upper error bound from the main
result in Corollary 5.7 lies in the approximability of the solution. This means that
no other method with the same approximation spaces can yield better results (up to
some t-independent constant). Error estimates in terms of convergence rates naturally
contain the norms of derivatives of the exact solution as a factor on the right-hand
side. Whether this resulting error estimate is robust in the thickness t will depend
on the regularity of the exact solution. However, the refined error estimate states
quasi-optimality and is thus superior to asymptotic estimates if, e.g., nonuniform
meshes are used to resolve the t-dependent boundary layers and hereby improve the
approximation properties of the underlying spaces.
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In order to obtain these results, we use tools from mixed finite element the-
ory. Namely, we employ the Fortin operator for the Taylor--Hood element with best-
approximation properties. We note that such an operator was constructed by [19]
for m \in \{ 2, 3\} in an explicit design using special quadrature formulas. The approach
seems not to generalize easily to m \geq 4, and the proof we give in this paper relies
on the more general statement that stability automatically implies the existence of
a Fortin operator with best-approximation properties. The latter is usually of mar-
ginal importance when the Fortin operator is used in a mere stability analysis. Here,
however, the property is helpful in a refined error analysis.

The proposed method allows for an easy implementation (see section 4.2). The
finite element spaces involved in the implementation are the standard finite element
spaces of (generalized) Taylor--Hood finite elements, namely, continuous piecewise
polynomials of degree k + 2 and continuous piecewise polynomials of degree k + 1.
The local number of degrees of freedom of the system that has to be solved is 15 for
the second-order method (k = 0). Compared to other existing second-order methods,
this is a low number of degrees of freedom.

The remaining parts of this article are organized as follows: Section 2 provides
notation and preliminary results. The method and its error analysis are presented
in the lowest-order case in section 3. The discretization with arbitrary polynomial
degree k \geq 0 is presented in section 4 and a priori error estimates are shown in section
5. The paper is concluded with the computational results in section 6.

Standard notation on Lebesgue and Sobolev spaces applies throughout this paper.
The L2 inner product is denoted by (v, w)L2(\Omega ) and \| \bullet \| := \| \bullet \| L2(\Omega ) denotes the L2

norm. The Hk seminorm over \Omega is denoted by | \bullet | k. The space of L2(\Omega ) functions
with vanishing global average reads L2

0(\Omega ). For a function v and a vector field \psi , the
following differential operators are defined

div\psi = \partial 1\psi 1 + \partial 2\psi 2, rot\psi = \partial 1\psi 2  - \partial 2\psi 1, Curl v =

\biggl( 
 - \partial 2v
\partial 1v

\biggr) 
.

The notation A \lesssim B abbreviates A \leq CB for some constant C that is independent
of the mesh size and the plate's thickness t.

2. Preliminaries. This section lists notation and a lemma on the Fortin
operator.

2.1. Notation. Bilinear forms. The bilinear form a is assumed to be sym-
metric, coercive, and continuous. This is satisfied for the standard Reissner--Mindlin
plate model, namely, a(\phi , \psi ) := (\varepsilon (\phi ),\BbbC \varepsilon (\psi ))L2(\Omega ) for the linear Green strain \varepsilon (\cdot ) =
symD(\cdot ) and the linear elasticity tensor \BbbC that acts on any symmetric matrix A \in 
\BbbR 2\times 2 as follows:

\BbbC A =
E

12(1 - \nu 2)
((1 - \nu )A+ \nu tr(A)I2\times 2).

For isotropic materials it is determined by Young's modulus E > 0 and the Poisson
ratio 0 < \nu < 1/2. The parameter t is defined by t := \lambda  - 1/2\~t with the plate thickness
\~t and the constant \lambda = (1+ \nu ) - 1E\kappa /2 with a shear correction factor \kappa usually chosen
as 5/6. More details on the mathematical model can be found in [8, 9].
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The scalar product a induces a norm | | | \bullet | | | :=
\sqrt{} 
a(\bullet , \bullet ) on \Phi , which is equivalent

to the H1 seminorm. For convenient reading we write

b(\psi , q) := (\psi ,Curl q)L2(\Omega ) for any (\psi , q) \in \Phi \times Q

with Q := H1(\Omega ) \cap L2
0(\Omega ) and note that integration by parts implies the continuity

b(\psi , q) \leq | \psi | 1 \| q\| for any (\psi , q) \in \Phi \times Q.(2.1)

Define furthermore the H1 inner product c : Q\times Q\rightarrow \BbbR by

c(v, w) := (Curl v,Curlw)L2(\Omega ) for any v, w \in Q,

and note that c(v, v) = | v| 21.
Triangulations. Let T be a shape-regular triangulation of \Omega consisting of at

least three triangles. The space of piecewise polynomials of total degree not larger
than k is denoted by Pk(T). Define the spaces

Sk(T) := Pk(T) \cap H1(\Omega ) and Sk0 (T) := Pk(T) \cap H1
0 (\Omega ).

Furthermore, let \Pi k : L2(\Omega ) \rightarrow Pk(T) denote the L
2 projection onto Pk(T). The same

symbol is used for the component-wise L2 projection of vector-valued functions. The
mesh size hT \in P0(T) is defined by hT| T = diam(T ) for any T \in T, and h := maxhT.

Elliptic regularity. Let 0 < s \leq 1 denote the elliptic regularity constant from
the Poisson--Neumann problem, i.e., such that for all solutions z \in H1(\Omega ) \cap L2

0(\Omega ) of
the Poisson problem with homogeneous Neumann data and right-hand side f \in L2(\Omega ),
it holds that

\| z\| H1+s(\Omega ) \lesssim \| f\| .(2.2)

For general Lipschitz polygons, 1/2 < s and s = 1 on convex domains [22, Thm. 2.4.3].

2.2. Fortin operator. This section briefly shows that discrete stability is enough
to conclude the existence of a Fortin operator that in addition has near best-approxi-
mation properties. The case relevant to this work is the two-dimensional Taylor--Hood
pairing, where the velocities are piecewise polynomials of degree k + 2 \geq 2 and the
pressures consist of continuous piecewise polynomials of degree k + 1.

Lemma 2.1 (Fortin operator with approximation property). Let Vh \subseteq [H1
0 (\Omega )]

2

and Mh \subseteq L2
0(\Omega ) be closed subspaces satisfying the stability condition

inf
qh\in Mh\setminus \{ 0\} 

sup
vh\in Vh\setminus \{ 0\} 

(rotvh, qh)L2(\Omega )

| vh| 1\| qh\| 
\geq \beta > 0.

Then there exists a linear operator \Pi F : [H1
0 (\Omega )]

2 \rightarrow Vh such that

(rot(v  - \Pi F v), qh)L2(\Omega ) = 0 for all v \in [H1
0 (\Omega )]

2 and all qh \in Mh

and

| v  - \Pi F v| 1 \leq (1 + 2\beta  - 1) inf
vh\in Vh

| v  - vh| 1.
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Proof. Given any v \in [H1
0 (\Omega )]

2, let vh \in Vh be its best approximation. Consider
the discrete saddle-point problem of finding (\lambda h, \mu h) \in Vh \times Mh such that, for all
(wh, qh) \in Vh \times Mh,

(D\lambda h, Dwh)L2(\Omega ) + (rotwh, \mu h)L2(\Omega ) = 0,

(rot\lambda h, qh)L2(\Omega ) = (rot(v  - vh), qh)L2(\Omega ),

whereD denotes the derivative of a vector valued function. If follows from the assumed
inf-sup condition and the classical saddle-point theory [8, Theorem 4.2.3] that this
system is uniquely solvable and satisfies the stability | \lambda h| 1 \leq 2\beta  - 1\| rot(v  - vh)\| .
Define \Pi F v := vh + \lambda h. This definition and the second equation of the saddle-point
system show for any qh \in Mh that

(rot\Pi F v, qh)L2(\Omega ) = (rotvh, qh)L2(\Omega ) + (rot\lambda h, qh)L2(\Omega ) = (rotv, qh)L2(\Omega ),

which implies the claimed Fortin property. The triangle inequality and the above
bound for | \lambda h| 1 show

| v  - \Pi F v| 1 \leq | v  - vh| 1 + | \lambda h| 1 \leq (1 + 2\beta  - 1)| v  - vh| 1.

Since vh is the best approximation, this implies the asserted approximation property.

3. The lowest order case: The Crouzeix--Raviart--Taylor--Hood dis-
cretization. Before we define and analyze the method for arbitrary polynomial de-
gree in sections 4--5 below, this section discusses the lowest-order case. Although this
is a special case of the general situation discussed below, the main mathematical ar-
guments are best illustrated in the less technical low-order case. Moreover, the results
of Theorem 3.1 are slightly sharper in this situation.

The nonconforming Crouzeix--Raviart finite element space is defined as

CR1
0(T) := \{ vCR \in P1(T) | vCR is continuous in the midpoints of interior

edges and vanishes in the midpoints of boundary edges\} .

Note that CR1
0(T) \not \subseteq H1

0 (\Omega ) for nontrivial triangulations. However, the piecewise
gradient exists and is denoted by \nabla NC. Define \Phi h := [S2

0(T)]
2. The discretization

of (1.1) then seeks (wCR, \phi h) \in CR1
0(T)\times \Phi h with

a(\phi h, \psi h) + t - 2(\nabla NCwCR  - \Pi 0\phi h,\nabla NCvCR  - \Pi 0\psi h)L2(\Omega ) = (f, vCR)L2(\Omega )(3.1)

for all (vCR, \psi h) \in CR1
0(T)\times \Phi h. This discretization coincides with that of [5] except

for the discretization space of the rotation. While in the discretization (3.1) the
rotation is approximated in [S2

0(T)]
2, in [5] the rotation is discretized with [S1

0(T)]
2

functions enriched by volume bubbles. In their analysis via a mixed system, it seems
natural to choose the same approximation order as CR1

0(T). However, in Theorem 3.1
below it turns out that one can indeed recover the optimal approximation order for
the rotation.

As in [5] the proof of the error estimate of Theorem 3.1 relies on the equivalence
of problem (3.1) with a mixed system. The continuous problem (1.1) is equivalent to
the following mixed system [10]: Seek (r, \phi , p, w) \in H1

0 (\Omega )\times \Phi \times Q\times H1
0 (\Omega ) such that,

for all (s, \psi , q, v) \in H1
0 (\Omega )\times \Phi \times Q\times H1

0 (\Omega ),
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(\nabla r,\nabla s)L2(\Omega ) = (f, s)L2(\Omega )(3.2a)

a(\phi , \psi ) - b(\psi , p) - (\nabla r, \psi )L2(\Omega ) = 0(3.2b)

 - b(\phi , q) - t2c(p, q) = 0(3.2c)

(\nabla w,\nabla v)L2(\Omega )  - (\phi ,\nabla v)L2(\Omega ) = t2(f, v)L2(\Omega ).(3.2d)

Analogously, with the space Qh := S1(T) \cap L2
0(\Omega ), the discrete problem (3.1) can be

reformulated as a mixed system: Seek (rCR, \phi h, ph, wCR) \in CR1
0(T)\times \Phi h\times Qh\times CR1

0(T)
such that, for all (sCR, \psi h, qh, vCR) \in CR1

0(T)\times \Phi h \times Qh \times CR1
0(T),

(\nabla NCrCR,\nabla NCsCR)L2(\Omega ) = (f, sCR)L2(\Omega )(3.3a)

a(\phi h, \psi h) - b(\psi h, ph) - (\nabla NCrCR, \psi h)L2(\Omega ) = 0(3.3b)

 - b(\phi h, qh) - t2c(ph, qh) = 0(3.3c)

(\nabla NCwCR,\nabla NCvCR)L2(\Omega )  - (\phi h,\nabla NCvCR)L2(\Omega ) = t2(f, vCR)L2(\Omega ).(3.3d)

The proof of the equivalence follows as in [5], the only difference being that \Phi h and
Qh form the inf-sup stable Taylor--Hood pair instead of the Mini element.

The following theorem proves two error estimates that both yield the optimal
approximation order. The first error estimate is valid for general right-hand sides
f \in L2(\Omega ), and the upper bound involves terms from (3.2), while the second part
should be seen as an illustration of Theorem 5.5 below in the case of the lowest
polynomial degrees. In that part we assume, for the purpose of illustration, that f
is piecewise constant with respect to some possibly coarser triangulation TH . Then
it is known [9] that f can be represented as the divergence of an element of the
Raviart--Thomas space, which is defined as

RT0(TH) := \{ qRT \in H(div,\Omega ) | for all T \in TH \exists (aT , bT ) \in \BbbR 2 \times \BbbR 
such that for all x \in T, qRT| T (x) = aT + bTx\} ,

so that f =  - div \eta for some \eta \in RT0(TH). Since  - div\nabla r = f =  - div \eta , the field \eta 
admits a decomposition

\eta = \nabla r +Curl \gamma (3.4)

with some \gamma \in H1(\Omega ) \cap L2
0(\Omega ). Recall the elliptic regularity constant s from (2.2) of

the Poisson--Neumann problem and the maximum mesh size h = maxhT.

Theorem 3.1. The discrete solution (wCR, \phi h) \in CR1
0(T) \times \Phi h to (3.1) and the

solution (w, \phi ) \in H1
0 (\Omega )\times \Phi to (1.1) satisfy

| | | \phi  - \phi h| | | \lesssim inf
\varphi h\in \Phi h

| | | \phi  - \varphi h| | | + hs inf
qh\in Qh

| p - qh| 1

+ hs inf
vCR\in CR1

0(T)
\| \nabla NC(r  - vCR)\| + hsosc(f,T),

where p is as in (3.2) and osc(f,T) := \| hT(f  - \Pi 0f)\| denotes the oscillations of f .
If there exists a coarse shape-regular triangulation TH of \Omega such that f \in P0(TH) and
T is a refinement of TH , then

| | | \phi  - \phi h| | | \lesssim inf
\varphi h\in \Phi h

| | | \phi  - \varphi h| | | + hs inf
qh\in Qh

| p - qh| 1 + hs inf
\delta h\in Qh

| \gamma  - \delta h| 1 + \| h2Tf\| 

with \gamma \in H1(\Omega ) from the decomposition (3.4) of any given Raviart--Thomas field
\eta \in RT0(TH) with  - div \eta = f .
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Remark 3.2. The oscillations of f in Theorem 3.1 can be avoided if the right-hand
side (f, vCR)L2(\Omega ) in (3.1) is replaced by (f,EvCR)L2(\Omega ) with a smoothing operator

E : CR1
0(T) \rightarrow H1

0 (\Omega ) as in [25]. This smoothing operator then also appears on the
right-hand side of the equivalent mixed system in (3.3a) and (3.3d).

Proof of Theorem 3.1. The proof is split into three steps.
Step 1. This step proves an error estimate that is used for both of the error

estimates of Theorem 3.1. Let \psi h := \Pi F\phi \in \Phi h be the Fortin interpolation of \phi 
from Lemma 2.1, which exists due to the stability results from [7, 8] and in particular
satisfies

b(\phi  - \psi h, sh) = 0 for all sh \in Qh.(3.5)

We start with the obvious decomposition

| | | \phi  - \phi h| | | 2 = a(\phi  - \phi h, \phi  - \psi h) + a(\phi  - \phi h, \psi h  - \phi h).(3.6)

The continuity of a shows for the first term on the right-hand side that

a(\phi  - \phi h, \phi  - \psi h) \leq | | | \phi  - \phi h| | | | | | \phi  - \psi h| | | .(3.7)

For the second term of (3.6), the continuous and discrete equation (3.2b) and (3.3b)
show

a(\phi  - \phi h, \psi h  - \phi h) = (\nabla r  - \nabla NCrCR, \psi h  - \phi h)L2(\Omega ) + b(\psi h  - \phi h, p - ph).(3.8)

Let qh \in Qh be the Galerkin projection of p; i.e., let qh solve

c(qh, sh) = c(p, sh) for all sh \in Qh.

Elementary algebraic manipulations show that the second term of (3.8) equals

b(\psi h  - \phi h, p - ph) = b(\psi h  - \phi , p - ph) + b(\phi  - \phi h, p - qh)

 - b(\phi  - \phi h, ph  - qh).
(3.9)

The Fortin interpolation property (3.5) and estimate (2.1) lead for the first term on
the right-hand side of (3.9) to

b(\psi h  - \phi , p - ph) = b(\psi h  - \phi , p - qh) \leq | \phi  - \psi h| 1 \| p - qh\| .

The second term of (3.9) can be estimated with (2.1) as

b(\phi  - \phi h, p - qh) \leq | \phi  - \phi h| 1 \| p - qh\| .

The continuous and discrete problem (3.2c) and (3.3c) and the fact that qh is the
Galerkin projection of p with respect to the scalar product c show that the last term
of (3.9) equals

 - b(\phi  - \phi h, ph  - qh) = t2c(p - ph, ph  - qh)

= t2c(qh  - ph, ph  - qh) =  - t2| ph  - qh| 21.

The quantity on the right-hand side is nonpositive. Thus,

 - b(\phi  - \phi h, ph  - qh) \leq 0.
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The combination of the foregoing formulae with (3.9) yields

b(\psi h  - \phi h, p - ph) \leq \| p - qh\| (| \phi  - \psi h| 1 + | \phi  - \phi h| 1).(3.10)

The definition of qh as the Galerkin projection of p implies that the standard
duality technique for the estimate of the L2 error for the Neumann problem applies
and proves

\| p - qh\| \lesssim hs| p - qh| 1
for the constant s from the elliptic regularity (2.2), only dependent on the geometry
of \Omega . Furthermore, C\'ea's lemma proves

| p - qh| 1 \leq inf
sh\in Qh

| p - sh| 1.

The quasi-best-approximation property from the Fortin interpolation from Lemma 2.1
and the norm equivalence of | | | \bullet | | | and | \bullet | 1 prove

| | | \phi  - \psi h| | | \lesssim inf
\varphi h\in \Phi h

| | | \phi  - \varphi h| | | .(3.11)

The combination of the foregoing displayed formulae with (3.6)--(3.8) and (3.10) and
the use of the weighted Young inequality and | \bullet | 1 \lesssim | | | \bullet | | | to absorb | \phi  - \phi h| 1 proves

| | | \phi  - \phi h| | | 2 \lesssim inf
\varphi h\in \Phi h

| | | \phi  - \varphi h| | | 2 + h2s inf
sh\in Qh

| p - sh| 21

+ (\nabla r  - \nabla NCrCR, \psi h  - \phi h)L2(\Omega ).
(3.12)

Step 2. This step proves the first error estimate in Theorem 3.1. Similar to medius
analysis techniques [23], the last term on the left-hand side of (3.12) can be estimated
as follows. A piecewise integration by parts proves

(\nabla NC(r  - rCR), \psi h  - \phi h)L2(\Omega )

=  - (r  - rCR,div(\psi h  - \phi h))L2(\Omega ) +
\sum 

E\in E(\Omega )

\int 
E

[rCR]E(\psi h  - \phi h) \cdot \nu E ds,

where E(\Omega ) denotes the set of interior edges of T, [\bullet ]E denotes the jump across E, and
\nu E denotes the (oriented) unit normal of E. Since the jump vanishes in the midpoints
of the edges, this can be estimated through a Poincar\'e inequality on the edges by
some constant times

\| r  - rCR\| | \psi h  - \phi h| 1 +
\sum 

E\in E(\Omega )

hE \| [rCR]E\| L2(E) \| \nabla (\psi h  - \phi h)\| L2(E)

with the length of E denoted by hE . It is well known [13] that duality arguments for
the Crouzeix--Raviart discretization of the Dirichlet--Laplacian lead to the L2 error
estimate

\| r  - rCR\| \lesssim hs\| \nabla NC(r  - rCR)\| 

(with the same number s for the pure Dirichlet problem, see [22, Thm. 2.4.3]). The
Cauchy inequality shows that\sum 

E\in E(\Omega )

hE \| [rCR]E\| L2(E) \| \nabla (\psi h  - \phi h)\| L2(E)

\leq 
\sqrt{} \sum 
E\in E(\Omega )

hE \| [rCR]E\| 2L2(E)

\sqrt{} \sum 
E\in E(\Omega )

hE \| \nabla (\psi h  - \phi h)\| 2L2(E).
(3.13)D
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Standard efficiency error estimates of nonconformity residuals [17, 26] show that the
first term on the right-hand side of (3.13) is controlled by h\| \nabla NC(r - rCR)\| , while trace
and inverse estimates show that the second term of (3.13) is controlled by | \psi h - \phi h| 1.
This and the combination of the above displayed formulae leads to

(\nabla NC(r  - rCR), \psi h  - \phi h)L2(\Omega ) \lesssim hs\| \nabla NC(r  - rCR)\| | \psi h  - \phi h| 1.

The analysis of [23, 14] proves the near best-approximation property

\| \nabla NC(r  - rCR)\| \lesssim inf
vCR\in CR1

0(T)
\| \nabla NC(r  - vCR)\| + osc(f,T).

With the norm bound | \cdot | 1 \lesssim | | | \cdot | | | plus the triangle and weighted Young inequalities
we thus deduce for any \varepsilon > 0 that

(\nabla NC(r  - rCR), \psi h  - \phi h)L2(\Omega ) \lesssim 
1

2\varepsilon 
h2s

\biggl( 
inf

vCR\in CR1
0(T)

\| \nabla NC(r  - vCR)\| + osc(f,T)

\biggr) 2

+ \varepsilon | | | \phi  - \psi h| | | 2 + \varepsilon | | | \phi  - \phi h| | | 2.

Inserting this expression in (3.12) and absorbing the term involving \phi  - \phi h (for suf-
ficiently small \varepsilon ) yields the first error estimate of Theorem 3.1 (because \phi  - \psi h is
quasi-optimal by (3.11)).

Step 3. This step proves the second error estimate in Theorem 3.1. By assumption
f \in P0(TH) and therefore there exists \eta \in RT0(TH) with  - div \eta = f pointwise.
Furthermore, a computation of the divergence for a Raviart--Thomas function shows
that for all T \in T

\eta | T (x) = \Pi 0\eta  - 
1

2
f | T \cdot (x - mid(T ))(3.14)

for the barycenter mid(T ) of T . Since  - div \eta = f =  - div\nabla r, the Helmholtz decom-
position [9] implies (3.4). Since the normal component of \eta is constant along any edge
of T and the jump of Crouzeix--Raviart functions vanishes in the midpoints of edges,
a piecewise integration by parts reveals that

(\nabla NCvCR, \eta )L2(\Omega ) = (vCR, - div \eta )L2(\Omega ) for all vCR \in CR1
0(T).

Therefore

(\nabla NCrCR,\nabla NCvCR)L2(\Omega ) = (f, vCR)L2(\Omega ) = (\eta ,\nabla NCvCR)L2(\Omega ).

This and the discrete Helmholtz decomposition of [5] imply

\Pi 0\eta = \nabla NCrCR +Curl \gamma h

for some \gamma h \in S1(T) \cap L2
0(\Omega ). Therefore, the last term of (3.12) reads

(\nabla r  - \nabla NCrCR, \psi h  - \phi h)L2(\Omega ) = (\eta  - \Pi 0\eta , \psi h  - \phi h)L2(\Omega )  - b(\psi h  - \phi h, \gamma  - \gamma h).
(3.15)

The first term on the right-hand side of (3.15) can be estimated with a piecewise
Poincar\'e inequality as

(\eta  - \Pi 0\eta , \psi h  - \phi h)L2(\Omega ) = (\eta  - \Pi 0\eta , (\psi h  - \phi h) - \Pi 0(\psi h  - \phi h))L2(\Omega )

\lesssim \| hT(\eta  - \Pi 0\eta )\| | \psi h  - \phi h| 1.
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The formula (3.14) proves

\| hT(\eta  - \Pi 0\eta )\| \leq \| h2Tf\| .

The combination with (3.15) and (2.1) shows

(\nabla r  - \nabla NCrCR, \psi h  - \phi h)L2(\Omega ) \lesssim | \phi h  - \psi h| 1(\| h2Tf\| + \| \gamma  - \gamma h\| ).

The discrete and continuous Helmholtz decompositions of \eta and \Pi 0\eta show the Galerkin
orthogonality

c(\gamma  - \gamma h, \delta h) = 0 for all \delta h \in Qh.

Therefore, as above, the L2 error estimate and C\'ea's lemma prove

\| \gamma  - \gamma h\| \lesssim hs inf
\delta h\in Qh

| \gamma  - \delta h| 1.

Similar to the final argument in step 2, the combination of the above displayed in-
equalities with (3.12), (3.11), and a triangle inequality and the absorption of | | | \phi  - \phi h| | | 
proves the second error estimate of Theorem 3.1.

Theorem 3.1 covers the regime h \lesssim t and will be generalized to higher polynomial
degrees in Theorem 5.5 below. The case t \lesssim h is covered in Proposition 5.1 and
Corollary 5.7, which we do not separately state for the lowest-order case.

4. Discretization for arbitrary polynomial degree. This section defines
the new discretization for arbitrary k \geq 0 in section 4.1. Due to the implicitly de-
fined discretization space Zh below, the implementation requires Lagrange multipliers.
Section 4.2 introduces an equivalent Schur-like system that can be used for the im-
plementation. The error analysis in section 5 below relies on the equivalence of the
discretization to a mixed system that is proved in section 4.3. Equivalence here means
that the rotation part of the discrete solution of all three formulations is the same.

4.1. Discretization. As in section 3, the discretization of (1.1) involves a
nonconforming approximation \sigma h of \nabla w. The crucial property of the nonconforming
space for the error analysis is that it satisfies a Helmholtz decomposition. This is not
true for most of the known generalizations of the nonconforming Crouzeix--Raviart
FEM to higher polynomial degrees as, e.g., in [20, 16, 2]. We therefore follow [24]
and define the nonconforming space via a discrete Helmholtz decomposition. It is
important to note that---in contrast to the Crouzeix--Raviart finite element in the
lowest-order case---the resulting ``discrete gradients"" will generally not be piecewise
gradients in a pointwise sense. We employ the following discrete spaces for k \geq 0,

\Phi h := [Sk+2
0 (T)]2 \subseteq \Phi ,

Qh := Sk+1(T) \cap L2
0(\Omega ) \subseteq Q,

Xh := [Pk(T)]
2.

Note that \Phi h and Qh are the stable Taylor--Hood pair [8] for the Stokes system.
The Helmholtz decomposition in two dimensions states that the gradients of H1

0 (\Omega )
functions are the orthogonal complement of CurlQ, written

[L2(\Omega )]2 = \nabla H1
0 (\Omega )\oplus CurlQ.(4.1)
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This relation was used in [24], where the following space of discrete gradients was
introduced:

Zh := \{ \sigma h \in Xh | (\sigma h,Curl qh)L2(\Omega ) = 0 for all qh \in Qh\} .

Then the discrete Helmholtz decomposition

Xh = Zh \oplus CurlQh(4.2)

follows, as in [24], from the definition of Zh and CurlQh \subseteq Xh. Note that in general
Zh \not \subseteq \nabla H1

0 (\Omega ).
The discretization of the Reissner--Mindlin system is as follows. Let \eta \in H(div,\Omega )

be given with  - div \eta = f . The discretization of (1.1) seeks (\sigma h, \phi h) \in Zh \times \Phi h such
that for all (\tau h, \psi h) \in Zh \times \Phi h there holds

a(\phi h, \psi h) + t - 2(\sigma h  - \Pi k\phi h, \tau h  - \Pi k\psi h)L2(\Omega ) = (\eta , \tau h)L2(\Omega ).(4.3)

Here, the L2 projection \Pi k plays the role of a reduction or reduced integration oper-
ator. This is a positive definite system, and therefore a unique solution exists. The
definition of the space Zh is implicit. An implementation of (4.3) can be based on
the Schur complement of the system as explained in section 4.2 below. Note that \eta 
can be computed by (numerical) integration of f ; in this case f \in Hm(\Omega ) implies
\eta \in [Hm+1(\Omega )]2.

The discrete Helmholtz decomposition of [5] implies that Zh = \nabla NCCR
1
0(T) if

k = 0. Up to the right-hand side \eta , the discretization (4.3) therefore equals (3.1) for
k = 0.

Remark 4.1. The discretization of [5] employs the nonconforming Crouzeix--Ravi-
art space for the approximation of the displacement. Therein, the spaces \Phi h and
Qh are chosen to be the Mini finite element pair [3]. Although at a first glance it
seems that the discretization (4.3) with \Phi h from the Taylor--Hood pairing could be
suboptimal in \phi in the asymptotic regime, it turns out in Theorem 5.5 below that the
error in \phi in fact converges with optimal rate.

4.2. Schur complement. This subsection introduces equivalent formulations
for (1.1) and (4.3) in (4.4) and (4.7), respectively, that will be used for the error
estimate in Proposition 5.1 below. Moreover, in contrast to (4.3), (4.7) is directly
accessible for implementation. Consider the problem: Find (\phi , \alpha ) \in \Phi \times Q with

a(\phi , \psi ) + b(\psi , \alpha ) = (\eta , \psi )L2(\Omega )

b(\phi , \beta ) - t2c(\alpha , \beta ) =  - t2(\eta ,Curl\beta )L2(\Omega )

(4.4)

for all (\psi , \beta ) \in \Phi \times Q. Note that this is a standard saddle point problem with penalty
term [9]. The next result shows the equivalence of (4.4) with (1.1).

Proposition 4.2. Problems (1.1) and (4.4) are equivalent in the following sense:
If (w, \phi ) \in H1

0 (\Omega )\times \Phi is the solution to (1.1), then there exists \alpha \in Q such that (\phi , \alpha )
solves (4.4). On the other hand, if (\phi , \alpha ) \in \Phi \times Q solves (4.4), then there exists
w \in H1

0 (\Omega ) such that (w, \phi ) solves (1.1). Furthermore, w and \alpha satisfy

\nabla w + t2 Curl\alpha = \phi + t2\eta ,(4.5)

and, therefore, the shear force from (1.2) is given by

\zeta = t - 2(\nabla w  - \phi ) = \eta  - Curl\alpha .(4.6)
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Proof. Let (w, \phi ) \in H1
0 (\Omega ) \times \Phi be the solution to (1.1). The definition of \eta and

(1.1) tested with \psi = 0 proves that \nabla w is the L2(\Omega ) projection of \phi +t2\eta on \nabla H1
0 (\Omega ).

The Helmholtz decomposition (4.1) then guarantees the existence of \alpha \in Q with (4.5).
Note that this equation holds pointwise in L2(\Omega ). This shows for arbitrary \psi \in \Phi 
that

a(\phi , \psi ) + (\psi ,Curl\alpha )L2(\Omega ) = a(\phi , \psi ) + (\psi , t - 2(\phi  - \nabla w) + \eta )L2(\Omega ) = (\eta , \psi )L2(\Omega ),

where the last equality follows from (1.1). This proves the first equation of (4.4).
The definition of \alpha and the L2(\Omega ) orthogonality of \nabla H1

0 (\Omega ) and CurlQ prove for any
\beta \in Q that

(\phi ,Curl\beta )L2(\Omega )  - t2(Curl\alpha ,Curl\beta )L2(\Omega ) = (\nabla w  - t2\eta ,Curl\beta )L2(\Omega )

=  - t2(\eta ,Curl\beta )L2(\Omega ),

which is the second equation of (4.4).
Now let (\phi , \alpha ) \in \Phi \times Q solve (4.4). The second equation of (4.4) shows that

Curl(t2\alpha ) is the L2(\Omega ) projection of t2\eta + \phi onto CurlQ. Hence, by the Helmholtz
decomposition (4.1) there exists w \in H1

0 (\Omega ) with (4.5). Let \psi \in \Phi . Then (4.5) implies

a(\phi , \psi ) - t - 2(\nabla w  - \phi , \psi )L2(\Omega ) = a(\phi , \psi ) - (\eta  - Curl\alpha ,\psi )L2(\Omega ) = 0,

where the last equation follows from the first equation in (4.4). Given v \in H1
0 (\Omega ),

the definition of w, the L2(\Omega ) orthogonality of \nabla H1
0 (\Omega ) and CurlQ, and  - div \eta = f

prove

t - 2(\nabla w  - \phi ,\nabla v)L2(\Omega ) = (\eta  - Curl\alpha ,\nabla v)L2(\Omega ) = (f, v)L2(\Omega ).

The sum of the two foregoing displayed formulae equals (1.1). The identities (4.5)
and (4.6) follow from the above construction.

It is known [7, 8] that the Taylor--Hood element is uniformly inf-sup stable if the
mesh consists of at least three triangles. Since (4.4) is a saddle point problem with
penalty term [9], the discrete inf-sup condition of the Taylor--Hood pair \Phi h and Qh for
the Stokes problem proves existence and uniqueness of the discrete version of (4.4):

Find (\widetilde \phi h, \alpha h) \in \Phi h \times Qh with

a(\widetilde \phi h, \psi h) + b(\psi h, \alpha h) = (\Pi k\eta , \psi h)L2(\Omega )

b(\widetilde \phi h, \beta h) - t2c(\alpha h, \beta h) =  - t2(\eta ,Curl\beta h)L2(\Omega )

(4.7)

for all (\psi h, \beta h) \in \Phi h \times Qh. The following proposition states that this is in fact again
equivalent to the discrete problem (4.3).

Proposition 4.3. Let (\sigma h, \phi h) \in Zh\times \Phi h be the solution to (4.3) and (\widetilde \phi h, \alpha h) \in 
\Phi h \times Qh be the solution to (4.7). Then \phi h = \widetilde \phi h and

\sigma h + t2 Curl\alpha h = \Pi k(\phi h + t2\eta ).(4.8)

Proof. The discrete problem (4.3) with \psi h = 0 shows that \sigma h \in Zh is the L2(\Omega )
projection of \Pi k(\phi h + t2\eta ) onto Zh. The discrete Helmholtz decomposition (4.2)
therefore proves that there exists \^\alpha h \in Qh with

\sigma h + t2 Curl \^\alpha h = \Pi k(\phi h + t2\eta ).
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The discrete problem (4.3) tested with \psi h \in \Phi h and \tau h = 0 and this relation lead to

a(\phi h, \psi h) + b(\psi h, \^\alpha h)

= t - 2(\sigma h + t2 Curl \^\alpha h,\Pi k\psi h)L2(\Omega )  - t - 2(\Pi k\phi h,\Pi k\psi h)L2(\Omega )

= (\Pi k\eta ,\Pi k\psi h)L2(\Omega ),

which is the first equation of (4.7). For any \beta h \in Qh, the definition of \^\alpha h and the
orthogonality of \sigma h to CurlQh imply

(\phi h  - t2 Curl \^\alpha h,Curl\beta h)L2(\Omega ) = (\sigma h  - t2\Pi k\eta ,Curl\beta h)L2(\Omega )

=  - t2(\eta ,Curl\beta h)L2(\Omega ),

which is the second equation of (4.7). This proves \phi h = \widetilde \phi h and \^\alpha h = \alpha h, and the
definition of \^\alpha h therefore implies (4.8).

Remark 4.4. Since only standard finite element spaces are involved in system
(4.7), it allows for a direct implementation. The classical FEMs of Arnold and Falk
[5] and Dur\'an and Liberman [18] have fewer degrees of freedom per element than
\Phi h \times Qh. However, these methods are only of first order. The MITC7 finite element
[9] is of second order but has 20 local degrees of freedom, while (4.7) for k = 0 has
only 15 degrees of freedom per element and is also of second order.

4.3. Mixed system. This section rewrites problem (4.3) into a system of four
equations. This splitting is a classical argument in the error analysis for finite elements
for the Reissner--Mindlin plate, and it is used also in the error analysis in Theorem 5.5
below. For the continuous problem this splitting is well known [10] and stated in
section 3. Note that (f, s)L2(\Omega ) in the right-hand side of (3.2a) can be replaced by
(\eta ,\nabla s)L2(\Omega ).

As in section 3, the discrete problem (4.3) can be reformulated as a mixed system:
Seek (\rho h, \phi h, ph, \sigma h) \in Zh \times \Phi h \times Qh \times Zh such that, for all (\xi h, \psi h, qh, \tau h) \in Zh \times 
\Phi h \times Qh \times Zh,

(\rho h, \xi h)L2(\Omega ) = (\eta , \xi h)L2(\Omega )(4.9a)

a(\phi h, \psi h) - b(\psi h, ph) - (\rho h, \psi h)L2(\Omega ) = 0(4.9b)

 - b(\phi h, qh) - t2c(ph, qh) = 0(4.9c)

(\sigma h, \tau h)L2(\Omega )  - (\phi h, \tau h)L2(\Omega ) = t2(\eta , \tau h)L2(\Omega ).(4.9d)

The proof of the equivalence is based on introducing the discrete shear variable

\zeta h = t - 2\Pi k(\sigma h  - \phi h)(4.10)

and its discrete Helmholtz decomposition

\zeta h = \rho h +Curl ph(4.11)

with \rho h \in Zh and ph \in Qh as discrete analoga of (1.2) and (1.3). The proof follows
the lines of [21, Lemma 2] and is therefore skipped.

The definition of the shear variable (1.2) and the Helmholtz decomposition (1.3)
show

\nabla r +Curl p = t - 2(\nabla w  - \phi ).
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Table 1
List of variables in the error analysis.

Continuous Discrete

Data \eta with  - div \eta = f \Pi k\eta 
Rotation \phi \phi h

Displacement gr. \nabla w \sigma h \in Zh

Shear stress \zeta = t - 2(\nabla w  - \phi ) \zeta h = t - 2\Pi k(\sigma h  - \phi h)
Helmholtz dec. 1 \zeta = \nabla r +Curl p \zeta h = \rho h +Curl ph
Helmholtz dec. 2 \phi + t2\eta = \nabla w + t2 Curl\alpha \Pi k(\phi h + t2\eta ) = \sigma h + t2 Curl\alpha h

Helmholtz dec. 3 \eta = \nabla r +Curl(\alpha + p) \Pi k\eta = \rho h +Curl(\alpha h + ph)

This and (4.5) leads to

\eta = \nabla r +Curl(\alpha + p).(4.12)

Similarly, the corresponding discrete relations (4.10), (4.11), (4.8) lead to

\Pi k\eta = \rho h +Curl(\alpha h + ph).(4.13)

All relevant continuous and discrete variables and some of their relations are summa-
rized in Table 1.

Since Zh \not \subseteq \nabla H1
0 (\Omega ), (4.9) defines a nonconforming approximation of (3.2). How-

ever, the constraint from the definition of Zh can be reformulated with the help of a
Lagrange multiplier such that (4.9) results in a conforming system of six equations.
The Helmholtz decompositions 2 and 3 from Table 1 show that the multipliers equal
p+\alpha for (3.2a) and t2\alpha for (3.2d). A preliminary error estimate can then be deduced
using saddle-point theory. We mention the result here for completeness but do not
comment on details because the bound is not optimal for our discretization.

Proposition 4.5. The error between the solutions to (3.2) and (4.9),

| | | \phi  - \phi h| | | + \| \nabla w  - \sigma h\| + \| p - ph\| + t| p - ph| 1
+ \| \nabla r  - \rho h\| + | (p+ \alpha ) - (ph + \alpha h)| 1 + t2| \alpha  - \alpha h| 1,

is quasi-optimal.

As already mentioned, the polynomial degrees are chosen such that a term like
\| \nabla w  - \sigma h\| L2(\Omega ) is generally approximated with a lower rate compared to | | | \phi  - \phi h| | | .
Section 5 below derives error estimates which are balanced with respect to the ap-
proximation rates.

5. Error analysis. The first error estimate is based on the discretization of
system (4.4).

Proposition 5.1 (a priori error estimate). Let \phi and \phi h be the rotation parts
of the solutions to (1.1) and (4.3), respectively, and let \alpha and \alpha h be as in (4.4) and
(4.7), respectively. It holds that

| | | \phi  - \phi h| | | + \| \alpha  - \alpha h\| + t| \alpha  - \alpha h| 1
\lesssim inf
\psi h\in \Phi h

| | | \phi  - \psi h| | | + inf
\beta h\in Qh

\bigl( 
\| \alpha  - \beta h\| + t| \alpha  - \beta h| 1

\bigr) 
+ \| hT(\eta  - \Pi k\eta )\| 

with a t-independent constant hidden in the notation \lesssim .
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Proof. The result follows from the theory of saddle point problems with penalty
term and a perturbation argument for the right-hand side. Let (\phi \prime h, \alpha 

\prime 
h) solve (4.7)

where the right-hand side of the first equation is replaced by (\eta , \psi h)L2(\Omega ). Then
(\phi \prime h, \alpha 

\prime 
h) is a Galerkin approximation of (\phi , \alpha ) from (4.4), and the theory [9] proves

the quasi-best approximation property

| | | \phi  - \phi \prime h| | | + \| \alpha  - \alpha \prime 
h\| + t| \alpha  - \alpha \prime 

h| 1
\lesssim inf
\psi h\in \Phi h

| | | \phi  - \psi h| | | + inf
\beta h\in Qh

\bigl( 
\| \alpha  - \beta h\| + t| \alpha  - \beta h| 1

\bigr) 
.

The global stability of the discrete system (4.7) shows that there exist \psi h \in \Phi h and
\beta h \in Qh with norm | | | \psi h| | | + \| \beta h\| + t| \beta h| 1 \lesssim 1 such that

| | | \phi h  - \phi \prime h| | | + \| \alpha h  - \alpha \prime 
h\| + t| \alpha h  - \alpha \prime 

h| 1
\lesssim a(\phi h  - \phi \prime h, \psi h) + b(\psi h, \alpha h  - \alpha \prime 

h) + b(\phi h  - \phi \prime h, \beta h) - t2c(\alpha h  - \alpha \prime 
h, \beta h).

By the discrete solution properties, the right-hand side of this estimate equals (\Pi k\eta  - 
\eta , \psi h)L2(\Omega ) and can be estimated with a piecewise Poincar\'e inequality as follows:

(\Pi k\eta  - \eta , \psi h)L2(\Omega ) = (\Pi k\eta  - \eta , \psi h  - \Pi 0\psi h)L2(\Omega ) \lesssim \| hT(\Pi k\eta  - \eta )\| L2(\Omega ),

where the norm bound for | \psi h| 1 \lesssim | | | \psi h| | | \lesssim 1 has been used. The combination of the
two error estimates with the triangle inequality proves the assertion.

Remark 5.2. If f \in Hm(\Omega ) and \eta is obtained by integration, then \eta \in Hm+1(\Omega )
and the term \| hT(\eta  - \Pi k\eta )\| converges with rate O(hmin\{ k+2,m+2\} ).

Remark 5.3. If \phi and \alpha are sufficiently smooth, Proposition 5.1 and standard
interpolation estimates lead to an asymptotic convergence rate of O(hk+2 + thk+1) of
the right-hand side of the error estimate with a multiplicative constant that involves
higher-order (and generally t-dependent) derivatives of the solution. The terms in the
upper bound are thus balanced when t \lesssim h. An estimate for the asymptotic regime
h \lesssim t will be given in Theorem 5.5.

Remark 5.4. The approximation error of the shear variable can be bounded with
(4.6) and its discrete analogue as follows

\| \zeta  - \zeta h\| H - 1(\Omega ) \lesssim \| hT(\eta  - \Pi k\eta )\| + \| \alpha  - \alpha h\| .

If \eta , \alpha , and \phi are sufficiently smooth, Proposition 5.1 leads to a convergence rate
of O(hk+2 + thk+1) for the error of the shear variable in the H - 1(\Omega ) norm with a
multiplicative t-dependent constant as in Remark 5.3.

Recall that 0 < s \leq 1 denotes the elliptic regularity constant from the Poisson--
Neumann problem (see (2.2)) and that h = maxhT denotes the maximum mesh size.

Theorem 5.5. Let \phi be the rotation part of the solution to (1.1) with \alpha , p as in
Table 1. The discrete solution \phi h \in \Phi h of (4.3) satisfies

| | | \phi  - \phi h| | | \lesssim inf
\varphi h\in \Phi h

| | | \phi  - \varphi h| | | + hs inf
qh\in Qh

| p - qh| 1

+ hs inf
\delta h\in Qh

| (\alpha + p) - \delta h| 1 + \| hT(\eta  - \Pi k\eta )\| 
(5.1)

with a t-independent constant hidden in the notation \lesssim . In the classical language of
asymptotic convergence rates, the following less sharp error bound is valid provided
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that the variables are smooth enough (such that the right-hand side of the following
expression is finite)

| | | \phi  - \phi h| | | \lesssim hk+2 (| \phi | k+3 + | \eta | k+1) + hk+s+1 (| \alpha + p| k+2 + | p| k+2) .(5.2)

Proof. The proof follows similar as the proof of Theorem 3.1 so that only the
differences are highlighted here.

The estimate

| | | \phi  - \phi h| | | 2 \lesssim inf
\varphi h\in \Phi h

| | | \phi  - \varphi h| | | 2 + hs inf
sh\in Qh

| p - sh| 21

+ (\nabla r  - \rho h, \psi h  - \phi h)L2(\Omega )

(5.3)

follows exactly as in step 1 of the proof of Theorem 3.1 except that\nabla NCrCR is replaced
by \rho h. For \gamma := \alpha + p \in Q and \gamma h := \alpha h + ph \in Qh, Table 1 shows the Helmholtz
decompositions

\eta = \nabla r +Curl \gamma and \Pi k\eta = \rho h +Curl \gamma h.

With this, the proof of Theorem 5.5 follows the lines of step 3 of Theorem 3.1 with
\nabla NCrCR replaced by \rho h and \Pi 0\eta replaced by \Pi k\eta .

Remark 5.6. The norm of \alpha + p on the right-hand side of (5.1)--(5.2) in Theo-
rem 5.5 is independent of t because \alpha + p stems from a Helmholtz decomposition of
the data \eta ; see Table 1. The norm of p is estimated via the relations of Table 1 as
| p| k+2 \leq | \zeta | k+1 + | r| k+2, where r solves the Poisson equation with right-hand side f
and is therefore independent of t.

The combination of Proposition 5.1 and Theorem 5.5 leads to the following error
estimate.

Corollary 5.7. Let \phi be the rotation part of the solution to (1.1) with \alpha , p as
in Table 1. The discrete solution \phi h \in \Phi h of (4.3) satisfies

| | | \phi  - \phi h| | | \lesssim inf
\psi h\in \Phi h

| | | \phi  - \psi h| | | + \| hT(\eta  - \Pi k\eta )\| 

+min
\Bigl\{ 
hs inf

qh\in Qh

| p - qh| 1 + hs inf
\delta h\in Qh

| (\alpha + p) - \delta h| 1,

inf
\beta h\in Qh

\bigl( 
\| \alpha  - \beta h\| + t| \alpha  - \beta h| 1

\bigr) \Bigr\} 
with a t-independent constant hidden in the notation \lesssim . In terms of asymptotic
convergence rates, the approximation is of the order

hk+2(| \phi | k+3 + | \eta | k+1) + min\{ hk+1+s(| p| k+2 + | \alpha + p| k+2), (h+ t)hk+1| \alpha | k+2\} .

6. Numerical results. This section illustrates the behavior of the new method
in numerical experiments.

6.1. Experiment 1: Convergence rates on the square domain. The un-
derlying domain is the unit square \Omega = (0, 1)2 and the exact solution from [15] is
given by

\phi (x, y) =

\biggl[ 
y3(y  - 1)3x2(x - 1)2(2x - 1)
x3(x - 1)3y2(y  - 1)2(2y  - 1)

\biggr] D
ow
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and

w(x, y) =
1

3
x3(x - 1)3y3(y  - 1)3  - 2t2

5(1 - \nu )

\Bigl[ 
y3(y  - 1)3x(x - 1)(5x2  - 5x+ 1)

+ x3(x - 1)3y(y  - 1)(5y2  - 5y + 1)
\Bigr] 
.

The right-hand side f(x, y) of (1.1) is given by E/(12(1 - \nu 2)) times\Bigl[ 
12y(y  - 1)(5x2  - 5x+ 1)

\Bigl( 
2y2(y  - 1)2 + x(x - 1)(5y2  - 5y + 1)

\Bigr) 
+ 12x(x - 1)(5y2  - 5y + 1)

\Bigl( 
2x2(x - 1)2 + y(y  - 1)(5x2  - 5x+ 1)

\Bigr) \Bigr] 
.

The material parameters read \nu = 0.3, E = 106, and \kappa = 5/6, while the two values
\~t = 0.1 and \~t = 0.01 are chosen for the plate thickness (recall the relationship of t
and \~t from section 2). In this case, the field \eta with  - div \eta = f is obtained by explicit
integration of the polynomial f : The first summand is integrated with respect to x
and the second one with respect to y to build the components  - \eta 1,  - \eta 2.

We approximate the problem on uniformly refined meshes of mesh size h \in 
\surd 
2\times 

\{ 2 - 1, . . . , 2 - 6\} for polynomial degrees k = 0, 1, 2. The relative errors

e(\phi ) :=
| \phi  - \phi h| 1

| \phi | 1
and e(w) :=

\| \nabla w  - \sigma h\| L2(\Omega )

\| \nabla w\| L2(\Omega )

are displayed in Figure 1. The approximation of \nabla w is observed to converge at rate
hk+1 while \phi is approximated with the higher rate hk+2. The errors for the two values
of t are of similar size. The computations indicate that all variables have the necessary
smoothness properties so that the predicted approximation properties from section 5
result in the full asymptotic convergence rates.

100 101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

O(h)

O(h2)

O(h3)

O(h4)

1/h

e(φ), k = 0

e(φ), k = 1

e(φ), k = 2

e(w), k = 0

e(w), k = 1

e(w), k = 2

e(φ), k = 0

e(φ), k = 1

e(φ), k = 2

e(w), k = 0

e(w), k = 1

e(w), k = 2

Fig. 1. Experiment 1: Convergence history for \phi and \nabla w with k = 0, 1, 2 for \~t = 0.1 (solid
lines) and \~t = 0.01 (dashed lines).
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100 101 102
10−1

100

101

102

O(1/h)

1/h

r(α, φ), k = 0

r(α, φ), k = 1

r(α, φ), k = 2

r(α, φ), k = 0

r(α, φ), k = 1

r(α, φ), k = 2

Fig. 2. Experiment 1: The ratio r(\alpha , \phi ) = t| \alpha  - \alpha h| 1/| \phi  - \phi h| 1 with k = 0, 1, 2 for \~t = 0.1
(solid lines) and \~t = 0.01 (dashed lines).

In order to illustrate the preasymptotic and the asymptotic aspects of the a priori
error analysis, we consider the ratio

r(\alpha , \phi ) :=
t| \alpha  - \alpha h| 1
| \phi  - \phi h| 1

.

An exact expression for \alpha is not known, but the error t| \alpha  - \alpha h| 1 can be approximated
as follows. Elementary algebraic manipulations, the Helmholtz decomposition 2 from
Table 1, and the L2 orthogonality of \nabla w  - \sigma h on Curl\alpha h prove the identity

t2| \alpha  - \alpha h| 21 = t2| \alpha | 21  - t2| \alpha h| 21 + 2(\phi h  - \phi ,Curl\alpha h)L2(\Omega ).

Since \alpha is the solution to the Neumann problem  - \Delta \alpha = rot(t - 2\phi + \eta ) and the
right-hand side is known, an approximation for | \alpha | 1 can be obtained by solving a
discrete Neumann problem with a higher-order method, and this approximation can
be used to compute the right-hand side of the above formula. The reference values
| \alpha | 1 = 2.363277353903799 for \~t = 0.1 and | \alpha | 1 = 2.363277353902728 for \~t = 0.01
were obtained by a quartic FEM on a uniform mesh with mesh size h = 2 - 8

\surd 
2. The

ratio r(\alpha , \phi ) is displayed in Figure 2. On fine meshes the ratio diverges under mesh
refinement. This is the asymptotic regime where the higher-order approximation of \phi 
is explained by Theorem 5.5. For small \~t = 0.01 and coarse meshes, the ratio is small.
This is the regime where the right-hand side of Proposition 5.1 guarantees accuracy
for the approximation of \phi .

6.2. Experiment 2: Locking test with the biharmonic equation. This
test is devoted to an illustration of the locking-free error estimates of this paper. The
domain \Omega is the square \Omega = (0, \pi )2. The exact solution of the biharmonic equation is
given by w(x, y) = sin2(x) sin2(y), \phi = \nabla w, and f = E

12(1 - \nu 2)\Delta 
2w, where the material

parameters are taken as E = 1000, \nu = 0.3, \kappa = 5/6. The right-hand side \eta is chosen
as \eta = ( - F, 0) with the antiderivative F of f with respect to x. The numerical scheme
for the Reissner--Mindlin plate is expected to deliver accurate approximations to this
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100 101
10−6

10−5

10−4

10−3

10−2

10−1

100

101

O(h2)

O(h4)

1/h

t = 0.1, k = 0

t = 0.1, k = 1

t = 0.1, k = 2

t = 0.01, k = 0

t = 0.01, k = 1

t = 0.01, k = 2

t = 0.001, k = 0

t = 0.001, k = 1

t = 0.001, k = 2

Fig. 3. Experiment 2: Convergence history of the relative error e(\phi ) for \~t = 0.1, \~t = 0.01,
\~t = 0.001.

solution as long as t is small compared to h. Figure 3 displays the convergence history
of the \phi variable for the discretization parameters k = 0, 1, 2 and thickness parameters
\~t = 0.1, \~t = 0.01, \~t = 0.001. Preasymptotically, optimal-in-h convergence and the
robustness with respect to t can be observed. The errors are, as expected, bounded
from below by the model error between the two plate models.

6.3. Experiment 3: Solution with thickness-dependent rotation. In con-
trast to the first test of section 6.1, where convergence rates are illustrated but the
dependance on the thickness t is uncritical, this experiment is concerned with a set-
ting where the exact solution shows the generic t-dependent growth of higher-order
Sobolev norms [6]. The only known exact solution of this type that we are aware of
was provided by [4] for the unit disc \Omega = \{ x2+y2 < 1\} . In order to stay in the setting
where our proofs apply, we choose polygonal approximations from the interior. It is
known that approximating the disc with polygons slows down the order of convergence
[9], but a rate of h3/2 can be expected when quadratic approximations are used. This
applies to the classical Taylor--Hood pairing, so that in the lowest-order case k = 0 a
comparison with the Mini element (the original method of [5]), which is first-order in
h, is possible. In order to make t-dependent effects visible in this situation, we need
to choose a setting where the Hs norm of \phi with 2 \leq s \leq 3 deteriorates with t, and
this is the case for the soft simply-supported boundary condition, which imposes the
condition w = 0 on \partial \Omega and no essential boundary condition on \phi . The exact solution
from [4, Table 4] is given in polar coordinates (r, \theta ) as follows. Given the material
parameters E, \nu , \kappa , and the (scaled) thickness parameter t, define the constants

\lambda = (1 + \nu ) - 1E\kappa /2, \~t = \lambda 1/2t, \BbbD = E/(12(1 - \nu 2)), \bfitalpha =
\surd 
12\kappa ,

where \~t refers to the physical plate thickness as in earlier sections. Given the right-
hand side f(r, \theta ) = cos \theta , the rotation \phi (given in radial and angular parts) and the
displacement w read
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\phi r = [4r3/(45\BbbD ) + 3\bfita r2 + \bfitb  - \bfitc \lambda  - 1\~t2 + r - 1\lambda  - 1\bfitd \~t2I1(\bfitalpha r/\~t)] cos \theta 

\phi \theta = [ - r3/(45\BbbD ) - \bfita r2  - \bfitb + \bfitc \lambda  - 1\~t - \bfitd \bfitalpha \lambda  - 1\~tI \prime 1(\bfitalpha r/\~t)] sin \theta 

w = [r4/(45\BbbD ) - \lambda  - 1\~t2r2/3 + \bfita (r3  - 8\BbbD \lambda  - 1r\~t2) + \bfitb r  - \bfitc \lambda  - 1\~t2r] cos \theta .

Here, I1 is the modified Bessel function of the first kind [1] of order 1, and the functions
involved in these expressions are given as follows:

\bfitf = 15[(3\bfitalpha 2 +\bfitalpha 2\nu + 8\~t2)I1(\bfitalpha /\~t) - 8\bfitalpha \~tI \prime 1(\bfitalpha /\~t)],

\bfita = [ - (4\bfitalpha 2 +\bfitalpha 2\nu + 10\~t2)I1(\bfitalpha /\~t) + 10\bfitalpha \~tI \prime (\bfitalpha /\~t)]/(2\BbbD \bfitf ), \bfitc = \bfitalpha 2(1 - \nu )I1(\bfitalpha /\~t)/\bfitf ,

\bfitb = [(6\bfitalpha 2 +\bfitalpha 2\nu + 14\~t2)I1(\bfitalpha /\~t) - 14\bfitalpha \~tI \prime 1(\bfitalpha /\~t)]/(6\BbbD \bfitf ), \bfitd = 2\lambda /(\BbbD \bfitf ).

We choose the material parameters as E = 1, \nu = 0.3, \kappa = 5/6 and note that \eta (r, \theta ) =
r( sin2(\theta )

 - sin(\theta ) cos(\theta )
) satisfies  - div \eta = f . We compare two choices of mesh refinement.

The first variant is uniform mesh refinement where, after refinement, the resulting
boundary vertices are projected to the boundary \partial \Omega . The second variant combines
the same uniform refinement rule with one local refinement of all elements near the
boundary after each step. The precise rule we use is to mark all triangles containing
a boundary vertex, to refine according to newest-vertex bisection [26], and to project
new boundary points to the boundary of \Omega . In all diagrams, the symbol h refers to
the maximal mesh size, so that the locally refined meshes have a resolution of order
h2 near the boundary.

Figure 4 shows the convergence history of the relative errors in the \phi variable with
k = 0, 1, 2 and thickness \~t = 1. For this moderate value, the asymptotic convergence
rates can be observed starting from the first mesh for k = 1, 2, while for k = 0, a pre-
asymptotic convergence rate of h2 is observed. Uniform mesh refinement yields sub-
optimal rates due to the polygonal approximation, while the local refinement strategy
leads to optimal rates up to the order h3. For k = 2, where quartic elements are used,
the optimal rate h4 would require further resolution of the curved boundary, which

100 101 102
10−6

10−5

10−4

10−3

10−2

10−1

100

O(h3/2)

O(h3)

1/h

k = 0, uniform

k = 0, loc ref

k = 1, uniform

k = 1, loc ref

k = 2, uniform

k = 2, loc ref

Fig. 4. Experiment 3: Convergence history for \phi with \~t = 1 and k = 0, 1, 2 with uniform mesh
refinement (uniform) and on meshes adapted to the boundary (loc ref).
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O(h3/2)

O(h3)

O(h4)

1/h

k = 0, uniform

k = 0, loc ref

k = 1, uniform

k = 1, loc ref

k = 2, uniform

k = 2, loc ref

Fig. 5. Experiment 3: Convergence history for \phi with \~t = 0.1 and k = 0, 1, 2 with uniform
mesh refinement (uniform) and on meshes adapted to the boundary (loc ref).
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10−3
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10−1

100

O(h3/2)

O(h3)

O(h4)

1/h

k = 0, uniform

k = 0, loc ref

k = 1, uniform

k = 1, loc ref

k = 2, uniform

k = 2, loc ref

Fig. 6. Experiment 3: Convergence history for \phi with \~t = 0.01 and k = 0, 1, 2 with uniform
mesh refinement (uniform) and on meshes adapted to the boundary (loc ref).

we do not consider here because the focus is on the dependence on the parameter
\~t rather than h. Figure 5 shows the relative errors in the \phi variable for \~t = 0.1.
The same asymptotic rates can be observed in this example. For uniform meshes
they are visible after two refinements while for the boundary-adapted strategy they
are observable after the first refinement. Figure 6 shows the relative errors in the
\phi variable for \~t = 0.01. After the third refinement (that is, h \sim 1/10 and thus a
mesh size of about 1/100 near the boundary), the locally adapted meshes yield the
asymptotic (or even pre-asymptotically better) rates, while for uniform meshes at
least four refinements are needed to reach the optimal rate of O(h3/2), which still
seem insufficient for the asymptotic rate in the case k = 0.
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It can be observed that preasymptotically the approximation deteriorates with
small t, which is explained by the scaling of the H3 norm on the right-hand side of the
estimate of Theorem 5.5. This effect is not related to locking but to the t-dependent
scaling of the PDE solution, and it can be mitigated (as shown in the numerical
experiment) by locally resolving the boundary layer. Once the boundary layer of the
solution is resolved by the mesh, optimal convergence rates can be observed. We
mention that an anisotropic a priori grading seems to be most appropriate, but we
disregard this option here because it is beyond the scope of this paper. The same
applies to a posteriori error analysis (which would require a generalization of [12])
and automatic mesh-adaptation strategies.
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