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Abstract. In the first part of the paper, we propose and rigorously analyze a mixed finite element
method for the approximation of the periodic strong solution to the fully nonlinear second-order
Hamilton—Jacobi—Bellman equation with coefficients satisfying the Cordes condition. These problems
arise as the corrector problems in the homogenization of Hamilton—Jacobi-Bellman equations. The
second part of the paper focuses on the numerical homogenization of such equations, more precisely on
the numerical approximation of the effective Hamiltonian. Numerical experiments demonstrate the
approximation scheme for the effective Hamiltonian and the numerical solution of the homogenized
problem.
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1. Introduction. In the first part of this work we consider the numerical ap-
proximation of the periodic boundary-value problem for the elliptic Hamilton—Jacobi—
Bellman (HJB) equation

(L.1) sup{L%u — f“} =0 inY, u is Y-periodic,
: aEA
where A denotes a compact metric space and Y := (0,1)” C R" is the unit cell

in dimension n > 2. Here, {L*},ea denotes the parametrized family of the linear
uniformly elliptic (see (2.2)) differential operators

Low := —A% : D*w —b* - Vw + c®w
n n
== 2 ay(-@) 0w =) bi(-0)dwtc(- 0w
Q=1 i=1

and f® := f(-,«) with uniformly continuous functions a;; = a;;, b;, ¢, f € C(R™ x A)
and positive zeroth-order coefficient ¢ > 0.

It is assumed that A% b%, c®, f* are Y-periodic on R™ and that the coefficients
satisfy the Cordes condition, i.e., that there exist constants A > 0 and § € (0, 1) such
that

a0 (e 1 oy Y
(1.2) |A%)= + ) + 2 <n+6<tr(A)+)\>
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holds in R™ for all & € A. Under these assumptions, the periodic HJB problem (1.1)
admits a unique strong solution u € ngr(Y); see section 2.1.

Problems of the form (1.1) arise naturally in the homogenization of HJB equa-
tions, which is the focus of the second part of this work. We are concerned with

elliptic homogenization problems of the form

x
Flz,=,Vu.,D*u.| =0  inQ,
(1.3) Ue + [:E,E, Ue Ue n
u: =0 on 02

with 2 C R™ being a convex domain in dimension n > 2, a small parameter £ > 0,
and

F [x, v, Vw,DQw} := sup {an(x,y) . D%w — b%(x,y) - Vw — fa(x,y)}
a€EA

with uniformly continuous coefficients a;; = ajs, b, f € C’(Q x R™ x A). It is assumed
that A%, b%, f* are Y-periodic in y € R™ with respect to their second arguments and
that the coefficients satisfy the Cordes condition (1.2) and the Lipschitz condition on
Q x R™ uniformly in o € A.

It is well-known (see, e.g., Caffarelli, Souganidis, and Wang [7] and Evans [14, 15])
that the viscosity solution u. € C(Q) to (1.3) converges uniformly, as € \, 0, to the
viscosity solution ug € C(Q) of the homogenized problem

(1.4)
ug =0 on 0f2

{uo + H(z, Vug, D*ug) = 0 in Q,

for some function H : Q x R™ x §"*" — R, the so-called effective Hamiltonian (here
S = RENY). The value of the effective Hamiltonian at a fixed point (s,p, R) €
Q x R™ x S"™" can be obtained as the uniform limit of the sequence {—ov%},¢ as
o ¢ 0, where the so-called approximate corrector v7 = v?(-;s,p, R) is the solution

to the problem

(1.5)
ov’ + F [s, y,p, R+ Div”] =0 foryeY, y — v7 (y;s,p, R) is Y-periodic;

see, e.g., Alvarez and Bardi [2, 3] and Camilli and Marchi [10]. Observe that the
problem for the approximate corrector (1.5) fits into the framework of (1.1). For
further homogenization results we refer to section 3.

The main goal of this work is the efficient numerical approximation of the ef-
fective Hamiltonian. In order to do so, we first propose and analyze the numerical
approximation of periodic boundary-value problems of the type (1.1) by a mixed fi-
nite element scheme (section 2) and then proceed with the numerical study of the
approximate correctors and the effective Hamiltonian (section 3).

The motivation for studying the fully nonlinear second-order HJB equation comes
from stochastic control theory for Markov diffusion processes and we refer the reader
to Fleming and Soner [20]. Its study is a mathematically challenging task as there is
no natural variational formulation and solvability has to be considered either in the
sense of viscosity solutions (see Definition 3.3 and the user’s guide by Crandall, Ishii,
and Lions [13] for a comprehensive overview) or in the sense of strong solutions, i.e.,
functions admitting weak derivatives up to order two satisfying the equation pointwise
almost everywhere.
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The finite element approximation of periodic HJB problems has not been studied
a lot so far; the finite element approximation of the Dirichlet problem, however, has
been the focus of active research over the past decade; see Feng, Glowinski, and
Neilan [17] and Neilan, Salgado, and Zhang [31] for a survey of recent developments.
The mixed finite element method presented in this paper is a modified version of
the mixed scheme for the Dirichlet problem with Cordes coefficients introduced in
the previous work by Gallistl and Siili [21], which enables the use of H!-conforming
finite elements. For further H'-conforming finite element schemes, we refer to Camilli
and Falcone [8], Camilli and Jakobsen [9], Jensen [25], and Jensen and Smears [26].
The first numerical scheme for HJB equations in the Cordes framework has been the
discontinuous Galerkin finite element method in Smears and Sili [37, 38] (see also
Smears and Siili [36]).

Numerical homogenization of second-order HJB problems, and nondivergence-
form problems in general, has not been studied extensively so far. For the case of
linear nondivergence-form equations, we refer the reader to the previous work Capde-
boscq, Sprekeler, and Siili [11] (see also Sprekeler and Tran [39]) and to the references
therein. For the case of second-order HJB equations, a finite difference scheme for the
whole-space problem has been proposed in Camilli and Marchi [10]. In Finlay and
Oberman [18, 19], the effective Hamiltonian is computed exactly for HIB operators
of certain types and numerical simulations have been conducted. It seems that finite
element schemes for the numerical homogenization of the problem (1.3) have not yet
been constructed.

Let us note that there is a lot more work in the literature on the numerical
approximation of the effective Hamiltonian arising in the homogenization of first-
order Hamilton—Jacobi equations; see various authors [1, 16, 22, 23, 30, 32, 33, 34].
The paper is structured as follows.

In section 2, we propose and rigorously analyze a mixed finite element method
for the approximation of the periodic solution to the HJB equation (1.1). We prove a
priori (see Theorem 2.7) as well as a posteriori (see Theorem 2.9, Remark 2.10) error
bounds with explicit error constants.

In section 3, we discuss the numerical homogenization of problems of the form
(1.3). We provide the framework and theoretical homogenization results in sections 3.1
and 3.2, respectively. We then analyze the approximation of the approximate corrector
(1.5) by the mixed finite element scheme from section 2 and present a scheme for the
approximation of the effective Hamiltonian in sections 3.3 and 3.4, respectively.

In section 4, we present numerical experiments for the approximate corrector
problems and the homogenized effective equation.

In section 5, we collect the proofs of the results contained in this work. Let us
note that some proofs follow certain arguments of the earlier work [21]. Here, it is
important to track the dependence of error constants in the Cordes parameters (see
Remark 2.8), which is crucial for the arguments in sections 3.3 and 3.4. We have
therefore included all details of the proofs.

For simplicity, all results in this work are presented for dimensions n € {2,3} in
which we define the rotation (curl) of a sufficiently regular vector field w = (w;)1<i<n :
R™ — R™ by

rot(w) := Ogwy — Oywe  if n =2,
rot(u)) = (agwg - (9311}2, 83w1 - 81w3, al’wg - ngl) if n=23.

The results in this paper remain valid for higher dimensions n > 4, in which case the
rotation operator needs to be replaced by the exterior derivative operator.

© 2021 Dietmar Gallistl, Timo Sprekeler, and Endre Suli
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2. Mixed FEM for periodic HJB problems.
2.1. Framework. In dimension n € {2,3}, we let Y := (0,1)” denote the unit

cell in R™. Further, we let A be a compact metric space. We then consider the problem
of finding periodic strong solutions to the second-order HJB equation
(2.1) sup {—A%: D*u—b"-Vu+c®u— f*} =0 inY, u€ ngr(Y)

aEN

where we make the following assumptions on the coefficients: Writing S™*™ C R™*"
for the space of real symmetric n X n matrices, we assume that the functions

A= (a;j)1<ij<n R" x A = 8™, (y, @) = A(y,a) =: Aa( )
b= (bi)i<i<n : R" x A = R", (y,a) = by, a) =: b*(y),
c:R" x A = R, (y,a) — c(y, a) =: c*(y)
fR"xA—R, (y, ) —

fly,a) = f(y)
(

are Y-periodic in y € R™ and uniformly continuous, i.e., a;j,b;, ¢, f € C(R™ x A).
Further, we assume that the zeroth-order coefficient is positive,

inf ¢> 0,
R x A

that the matrix-valued function A is uniformly elliptic,

(2.2) 3,6 >0: GIEP <A@, a)f- £ <GP Yy, R, acA,
and that the Cordes condition

b 1
2. ap 4 ME 2
23) ‘|+2A+A2*n+5

e 2
(r()+3)  mR"xA
holds for some constants A > 0 and § € (0,1). The Cordes condition arises naturally
for stochastic control problems (see [37, Example 1]) and we refer the reader to [37]
for a brief discussion of the Cordes condition.

Let us introduce the function v € C(R™ x A) defined by

(2.4) = <A|2 + % + A2>1 (tr(A) + §) .

We let v* : R™ — R, v*(y) := v(y, ) for & € A and consider the renormalized HIB
equation

(25)  sup {y* (—AY: D*u—b* - Vu+cu—f*)} =0 inY, u€ ngr(Y)
a€A

The function v takes the role of a (positive) multiplying factor for the equation; note
that infgn,ay > 0. Hence u € HZ (Y) is a solution of (2.1) if, and only if, it is a
solution of (2.5).

It can then be shown that the problem (2.1) is well-posed in the sense of strong
solutions, following the steps of the proof of [37, Theorem 3] (note the sign-difference
in the coefficient functions). The proof is omitted.

THEOREM 2.1 (well-posedness). In the situation described above, there exists a
unique strong solution u € H2. (Y') to the problem (2.1). Further, u is also the unique

strong solution to the problem (2.5).

© 2021 Dietmar Gallistl, Timo Sprekeler, and Endre Suli
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2.2. Mixed formulation of the problem. We construct a mixed finite ele-
ment method for the numerical approximation of the strong periodic solution to (2.1)
similarly to the scheme presented in [21]. The mixed formulation relies on rewriting
the problem (2.5) as

(2.6) sup {7* (—A%: Dw — b - Vu+ cu — f4)} =0, w = Vu.
acA

We denote the space of functions v € Hrl)er(Y) with zero mean over the unit cell Y by

Wper(Y) := {v €H..(Y): /Yv = 0} :

We further let Wye (Y;R™) := (Wper(Y))"™ and denote the Jacobian of a function
w € Wper(Y;R™) by Dw. Noting that Y = (0,1)" is convex and diam(Y) = \/n, we
have the Poincaré inequality (see [4, Theorem 3.2]) for scalar functions,

n
(2.7 ol € Y NVollay Vo € Wour(Y),

and the corresponding inequality for vector-valued functions,
n
(2.8) Hw”L?(Y) < %”DWHL%Y) Vw e Wper(YQRn)'

Noting that a solution u € HZ,.(Y) to (2.6) satisfies w = Vu € Wpe(Y;R™), we
define the function space

X i= Woer(Y;R™) x HE (V).

per

Further, we let M C W, (Y') be a closed linear subspace. Admissible choices include
M = {0} and M = W, (Y). We remark that M = {0} not only simplifies the
theory, but also leads to positive definite linearized systems and is therefore favorable
from the point of view of numerical linear algebra. It was, however, experimentally
observed in [21] that a nontrivial choice of M}, (see section 2.4) may have a positive
effect on the iteration numbers in a semismooth Newton iteration. We therefore allow
for some freedom regarding the choices of M and M}, in our theory.

The mixed formulation is defined as the following problem: Find m € M and
(w,u) € X such that

(2.9) {a ((w,u), (w',w')) + b(m, (w',u')) Z g V(w, ') e X,

b(m/', (w,u)) vm' e M,
where the semilinear form a : X x X — R is given by
a((w, ), (w', )

::/YFW[(w,u)] L,\(w',u’)—i—al/yrot(w)~r0t(w’)+02/ (Vu —w) - (Vu' — '),

Y

and the bilinear form b : M x X — R is given by

b(m, (w,u)) := /YVm - (Vu —w)

© 2021 Dietmar Gallistl, Timo Sprekeler, and Endre Suli
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for (w,u), (w',u') € X and m € M. Here, we have used the operators

F[(w,u)] := sup {y* (=A% : Dw —b* - Vu + c®u — f*)},
acl

Ly(w,u) ===V -w+ Ay,
acting on (w,u) € X, and the positive constants

1
o1:=01(0) :=1— 5\/1 -0,

1-vV1-36 1
2 +4(1—\/1—6) '

We proceed by showing well-posedness of this mixed formulation.

o9 = A03(d) := A <

2.3. Well-posedness of the mixed formulation. We define a norm on the
function space X = Wy (Y;R") x HL  (Y) by

per
I(w, w3 = [Dwll72py + 22X VullZery + X lullfzgy,  (w,u) € X.

It is easy to verify that this does indeed define a norm on X. We observe that there
holds

(2100 [Dwlany = [rot()Fag) + IV - wifay, Vo € HL

per

(Y;R™),

which follows from the formal calculation (using integration by parts twice)

Dw2—/ rot(w)]? = /aiw-a»wi: /aiwiaw-:/ V- wl|?
J1ouf = [ o) = 3 [ w000 = 3 [ ooy = [ 19wl

1,j=1 1,j=1

and a density argument. Note that compared to the usual Maxwell-type inequality
[12], we have obtained the equality (2.10) thanks to periodicity. Next, we derive two
preliminary estimates.

LEMMA 2.2 (preliminary estimates). Let (w,u),(w’,u') € X and p € (0,2).
Then, there holds

155 [(w, w)] = Fy[(w',u')] = La(w — w',u = u) || 2y
SVI=dl(w—w' u =)y,

and we have the Miranda—Talenti-type estimate

(2.11)

2 —pP 2 A
(212) == ll(w, W)X < rot(w)[72 vy + 1L (w, w720y + SlIve— w7z -

With these estimates in hand, we can proceed with showing essential properties
of the maps a and b, including monotonicity, Lipschitz continuity, and an inf-sup
condition, which will allow us to show the well-posedness of the mixed formulation.

LEMMA 2.3 (monotonicity, Lipschitz continuity, and inf-sup condition). We have
the following properties:
(i) Monotonicity: For any (w,u), (w',u') € X, we have
2
Cull(w —w',u—u)|ly
<a ((wa ’U,)7 (’LU - w/a U — u/)) - ((w/a ’U,/), (U.) - w/vu - ul))

a
with the monotonicity constant Cyy := % (1 —V1- 5) > 0.

© 2021 Dietmar Gallistl, Timo Sprekeler, and Endre Suli
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(ii) Lipschitz continuity: For any (w,u), (w',u’), (z,v) € X, we have
(2.13)
la ((w,u), (2,0)) = a((w',u), (z,0)] < Crll(w - w',u — W),z )l

with the Lipschitz constant Cy, := 2+v/2/1 — 6+01(8)+62(6) (3 + ) > 0.
(iii) Inf-sup condition: We have

/ / /
(2.14) inf sup E)(m (W ,u/)) p >
m/ €M\{0} (' wyex\{o} [V |2y [l (w”, u') |y
_1
with the inf-sup constant cp := A2 (2 + %/\) 2> 0.

Remark 2.4 (local Lipschitz estimate). Similarly, one obtains the local Lipschitz
estimate

|a’1 ((’LU, u)? (271))) —ar ((w/aul)a (Z,U))|
< ¢y, (Il =w'sw =)l g+ o = w'lzz ) (10l + 2z

for all (w, ), (W', ), (2,v) € X and any open I C Y with a constant C; = C7 (6, A\,n) >
0. Here, the subscript I in ay and |||, ; denotes that integrals in the corresponding
definitions are taken over the set I.

We note that the inf-sup condition (2.14) is trivially satisfied when M = {0}
as inf() := co. Now we are in a position to state the well-posedness of the mixed
formulation, i.e., the existence and uniqueness of a solution (m, (w,u)) € M x X to
(2.9).

THEOREM 2.5 (well-posedness of the mixed formulation). The mized formula-
tion (2.9) admits a unique solution (m, (w,u)) € MxX. Further, m =0, u € H2,(Y)
with Vu = w and u is the solution to (2.1).

2.4. The discrete mixed formulation. We take closed linear subspaces W}, C
Woer (Y3 R™), Uy, C H) (YY), My, C Uy N M (recall that M C Wyer(Y)) and define
X, =W, xU, C X.
We then define the discrete mixed formulation as the following problem: Find my €
My, and (wp,up) € X, such that

(2 15) a ((wh7 uh)’ (w;mu%)) + b(mh> (w;wu;z)) =0 v(w;mu%) € X,
’ b(my,, (wn,up)) =0  Vmj € M.

We note that we have the boundedness of b and a discrete inf-sup condition.

LEMMA 2.6 (boundedness of the bilinear form b and discrete inf-sup condition).
For any (m/, (w',u')) € M x X, we have

b(m!, (w', u)) < Gyl V|| L2y [l (', w) 5

1
with the constant Cp := A"z (% + %)\) 2 > 0. Further, the discrete inf-sup condition

¢ b(my,, (wh,, up,)) >

(2.16) in sup >
mi, €M \{0} (wr wuryex,\ {0} VM llz2vy 1 (wy,, wi)l

holds with ¢, > 0 as in Lemma 2.3(iii).

© 2021 Dietmar Gallistl, Timo Sprekeler, and Endre Suli
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It follows that we have the well-posedness of the discrete mixed formulation anal-
ogously to Theorem 2.5. We also obtain an error bound.

THEOREM 2.7 (well-posedness and error bound). There exists a unique solution
(map, (W, up)) € My, x X, to the discrete mized formulation (2.15). Further, we have

o = wnw = wn)lly < Ce |, inf (= o= )l
hot%h v

where (m, (w,u)) € M x X denotes the solution to (2.9) and C. = Ce(6,\,n) > 0 is

the constant o o
C, =21 (1 + b)
Cum ch

with Cp,Chr, Cy,cp > 0 from Lemmata 2.3 and 2.6.

Remark 2.8. Note that the error constant C. = C,(d, A\, n) is monotonically in-
creasing in A.

Besides this a priori error bound, the monotonicity property from Lemma 2.3
allows us to obtain an a posteriori error bound.

THEOREM 2.9 (a posteriori error bound and efficiency). For the solution
(m, (w,u)) e M x X

to the mized formulation (2.9) and the solution (mp, (wn,upn)) € My x Xy, to the
discrete mized formulation (2.15), we have the error bound

I (w — wnw — w12
_ _ 2 2 2
< 205 (Cof 1B [(wns un)) gy + 0 0t(wn) 32y + 02 lon = Vun oy )

and the efficiency estimate

1 2 2 2
S N on w2y + 01 IrotCun) 2y + o2 s — Veunl 22y,
1-96
< (Cu 4152w = wnw = )l
where Cpr, Cp, > 0 are the constants from Lemma 2.3.

Remark 2.10 (local efficiency). Similarly, one obtains the local efficiency estimate

1 2 2 2
3 15 [(wn, wn )iz gy + ovlfrot(wn)llzz ) + o2 [lwn = Vunllzz )
1-96

2 2
< (205+ 557 ) (w = wnu = w3 + o = wnln)

for any open I C Y, where C} > 0 is the constant from Remark 2.4.
3. Numerical homogenization of HJB equations.

3.1. Framework. Let 2 C R™ be a bounded convex domain in dimension n €
{2,3} and let A be a compact metric space. For € > 0 small, we consider problems of
the form
(3.1)

sup{—Aa (-,;> : D%y, — b (-,;> -Vue +ue — f¢ (-,;)} =0 in Q,

a€A £ g £

ue =0 on 01},

© 2021 Dietmar Gallistl, Timo Sprekeler, and Endre Suli
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where we assume that the functions

A= (az])lgmgn : Q xR" x A — Snxnv (I,y701) = A(z,y,a) = Aa(x7y)a
b= (bi)lgiﬁn : Q xR" x A — Rna (337?%04) = b(x,y,a) = ba(xay)a
f:OxR"xA—R, (x,y,0) = f(z,y,a) = f(x,y)

satisfy the following assumptions:
(i) Continuity: A, b, f are continuous on Q x R™ x A.
(ii) Periodicity: A%*(z,-), b*(x,-), f*(x, ) are Y-periodic for fixed « € A and
x €.
(iii) Regularity: A®, b*, f are Lipschitz on Q x R™ uniformly in o € A.
(iv) Ellipticity: There exist ¢i,(2 > 0 such that (;]¢]? < A& - €& < €)% in Q x
R™ x A for all £ € R™.
Further, it is assumed that the Cordes condition

b, 1

(3.2) AP+ -+ = <

1\? -
2)\ )\2 _n+§<tr(A)—|—> iHQXRnXA

A

holds for some constants A > 0 and § € (0,1). Then, we have well-posedness in the
sense of strong solutions; see [37].

THEOREM 3.1 (existence and uniqueness of strong solutions). In this situation,
for any given ¢ > 0, there exists a unique strong solution u. € H*(Q) N H}(Q) to
(3.1).

Remark 3.2. Problems involving a nonconstant zeroth-order coefficient, i.e., prob-
lems of the form

sup {47 (-, 2) s =0 (0] okt ()= (o 2) =0 me,
ve =0 on 0N

with ¢® satisfying the same assumptions as the components of %, and additionally
infgygnya ¢ > 0, can be reduced to a problem of the form (3.1). This is due to the
fact that division by ¢®(x, z/¢) inside the argument of the supremum does not change
the sets of strong and viscosity solutions; see [27, Remark 2.2].

3.2. Homogenization. In this section, we briefly recall known homogenization
results from the literature. Let us start by recalling one of the several equivalent
definitions of a viscosity solution; see [28].

DEFINITION 3.3 (viscosity solution). Let Q2 CR" be open and F: Q x R x R" x
8" — R be continuous. A continuous function u : Q@ — R, u € C(), is called a
viscosity solution to the equation

F(z,u,Vu,D?u) =0 in Q
if for any ¢ € C?(QQ) there holds

xo € Q local mazimum point of u — ¢ = F(x0,u(x0), Vé(xo), D*d(20)) <

)

zo € Q local minimum point of u — ¢ = F(xg,u(x0), Vo(xo), D?*P(z0)) >

For an overview of the theory of viscosity solutions for second-order equations we
refer the reader to [13]. Note that the strong solution u. € H2(Q) N HE(Q) to (3.1)
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belongs to C(£2) in dimensions n € {2,3} and a natural question to ask is whether u.
is a viscosity solution. In fact, it is known that if one has regularity u. € W120Cn (Q),
then w, is a viscosity solution to (3.1); see [6, 28, 29]. We also note that the viscosity
solution to (3.1) is unique; see [24]. We then have the following result; see [35].

Remark 3.4 (regularity). Let u. € H?(Q)N H}(Q) be the unique strong solution
to (3.1) given by Theorem 3.1. Then

u. € C*(Q)NC(Q)

for some & > 0 and wu is the unique viscosity solution to (3.1). Further, if 0©2 € c%p
for some 8 > 0, then u. € C?>%(Q) for some & > 0.
With this observation in hand, we can use the well-known homogenization results

for viscosity solutions; see [7, 14, 15]. Before stating the convergence theorem, let us
introduce the effective Hamiltonian

H:QxR"x S™" 5 R,

defined as follows. For given (s,p, R) € Q x R x 8"*" we define H(s,p, R) € R to
be the unique real number such that there exists a function v = v(-; s, p, R) € C(R"™),
a so-called corrector, that is a viscosity solution to
(3.3) sup {—A? - D%y — gg‘ypyR} = H(s,p,R) inR", v(-; s,p, R) is Y-periodic,
a€cA

where Ag(y) := A%(s,y) and g2, p(y) = A%(s,y) : R+ b%(s,y) - p+ [*(s,y) for
y €R™ a€A.

THEOREM 3.5 (homogenization of HIB problems). With the effective Hamilton-

ian H : Q x R™ x 8™ — R defined as above, the solution u. to (3.1) converges
uniformly on Q to the viscosity solution ug € C(Q) of the problem

(34) {UO + H(SL’, V'LL(), DQUO) =0 m Q,

ug =0 on 0N.

We call (3.4) the homogenized (or effective) problem corresponding to the HJB problem
(3.1).

Let us note that rates for the convergence of u. to the homogenized solution ug
have been derived for the whole space problem in [10].

The effective Hamiltonian can also be obtained through a limit of ergodic approx-
imations, the so-called approximate correctors; see [3] and the references therein. For
(s,p, R) € 2 x R" x S"*™ and ¢ > 0, the approximate corrector v7 = v°(-;s,p, R) €
C(R"™) is defined to be the viscosity solution to

(3.5)

ov? + SIGIR {—A? : D% — g?‘,p,R} =0 inR", v7(-;8,p, R) is Y-periodic.
«@

Remark 3.6 (regularity of approximate correctors). The viscosity solution v =
v (-;8,p, R) € C(R™) to (3.5) is in fact a classical solution v7(-;s,p, R) € C?(R").
Further, there exists & € (0, 1) such that

HUUU(ﬁS,paR)Hc(Rn) +[[v7 (-5 8., R) =07 (05 5,p, R)Hc%&(Rn) S1+[pl+ R

for all (s,p, R) €  x R™ x 8"*"; see [2, 10].
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The value H(s,p, R) € R for the effective Hamiltonian at the point (s,p, R) is
then the uniform limit of the sequence {—cv?} ., as o — 0; see [10].

LEMMA 3.7 (properties of the effective Hamiltonian). The following statements
hold true.
(i) The sequence {—ov?(-;s,p, R)}, - converges uniformly to the constant value
H(s,p, R) with

=007 (-5 5,p, R) = H(s,p, R)|| o, 0o (1+ |p|+|R)

for all (s,p,R) € Q x R" x S™" and o > 0 sufficiently small.
(ii) The effective Hamiltonian H = H(s,p, R) is uniformly elliptic, it is convex
in R, and we have

|H(Sap17Rl) - H(S7p27R2)| 5 |p1 _p2‘ + |R1 - R2|;
|H(s1,p, R) — H(s2,p, R)| < [s1 — s2| (1 + [p| + |R])

for any s,s1,50 € Q, p,p1,p2 € R, and R, Ry, Ry € S™*".

Note that the properties of the approximate correctors from Remark 3.6 and
Lemma 3.7(i) allow passage to the limit ¢ — 0 in (3.5) and guarantee the existence
of a corrector v(-;s,p, R) € C%(R") (i.e., a classical solution to (3.3)). We also note
that the properties of the effective Hamiltonian from Lemma 3.7(ii) yield a regularity
result for the homogenized solution as it is of the type of problems studied in [35].

Remark 3.8 (regularity of the homogenized solution). The viscosity solution
ug € C(2) to the homogenized problem (3.4) satisfies

Uy € CQ’&(Q) N C(Q)

for some @ > 0. Further, if 9Q € C%# for some 3 > 0, then ug € C*%(Q) for some
a > 0.

3.3. Approximation of the approximate corrector. We construct a mixed
finite element method for the numerical approximation of the approximate corrector
for fixed (s,p, R) € Q x R" x 8"*". For ¢ € (0,1) we consider the problem (3.5), i.e.,
the problem of finding a strong solution v = v?(-;s,p, R) to

(3.6) suR {-Ag: D% + v — g?jpﬁ} =0 inR", v (-;8,p,R) € ngr
ae

(Y).

Recall the notation A% (y) := As(y, ) := A(s,y, «) and

9o prW) = Gsp.r(Y, @) := A%(s,y) : R+V"(s,y) -p+ f*(s,9)

for y € R" and a € A from (3.3).

Note that gs p r : R" x A — R is continuous and that g¢' , 5 is Y-periodic for fixed
a € A and Lipschitz on R™ uniformly in «. We also note that we have the Cordes
condition (3.2), which yields

0.2

. AP+ — < ——
(3.7) AP+ 55 < g

2
<tr(As) + ;) in R" x A,

where A, > 0 is given by

Ao 1= 0.
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The corresponding scaling function v*(y) := v(y, ) is defined by (compare with (2.4))

2 —1
— 2, 9 7
o= (|AS + )\(27> (tr(As) + )\0) )

Observe that (3.7) is the Cordes condition (2.3) for the problem (3.6) with Cordes
constants d and A,. Therefore, Theorem 2.1 ensures the well-posedness of the prob-
lem (3.6), i.e., the existence and uniqueness of a strong Y-periodic solution. We
apply the mixed finite element method from section 2.4 to problem (3.6) to obtain an
approximation.

The scheme from section 2 applied to the problem (3.6) yields an approxima-
tion (my, (wg,vy)) € My x X, whose existence and uniqueness are guaranteed by
Theorem 2.7, satisfying the error bound

(3.8) (Vo —wp,v” =vp)llly, < Ce(d,Aosn) inf (Vo7 —wp,v7 —up)ly,
(w},u},)EXH

and we have that C.(d, Ay, n) < Ce(d, A\,n) for all ¢ € (0,1). In particular, in view of
Remark 3.6, we have the boundedness of the sequence of numerical approximations
in the sense that [[(wf,vf)[[ < C(8,A,n)sup,eq1) (Vo7 07y, , uniformly with
respect to h and o.

For a shape-regular triangulation 7, on Y, denoting the Lagrange finite element
space of degree ¢ € N over the triangulation by S%(7y), we obtain the following
approximation result.

THEOREM 3.9 (error bound for the approximate corrector). For o € (0, 1), if we
have v° = v (-;8,p, R) € H**"(Y) for some r > 0 and the choice

Xp = (SUTh; R™) N Wper (Y5 R™)) ¥ (Sl(’ﬁl) n Hécr(Y))

for some q,1 € N and a shape-reqular triangulation Ty, on Y (consistent with the
requirement of periodicity), we find that

I(Vo” —wf, 07 = of)llly, < CRMMEED V07| an(y

for h > 0 sufficiently small, with the constant C > 0 only depending on d, \,n and
interpolation constants.

Remark 3.10. The proof yields that the error constant can be taken to be
C :=Ce(0,\,n)C;(1 4+ ),

where C; is a constant arising from interpolation inequalities.

3.4. Approximation of the effective Hamiltonian. The approximation of
the approximate corrector from the previous section allows us to obtain an approxi-
mation to the effective Hamiltonian as follows.

First, we note that with & € (0,1) from Remark 3.6 we have that, for any r €
[0, &), there holds

sup [|[Vv7(-;8,p, R)|mryy S sup [[VV7(-58,p, R)|cramny S 1+ Ip| + |R],
o€(0,1) o€(0,1)

uniformly in o. Using the error bound from Theorem 3.9, we deduce that

I(Vo” = wf o7 = of)llly, S BV e iyy S RMEED (L 4 [p] + [R))

© 2021 Dietmar Gallistl, Timo Sprekeler, and Endre Suli



Downloaded 06/21/21 to 141.20.53.115. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

NUMERICAL HOMOGENIZATION OF HJB EQUATIONS 1053

with a constant independent of o and the choice of (s,p, R). In particular, by the
definition of [[-[[_, we have

(3.9) lov” = ovf |2y S B EB (L + p] + |R)).

We then define the approximated effective Hamiltonian as

(3.10) Hyp: QxR" x S™*™ - R, H,p(s,p,R) == 70/ vy (-5 8,p, R).
Y

Then, the following approximation result holds.

THEOREM 3.11 (approximation of the effective Hamiltonian). Let o € (0,1) and
(wf,vf) € Xy as in Theorem 3.9. Further let Hy p be defined as in (3.10). Then, for
(s,p, R) € Q@ x R™ x §™*™ we have the error bound

|Hon(s,p, R) — H(s,p, R)| < (h" + o) (14 [p| + |R])

for any r € [0,&) with & € (0,1) from Remark 3.6 and o,h > 0 sufficiently small.
More generally, for fized (s,p, R) € Q x R™ x 8™*™  we have

|Hg’h(87p, R) — H(37p, R)| =0 (hmin{r,qJ} + O')

for any r >0 such that {||Vv?(-;s,p, R)||m1+r(v)}oe(,) @5 uniformly bounded.

Whereas the effective Hamiltonian H is a convex function in the variable R €
S™*" it does not automatically follow that this property is inherited by the approx-
imated effective Hamiltonian H, ;. Notwithstanding this, the numerical experiments
performed in the next section make no use of the convexity (or otherwise) of Hy p.

4. Numerical experiments.

4.1. Set-up. We consider the problem of approximating the solution u. to the
HJB equation

Sup{—A“ <7) :D2u€+u6—1}:O in Q,
aEN 3

ue =0 on 0,

where Q := (0,1)? C R? is the unit square and A := [0,1]. The coefficient A has the
structure
AR XA S A(y,a) = A%(y) = (ao(y) + aas(y)) B

for Y-periodic functions ag, a; : R? — (0, 00) and a symmetric positive definite matrix
B € 82%2. The homogenized problem (3.4) is then given by

ug + H(D*up) =0 in Q,
ug =0 on 0f,

and an explicit expression for the effective Hamiltonian, according to [18, section 2.2],
is given by
(4.1)

—1 —1
H:8%? 5 R, H(R):max{—</1> B:R7—(/ ! > B:R}—l.
y ao y aog + a1
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Explicitly, we choose in our numerical experiments

2 -1 .
B .= <_1 4 ) . ao=1, ai(y1,y2) = sin®(2my;) cos? (2mys) + 1.

4.2. First experiment: Approximation of the effective Hamiltonian at
a point. Our objective in the first numerical experiment is to investigate the approx-
imation of the effective Hamiltonian H(R) by the numerically computed approximate
Hamiltonian H, ;(R) at some given point R € S?*2. We choose

-2 1

ne (2 1)
as a negative definite matrix so that the maximum in (4.1) is realized by the term in-
volving the harmonic integral mean of ag+a; (i.e., the term involving [fY (ap + al)_l] -t
For our discretization, we choose a continuous piecewise affine discretization with
g =1=1and M, := {0}. In order to compare the experimental results with the
theoretical bound of Theorem 3.11, we consider the convergence in h and o sepa-
rately. We test convergence with respect to h by fixing a (sufficiently small) value
o = 0.01 and choosing a uniform mesh-refinement of the periodicity cell Y = (0, 1)2.
Since the error bound for the approximate corrector from Theorem 3.9 is given in the
norm [[|-[|[,_, we first numerically test the convergence rate predicted by Theorem 3.9.
The exact approximate corrector v is unknown, and thus we instead compute the a
posteriori error estimator

2 2 2
n(h) == 1E5 [(wh, un)]l 723y + 01 lrot(wn)l[ L2y + 02 [lwn = Vunl[p2 vy

which is, up to a constant factor, equivalent to the error in Theorem 3.9; see Theo-
rem 2.9 and Remark 2.10. The convergence histories of 17/100 and the relative error
|Ha,h(R) — H(R)|
|H(R)]

are displayed in Figure 1. As we are mainly interested in the rate of convergence, we
plot 7/100 so that both error quantities can be shown in the same diagram.

As expected from Theorem 3.9, the error estimator is of order h, whereas we
observe cubic convergence with respect to h for the relative error of the effective
Hamiltonian at the point R. This rate is higher than predicted by Theorem 3.11,
which is based on an error estimate in the norm ||-||, and is therefore indeed expected
to overestimate the actual error between H, ,(R) and H(R) related to the weaker
integral functional from (3.10).

Next, we test convergence with respect to o by fixing a fine mesh size h = v/2x277
and letting o vary from 2% to 277. The convergence history of the relative error is
displayed in Figure 2.

We observe linear convergence with respect to o, which indicates that the bound
in Theorem 3.11 is sharp in o.

4.3. Second experiment: Numerical approximation of the homogenized
problem. The second numerical experiment is devoted to the approximation of the
effective problem (3.4). We first note that the discretization on the scales Q and Y
leads to a two-scale approach. We denote the triangulation of Q by 7, with mesh
size hq and the triangulation of Y by 773/ with mesh size hy. In view of the regularity
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Fi1G. 1. Error estimator and approxzimation error between H(R) by H, p(R) under mesh re-
finement with fized o = 0.01.
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F1G. 2. Approzimation of H(R) by Hy 1, (R) for varying o with fived mesh size h = V2 x 277,
result from Remark 3.8, we discretize the solution wug of this fully nonlinear equation by

a least-squares approach, which is explained in the following. We discretize functions
over € using the finite element space consisting of continuous piecewise affine functions

So (i)

satisfying a homogeneous Dirichlet boundary condition, and their gradients by vector-
valued continuous piecewise affine finite elements

SUTR?).
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101 F T T T 1] T T 1 \:

5 10°F E
= N : Q
5} r 1—e— llup, —uellL2 o)
g | i | §|Z‘Ug“L2<Q)
B L | —m— \uh—usHLOC(m
= lluellzoo (o)
I -1
=107 | E

10—2 (| L1l

10° 10! 102
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Fi1G. 3. Convergence history under mesh refinement of Q for the approximation of the solution
ug to the effective equation. The reference solution ue is computed for e = 0.1. The cell problem is
solved with hy = V2x272 agnd o =0.1.

Given wi! € SY(T,#;R?), we say that Dwj’ is the discrete Hessian of some uj €
Se(T7) if it satisfies

/w,?-v:/Vu%-v Yo € SHTHR?)
Q Q

and we write D%ui2 = Dwg. The discrete Hessian D%u,? is expected to be discon-
tinuous across the element boundaries. In order to define a function that represents
the evaluation of the discretized approximate Hamiltonian H, p, at Diu%, we define
the continuous and piecewise affine function ffgyhy (Dzug) by nodal averaging of the
piecewise constant function

x> Ho py (mid(T)) for T € T8 withz € T

(defined a.e. in ), where mid(T') denotes the barycenter of T. We then define the
numerical approximation u§! = u$!(hq, o, hy) as a minimizer of the following least-

squares functional:

i € argmin [0} + Hony (Do) 1720
w2 eSH(TEY)

In our implementation, we computed the minimizer by using the built-in function
fmincon of MATLAB, without prescribing any derivative information because we are
not aware of any (semi)smoothness properties of the solution operator. We choose
o = 0.1 and hy = v/2 x 272 fixed and consider a sequence of uniformly refined
triangulations of Q with mesh sizes hg € v/2 x 2711234} For the error computation,
we use as a reference solution the approximation of u. with e = 0.1 on a triangulation
with mesh-size v/2 x 277. The convergence history of the errors in the L> and L?
norms is displayed in Figure 3.
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For both error norms we observe a convergence order of h?l/ 2, which indicates that
the effective problem with the chosen data is possibly more regular than predicted in
Remark 3.8.

5. Collection of the proofs.

5.1. Proofs for section 2.

Proof of Lemma 2.2. For the first part, we use successively properties for the
supremum, the Cauchy—Schwarz inequality, simple calculation, and the Cordes con-
dition (2.3) to obtain

B [(w,w)] = Fy[(w', )] = Ly(w — w'u — )2
<sup [y* (=A% : D(w —w') = b* - V(u —u') + c*(u —u'))
a€A

V- (w—w') = Au— )

aba‘Q ‘,Yaca 7>\|2
2 * A2

X <|D(w — )2+ 2X |V (u — )]+ A2[u — u/|2)

< sup <|—”y’lAa + I+ ol

o4

2
fr(A) + &
<n+1_ o |b)aT:A)|ca2>
A2 + S5 + T
X (|D(w—w’)\2 oAV (u — )2 +/\2|u—u’|2)

= sup
a€cA

<(1-9) (|D(w — )+ 20V (u— )]+ N2|u — u'|2)

almost everywhere in Y, which yields the estimate (2.11).
For the second part, we use (2.10), integration by parts, and Young’s inequality
to find

2
ll(w, w5 = llrot(w) 172y + IV - wlFaiyy + 2V ulZa iy + Alullay,

= ||r0t(w)||12(y) +[|-V-w+ )\U“%z(y) + 2)\/ (Vu —w) - Vu
Y
A
< [lrot (w) |22y + 1 La(w, w) 72y + ;HVU = wl[F2ivy + MlIVUlLayy
A P 2
< [lrot (w) |22y + 1 La(w, w) [ 72y + ;HVU = w7z vy + Sl w, W,

which yields the Miranda—Talenti-type estimate (2.12). |

Proof of Lemma 2.3. We are going to prove the claimed results (i), (ii), (iii) sep-
arately.

(i) By (2.11), Young’s inequality, and the Miranda—Talenti-type estimate (2.12)
with the choice p = 2 — 24/1 — §, we find that

a((w,u), (w—w,u—u))—a((w,u),(w—w,u—1u"))

— o ot(w — )2y — 021V (1 — o) = (w — )3y,
= [ (Bl = P[] Iawo = ' u =)

> [|La(w = w',u = u)[F2r) = VI =8 l(w = w',u = )| La(w — w',u = )| 2y
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2—y1-56 Vv1—=9 2
> 2 I w — ' u— )y — Yl — v u = )l
1—-+v1-9 1
> 2 L — ' u = ) ey — 5 lot(w — @) By

IV (u = ') = (w = w') |72y

A
4410

Therefore, by the definition of the constants o1,09 and the Miranda—Talenti-type
estimate (2.12) with the choice p = 1, we conclude that

a((w,u), (w—w,u—u"))—a((w,u),(w—w,u—1u"))

1—-vV1-90
> = (Ia(w = s u— ) agy + [rot(w = w) |2y,
AV (= o) = (w0 =)y

1—v1-9 2
> 2w — ' u = ),

which is the claimed inequality.
(ii) We note that we have

(5-1) 1L (w, W)l r2evy < V21w w)lly ¥ (w,u) € X,
as there holds ||V - w|p2¢y) < [[Dwl|r2(yy for any w € Wpe(Y;R™) by (2.10). We

bound the terms arising in the quantity on the left-hand side of (2.13) separately. For
the term involving the nonlinearity, using (2.11), we have

| (Bl = B ) Ltz
< 1EAG 0 lz2gvy (1A = 0 = )l vy + V=8l = wfu = )]
< V2 (V2+VT=3) llw = ' u =)l Iz vl

For the term multiplying the constant o1, we have

o1 /Yrot(w —w') - rot(2)

<o D(w = w')|| 2yl Dzl L2 vy
< arl(w —w';u =) [z )l

as there holds [rot(w)|z2(y) < [[Dw||p2(yy for any w € Wye (Y;R™) by (2.10). For
the term multiplying the constant o2, we have by the triangle, Poincaré (2.8), and
Cauchy—Schwarz inequalities that

02/ (Viu—u') = (w—w")) (Vv —2)
%

Vn Vn
) <||V(U — )2y + 7||D(w —w)l2evy ) { IVVll L2y + 7||DZ||L2(Y)

1 n ’ ’
<2 (5 + 2 )l = w'ou =)L 0l
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Altogether, we obtain the claimed inequality (2.13) with the constant

1
CrL=24+V2V1—=0+0,+09 <2)\+:2>,
which is identical to the one given in Lemma 2.3(ii) using that o3 = A 3.
(iii) For any m’ € M\{0} we have (0,m’) € X and hence

/ ! ! !/ !/
sup b(m 7/(wl,u ) > b(m’, (Ozm )
(wunex\ioy s u)]l €0, m)ll,
B V(122 (v
VAT [y + A20m
V[l 2(v)
T V2A+ A2

by Poincaré’s inequality (2.7) (recall that M C Wpe (Y')), which yields the claimed
result (2.14). d

Proof of Theorem 2.5. The existence of a unique solution (m, (w,u)) € M x X
o (2.9) follows from the Brezzi-splitting; see [5] and [21, Proposition 2.5], as we
have the monotonicity and Lipschitz continuity for @ and an inf-sup condition from
Lemma 2.3. For the second part of the claim, i.e., that m = 0, u € H2. (Y) with
w = Vu and wu is the solution to (2.1), we note that Ly is surjective from the set
X, = {(w',u') € X : w' = Vu'} onto L*(Y). We first test the mixed formulation
(2.9) with pairs (w’,u’) from X to obtain F,[(w, u)] = 0 almost everywhere and then
with the solution pair (w,u) to find that w = Vu and thus u € ngr(Y). We conclude

the proof by noting that this implies that u is the solution to (2.5) (and hence to (2.1)
by Theorem 2.1) and that m = 0. |

Proof of Lemma 2.6. We use the triangle, Poincaré (2.8), and Cauchy—Schwarz
inequalities to obtain that

n
b’ (u ) < 9wy (19020 + L2100 )
1
< _
V2

for all (m/, (w',u")) € M x X.
The discrete inf-sup condition holds, as for mj, € M;\{0} we have (0,m}) €
Xp\{0} since M}, C U, N M, and hence

wp PO b)) | b (0.m))
whexanoy Mwh i)l = O, m3),

n
+ 3 IVl 2 ) [l (', @)l

B IV, |17 v

VIV [y + 22
o IVmillez )
T V22 + B2

by Poincaré’s inequality (2.7) (recall that M C Wpye (Y')), which yields the claimed
result (2.16). d
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Proof of Theorem 2.7. We only show the error bound, as the existence and unique-
ness of solutions for (2.15) follows from Lemmas 2.3 and 2.6 in a standard way; see
[21, Proposition 3.1].

Step 1. We introduce the discrete kernel

Zn = {(wp, up) € Xp : b(my,, (wy,up,)) =0 Vm), € My}
and claim that there holds

CrL .
(5.2) H(w —wp,u—up)lly < == inf - ll(w = wh, u— )]
M (wh7u}L)€Zh

Indeed, we use successively the monotonicity from Lemma 2.3(i), the solution property
of (w,u) from Theorem 2.5, and the fact that (wp,up) solves the discrete problem
(2.15), and the Lipschitz estimate from Lemma 2.3(ii) to find that

Ol (w = wnyu — )3
<a((w,u), (w—wh,u—up)) —a((wy,un), (W —wh,u —up))
=—a ((wha uh)a (w7 U))
= —a((wn,un), (W — wj, u—uy))
= a((w,u), (w— w;w u— u%)) —a((wn,un), (w— w;w u— u’h))
< Cpll(w — wp, w = un) I\l (w = wh, u = )l
for any (w),,u),) € Zy, which implies the desired estimate (5.2).
Step 2. We let (w.,us) € X} denote the best-approximation to (w,w) from Zj,

ie.,

(5.3) l(w—weu—w)lly = inf fl(w—wj,u—u)lly,
(w}, u},)EZR

and we derive a linear mixed problem for (w,, u,).
By the discrete inf-sup condition (2.16), there exists m, € M}, such that

((way wa), (whyup)) y + D(m, (Wi, ) = ((w,w), (why, up)) sV (wh,up) € X,
b(my,, (we,uy)) =0 V'm), € My,

where (-,-)x : X x X — R is the inner product given by
(', u'), (W u")) = / Dw': Dw" + 2)\/ Vau' - Vu'" + )\2/ u'u”.
y Y Y

We also note that the solution pair (m, (w, u)) satisfies the similar system (recall that
m =0)

((w, ), (W', u)) 5+ b(m, (w',0)) = ((w,u), (W', @)y V(W' ') € X,
b(m', (w,u)) =0 Vm' e M.

Step 3. We derive an error bound for (w — ws,u — u,) in the |[-[|, norm using
classical linear mixed finite element theory.
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Note that for any (w’,u), (w”,v") € X, we have

(), (s w DAl < ) 0l (), () = i )1

In particular, we have boundedness and coercivity on the whole space, i.e.,

(', "), (", u")A] < Call (@, w)ll @ ")y
2
(' u'), (', w'))x = calll(w’, )X
for all (w', ), (w"”,u") € X with the constants C, := ¢, := 1. Further, from Lemma
2.6 we have the discrete inf-sup condition (2.16) with the constant ¢, and boundedness

of b with the constant Cp. Then, by linear mixed finite element theory (see [40]), we
obtain

C, C .
o= wevu=wlly < (14 S2) (14 ) it - whou - il

a Cb (w;,,vulh,)EXh

Cy . ,
(5.4) +— ,Helfwh [V (m —mp)lz2v)

Cq mj,

Cb>
=2(1+— inf w—wh w— ),
( Cy ) (wp,u})EXh ”I( h h)”')\

where we have used that m = 0 and C, = ¢, = 1 in the last line.
Step 4. We conclude by combining (5.2), (5.3), and (5.4) to deduce that

Cr
l(w = wn,w —up)ly < @Ill(w — Wa, U — U )|

CrL ( Cb> ] / /
S2/0—(1+— inf W — Wy, U — U )
Cwm Cy ) (w),uh)EXn (I¢ h h)|||,\

which is the desired error bound. 0

Proof of Theorem 2.9. We use successively the monotonicity from Lemma 2.3(i),
the solution property of (w,u) from Theorem 2.5, the Cauchy—Schwarz inequality
(note that w = Vu), the bound (5.1), and Young’s inequality to show that

Corl(w = wn, w — u)|I3
<a((w,u), (w—wh,u—up)) —a((wWp,up), (W—wp,u—up))

—a ((wp,up), (W — wp,u —up))

IN

2
1ES [(wny wn))ll p2 vy DA (w0 = whyw = un) || L2y + 01 lIrot(wa) |72y
+ 02 lwn = Vg 72y
< V2| By [(wny wn)ll oy 1w = wiow = un)l + o1 [[rot(wn) |22y

+ 03 |wn — Vun|[72 )
Cu

_ 2
< Cot Iy (o, w2y + 221

2 2
(w — wp,u —up)[ + o1 ||r0t(wh)||L2(Y)
+ o2 |lwp — VUhHiz(Y) .

Upon rearranging, we find the claimed a posteriori estimate.
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For the efficiency estimate, recall the solution property of (w,u) from Theorem
2.5, in particular w = Vu and F,[(w, u)] = 0 almost everywhere. With the Lipschitz
property from Lemma 2.3(ii) and with Lemma 2.2, we then obtain

2 2 2
Coll(w — wp,w —wn)|x — o1 rot(wn) |72y — o2 [wn — Vunllz2yy
> a((w,w), (w—wp,u—up)) = a((wn,up), (w—wp,u—up)) = o1 [[rot(wn) |72y
— 03 [|wn — V|72,

—a ((wn,up), (w = wn,u—un)) = o1 [rot(w)l|72 vy = 02 |wn — Vun| 72y,
/ B [(wnun)] (B [(w, )] = (wn, un)) — La(w — wpu — up))

1B [(wn, w2y

1B LCeons w2y = VI =0 1B, [ un)] gy M — wrew = )l

2 1-6 2
3 1E [(wn, wn)]l 2 vy — —5— ll(w = wn, w —un)ll3,

v

Y

which yields the efficiency estimate upon rearranging. |

5.2. Proofs for section 3.

Proof of Theorem 3.9. Using the definition of the [|-[|, norm and interpolation
inequalities, denoting the interpolation operators on the finite element spaces by
I;'fq,I;LSZ, we find that

inf_[I[(Vo” = wp,, 07 —up)ll,

(w)uf)EXn

< H‘(Vu” - (I;fq(vv“) - /YI;LSQ(W")) I (v")>

- <HD (vuo T (Vv"))’ i

L2(Y)

Ao

l
+ 2207 = T (V) F (v

1
g l g 2
+ 220" = T (o) ey )
%

< Cz <h2min{r,q} + 2)\0h2min{1+r,l} + Agh2min{2+r,l}) vaUHHlJrT(Y)

1 .
< Oy (1420, + A2) 2 pintnal 707 || oy

for h > 0 sufficiently small, where C; > 0 is the constant arising in applying the
interpolation inequalities. The claimed result now follows from (3.8), i.e

(Vo —wi,v” = v)llly, < Ce(6,Ae,n) inf (V07 —wp,v” —up)lly,
(wi,,uf,)EXR
< Ce(6,A0,1)Ci (14 Ag)) RSB0 | oy
< Ce(8,A,n)Cy (1 4+ ) k™D V07 || g vy,

where we used A\, < A and Remark 2.8. 0
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Proof of Theorem 3.11. We use Holder and triangle inequalities, Lemma 3.7, and
the error bound (3.9) to obtain

/ (—ovp(-;8,p,R)) — H(s,p, R)’ = / (—ovp(-;8,p,R) — H(s,p, R))
Y Y
S || - O-’UZ(' yS8, Dy R) - H(Sap7 R)||L2(Y)

Sollvp(ss,p R) —v7(-58,p, R)l[L2(y)
+o(1+ [p| +|R])

< (hmin{r,q,l} 4 a') (1+|p| + |R)).

The second part of the claim can be shown analogously. 0

6. Conclusion. In this work we introduced a scheme for the numerical homog-
enization of the fully nonlinear second-order HJB equation with Cordes coefficients,
based on a novel mixed finite element method for the periodic corrector problems.

The focus of the first part of the paper was the construction and the rigorous
analysis of mixed finite element approximations to the periodic solution of the HJB
equation. We derived a mixed formulation for the problem and proved well-posedness
as well as a priori and a posteriori error bounds. Explicit formulas for the error
constants were provided, showing the asymptotic behavior of the constants in the
Cordes parameters.

In the second part of the paper we focused on the numerical homogenization of
HJB equations with locally periodic coefficients. Theoretical homogenization results
were provided and used in the analysis of the numerical homogenization scheme. We
presented and rigorously analyzed a method for the approximation of the effective
Hamiltonian based on mixed finite element approximations of the periodic cell problem
for the approximate corrector from the first part.

Finally, we presented numerical experiments illustrating the theoretical results.
The experiments demonstrated the approximation of the effective Hamiltonian at a
point as well as the approximation of the solution to the homogenized problem.

Future work will focus on the numerical homogenization of other fully nonlinear
partial differential equations such as the Isaacs equation. The strong H? solution of
Isaacs equations with Cordes coefficients has recently been discussed in [27] and can
be used as a framework to study its numerical homogenization.

Acknowledgment. The second author gratefully acknowledges helpful conver-
sations with Professor Yves Capdeboscq (Université de Paris) during the preparation
of this work.
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