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Abstract. It is shown how mixed finite element methods for symmetric pos-

itive definite eigenvalue problems related to partial differential operators can
provide guaranteed lower eigenvalue bounds. The method is based on a clas-

sical compatibility condition (inclusion of kernels) of the mixed scheme and

on local constants related to compact embeddings, which are often known
explicitly. Applications include scalar second-order elliptic operators, linear

elasticity, and the Steklov eigenvalue problem.

1. Introduction

Variationally posed symmetric eigenvalue problems related to positive definite
partial differential equations (PDEs) with a compact resolvent are subject to the
Rayleigh–Ritz principle [22], which characterizes the eigenvalues as certain min-
ima in the corresponding Hilbert space. Consequently, conforming discretization
methods, which are based on subspaces of the same Hilbert space, result in up-
per eigenvalue bounds. In contrast, the identification of guaranteed and efficient
lower bounds to the eigenvalues is much more challenging, and general principles
leading to lower bounds are not known. In the context of finite element methods
(FEMs) for some PDE-based eigenvalue problems, major progress was achieved by
[10, 19] where ‘nonstandard’ methods, i.e., methods beyond merely conforming dis-
cretizations, were employed to prove computable guaranteed lower bounds for the
Laplacian. These approaches were later generalized to other eigenvalue problems
in [8, 23, 15]. These methods have in common that they make use of the explicit
knowledge of stability or approximation constants for projection operators related
to the particular underlying finite element method.

By introducing a dual (or stress) variable, PDE eigenvalue problems can be
posed in an equivalent mixed formulation; more precisely and following the ter-
minology of [4], as a mixed problem of the second type. Stability properties as
well as asymptotic error estimates for eigenvalue problems in mixed formulation
are well understood, and the state of the art is documented in the review article
[4] and the monograph [5]. Mixed formulations of positive definite problems are
usually posed as saddle-point problems, which implies a higher computational cost
compared with standard discretizations. While application-related advantages of
operating with the mechanically relevant stress variable are sometimes mentioned
for justifying and advertising mixed methods, a decisive structural advantage for
systematically using mixed methods in eigenvalue computations has remained ob-
scure. It is the aim of this contribution to reveal a basic and rather generic feature
of dual mixed formulations and related finite element discretizations that allows
for the computation of guaranteed lower eigenvalue bounds in many practical ex-
amples. The involved constants are related to properties of the underlying PDE
operator rather than special properties of the discretization space. The applications
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presented in this paper include the Laplacian, general second-order scalar coercive
operators, the Lamé eigenvalues of linear elasticity (where the present method seems
to be the first in the literature to provide guaranteed lower eigenvalue bounds), and
the Steklov eigenvalue problem. Generalizations to the Stokes or the biharmonic
eigenvalue problem are possible and briefly outlined at the end of the paper.

The principal assumption on the discretization of the mixed system is the in-
clusion of kernels, a classical compatibility condition that for example guarantees
that the equation for the divergence holds pointwise in the case of the Laplacian.
In the usual mixed setting with discrete spaces Σh and Uh ⊆ U and a bilinear form
b, the inclusion of kernels implies that a projection Ph (in many cases the ortho-
gonal projection) from U to Uh exists such that for any v ∈ U , b(·, v) and b(·, Phv)
represent the same linear functional over Σh. A consequence proven in this paper
is the commutation property

PhG = GhPh

where Ph is the orthogonal projection to Σh with respect to a scalar product a
and G is a gradient-like operator (from an integration by parts formula) with its
discrete analogue Gh. In the simplest setting (without lower-order terms), the first
discrete eigenvalue λ1,h is the minimum of the Rayleigh quotient ‖Ghvh‖2a/‖vh‖2`
for some seminorm ‖ · ‖` over appropriate elements vh from Uh. Accordingly, the
projection Phu of an `-normalized first exact eigenfunction satisfies, as a candidate
for the minimum,

λ1,h‖Phu‖2` ≤ ‖GhPhu‖2a ≤ λ

because of the commutation property and ‖Gu‖2a = λ. Consequently, explicit
control on the deviation of ‖Phu‖2` from ‖u‖2` = 1 results in a guaranteed lower
bound for λ. Under the assumption that there exists some δh such that ‖u−Phu‖` ≤
δh‖Gu‖a, the following guaranteed lower bound is established in Theorem 3.4

λh
1 + δ2

hλh
≤ λ.

In contrast to the methods proposed in [10, 19], this paper thereby provides a meth-
odology that covers rather general operators in the sense that it basically requires
the structure of saddle-point eigenvalue problems of the second type and some con-
trol on the generic projection Ph related to the inclusion-of-kernels property, but
no particular knowledge on special interpolation or solution operators. It therefore
covers a variety of eigenvalue problems with, e.g., variable coefficients and lower-
order terms. A limitation of the approach as a post-processing method is that it
intrinsically is a low-order method, which is also the case for the existing schemes
[10, 19]. The reason is that the quantity δ2

h in the denominator of the lower bound
is usually related to some compact embedding and does not improve when higher-
order methods are employed. A direct computation shows that the difference of λ
and the lower bound cannot be of a better order than O(δ2). For the Laplacian, this
limitation was recently overcome by [11], but the argument again uses particular
properties of related finite element spaces and seems to be less universal.

This paper is organized as follows. Section 2 proves the fundamental commuta-
tion property for mixed methods with a compatibility condition (inclusion of ker-
nels). The resulting abstract lower eigenvalue bound is shown in Section 3. The
subsequent sections show applications to the Laplacian (Section 4), scalar elliptic
operators (Section 5), linear elasticity (Section 6), and the Steklov eigenvalue prob-
lem (Section 7). Section 8 provides some conclusive remarks.
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2. A basic commutation property

Let Σ, U be Hilbert spaces (the corresponding norms are denoted by ‖ · ‖Σ and
‖ · ‖U ) with bounded bilinear forms

a : Σ× Σ→ R, b : Σ× U → R.
Assume that a is symmetric and positive definite so that it induces a norm ‖ · ‖a =
a(·, ·)1/2, which is in general different from the norm in Σ. Let Σh ⊆ Σ, Uh ⊆ U
be finite-dimensional subspaces. We remark that the finite dimensional space Σh
is also a Hilbert space when endowed with the inner product a. Given any v ∈ U ,
we write Ghv ∈ Σh for the solution of the system

a(Ghv, τh) = −b(τh, v) for all τh ∈ Σh.

This system is uniquely solvable because a is an inner product on the finite-
dimensional space Σh. In general, the analogue problem in the infinite-dimensional
space Σ need not be solvable because Σ is not assumed complete and b(·, v) is not
assumed continuous with respect to the norm ‖ · ‖a. Let therefore Σ denote the
closure of Σ with respect to ‖ · ‖a and let U0 ⊆ U denote the space of all elements
v of U admitting a solution Gv ∈ Σ to

(2.1) a(Gv, τ) = −b(τ, v) for all τ ∈ Σ.

The next lemma states that the space U0 is a Hilbert space and satisfies an equi-
valence of norms provided the classical inf-sup condition [5] holds.

Lemma 2.1. Let (·, ·)U denote the inner product of U . The space U0 with the inner
product

(v, w)U + a(Gv,Gw) for any v, w ∈ U0

is a Hilbert space. If the inf-sup condition

(2.2) 0 < β = inf
v∈U\{0}

sup
τ∈Σ\{0}

b(τ, v)

‖τ‖Σ‖v‖U

with some positive number β > 0 is satisfied, the norms ‖G·‖a and (‖·‖2U+‖G·‖2a)1/2

are equivalent on U0.

Proof. For the proof that U0 is a Hilbert space, it suffices to show that it is complete.
Let (uj)j be a sequence in U0 such that uj → u ∈ U with respect to ‖ · ‖U and

Guj → σ ∈ Σ with respect to ‖ · ‖a, for j →∞. Then, for any τ ∈ Σ,

a(σ, τ) = a(σ −Guj , τ)− b(τ, uj − u)− b(τ, u).

The limit j → ∞ and the continuity of a and b prove a(σ, τ) = −b(τ, u) for any
τ ∈ Σ. Thus, u ∈ U0 with σ = Gu.

For the proof of equivalence of norms, let Ca denote the continuity constant of
a with respect to ‖ · ‖Σ. The inf-sup condition (2.2) shows for any v ∈ U0 that

β‖v‖U ≤ sup
τ∈Σ\{0}

b(τ, v)

‖τ‖Σ
= sup
τ∈Σ\{0}

a(Gv, τ)

‖τ‖Σ
≤ C1/2

a sup
τ∈Σ\{0}

a(Gv, τ)

‖τ‖a
= C1/2

a ‖Gv‖a.

This implies the asserted equivalence of norms. �

The following compatibility condition is essential to the subsequent arguments.

Condition 2.2. The kernel

Z := {τ ∈ Σ : b(τ, v) = 0 for all v ∈ U}
and the discrete kernel

Zh := {τh ∈ Σh : b(τh, vh) = 0 for all vh ∈ Uh}
satisfy the inclusion Zh ⊆ Z.
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It is known [9, Lemma 2.3] that Condition 2.2 is equivalent to the existence of a
projection Ph : U → Uh such that

(2.3) b(τh, v − Phv) = 0 for all (τh, v) ∈ Σh × U.
The argument is briefly repeated here for convenience of the reader.

Lemma 2.3. Condition 2.2 is equivalent to the existence of a linear projection
Ph : U → Uh satisfying (2.3).

Proof. The closed range theorem [6] in the finite-dimensional setting states

b(·, Uh) = Z0
h ⊆ Σ∗h,

namely that the functionals b(·, Uh) in the dual Σ∗h of Σh represented by elements
of Uh and the form b are precisely the elements of the polar set Z0

h of the kernel Zh,
i.e., the bounded linear functionals over Σh that vanish on Zh. From the inclusion
of kernels Zh ⊆ Z in Condition 2.2 we have that, given any u ∈ U , the functional
b(·, u) ∈ Σ∗h vanishes on Zh and therefore belongs to Z0

h, whence b(·, u) ∈ b(·, Uh).
Hence, there exists some uh ∈ Uh with b(·, u) = b(·, uh). This proves the existence
of the projection Phu := uh. The element Phu can be chosen from the range of the
discrete Riesz map Th : Σh → Uh representing the from b via b(τh, ·) = (Thτh, ·)U
on Uh for any τh ∈ Σh. With this choice, the projection Ph is linear. Conversely, it
is immediate that the existence of the projection Ph implies Condition 2.2. �

Example 2.4. The example relevant to the applications in this paper is the fol-
lowing. Given τ ∈ Σ, let Tτ ∈ U denote the Riesz representation of b(τ, ·) in U
such that any v ∈ U satisfies b(τ, v) = (Tτ, v)U . Provided the inclusion TΣh ⊆ Uh
is satisfied, the projection Ph : U → Uh can be chosen as the orthogonal projection
Ph to Uh with respect to the inner product of U .

Let Ph : Σ → Σh denote the orthogonal projection to the finite-dimensional
space Σh with respect to the inner product a.

Lemma 2.5. If Condition 2.2 holds, then any v ∈ U0 satisfies GhPhv = PhGv.

Proof. Given v ∈ U0, the definition of Gh and (2.3) show for any τh ∈ Σh that

a(GhPhv, τh) = −b(τh, Phv) = −b(τh, v) = a(Gv, τh).

The last expression equals a(PhGv, τh) and the lemma ensues. �

3. Approximation of the eigenvalue problem

We adopt the setting of Section 2 with the forms a and b, which are the ingredi-
ents of problems in the well-known saddle-point structure. It is assumed that b
satisfies the inf-sup condition (2.2). It is additionally assumed that U0 is dense in
U . Let furthermore

c, ` : U × U → R
be two symmetric positive-semidefinite and bounded bilinear forms on U . In order
to exclude the totally trivial case ` = 0 (which would correspond to all eigenvalues
equal to +∞ in the system (3.1) below) it is assumed that there exists some vh ∈ Uh
such that `(vh, vh) > 0 (which can be interpreted as a minimal resolution condition
on the discrete space). The seminorms induced by c and ` are denoted by ‖ · ‖c =
c(·, ·)1/2 and ‖ · ‖` = `(·, ·)1/2.

The eigenvalue problem seeks eigenpairs (λ, u) ∈ R×U with nonzero u such that

a(σ, τ) + b(τ, u) = 0 for all τ ∈ Σ(3.1a)

b(σ, v)− c(u, v) = −λ `(u, v) for all v ∈ U.(3.1b)
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Note that the variable σ = Gu is determined by u through (3.1a) and thus not
treated as an independent variable. Recall Lemma 2.1, which states that U0 is a
Hilbert space. Since, for any v ∈ U0, Gv and v satisfy a(σ,Gv) = −b(σ, v) and the
space U0 is dense in U , the eigenvalue problem is equivalent to seeking eigenpairs
(λ, u) ∈ R× U0 satisfying, for all v ∈ U0,

A(u, v) = λ `(u, v) where A(u, v) := a(Gu,Gv) + c(u, v).

The left-hand side defines an inner product on U0 and, hence, the eigenfunctions
u corresponding to finite eigenvalues are A-orthogonal to the kernel of ` and will
henceforth be normalized as ‖u‖` = 1. We assume that the solution operator
mapping f ∈ U to the solution (σ, u) ∈ Σ× U to the linear problem

a(σ, τ) + b(τ, u) = 0 for all τ ∈ Σ

b(σ, v)− c(u, v) = −`(f, v) for all v ∈ U

is a compact operator (assuming the solution being measured in the norm (‖u‖2U +

‖σ‖2a)1/2). Therefore, the finite part of the spectrum consists of eigenvalues that
have no finite accumulation point and can be enumerated 0 < λ1 ≤ λ2 ≤ . . . . There
exists an orthonormal set of corresponding eigenfunctions, which will henceforth
be referred to as “the eigenfunctions”. The Rayleigh quotient for the smallest
eigenvalue reads

λ1 = min
v∈U0\{0}
v⊥Aker `

‖Gv‖2a + ‖v‖2c
‖v‖2`

.

Here, ⊥A denotes orthogonality with respect to A and ker ` is the space of all v ∈ U
with `(v, v) = 0. The higher eigenvalues satisfy analogous min-max principles, the
discrete version of which is displayed as (3.3) below.

For the choice of discrete spaces, we assume that b satisfies a discrete inf-sup
condition

0 < βh = inf
vh∈Uh\{0}

sup
τh∈Σh\{0}

b(τh, vh)

‖τh‖Σ‖vh‖U
with respect to the finite-dimensional spaces Σh and Uh. The discrete eigenvalue
problem seeks discrete eigenpairs (λh, uh) ∈ R× Uh with ‖uh‖` = 1 such that

a(σh, τh) + b(τh, uh) = 0 for all τh ∈ Σh(3.2a)

b(σh, vh)− c(uh, vh) = −λh `(uh, vh) for all vh ∈ Uh.(3.2b)

Analogous arguments as above show that the discrete eigenvalue problem is equi-
valent to

Ah(uh, vh) = λh `(uh, vh) where Ah(uh, vh) := a(Ghuh, Ghvh) + c(uh, vh).

The bilinear form Ah on the left-hand side defines an inner product on Uh. The
finite discrete eigenvalues are enumerated as 0 < λ1,h ≤ λ2,h ≤ · · · ≤ λN,h for some
positive integer N . The first discrete eigenvalue minimizes the following Rayleigh
quotient

λ1,h = min
vh∈Uh\{0}
vh⊥Ah

ker `

‖Ghvh‖2a + ‖vh‖2c
‖vh‖2`

where ⊥Ah
denotes orthogonality with respect to Ah. More generally, the Jth

discrete eigenvalue satisfies the min-max principle [22]

(3.3) λJ,h = min
VJ⊆Uh

dim(VJ )=J,VJ⊥Ah
ker `

max
vh∈VJ\{0}

‖Ghvh‖2a + ‖vh‖2c
‖vh‖2`
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where the minimum is taken over all J-dimensional subspaces of Uh that are Ah-
orthogonal to the kernel of `. Sufficient conditions on the spaces Σh and Uh such
that the discrete eigenvalues λj,h approximate the true eigenvalues λj are well
known [4]. The focus of this work is the computation of guaranteed lower bounds
to the eigenvalues λj for an index j ∈ {1, . . . , J}.

The key condition required for the theory in this paper is the following.

Condition 3.1. There exists a number δh = δh(Σh, Uh) such that any element
u ∈ span{u1, . . . , uJ} in the linear hull of the first J eigenfunctions satisfies

‖u− Phu‖2` ≤ δ2
h(‖Gu‖2a + ‖u‖2c).

It is furthermore required that the projection Ph is compatible with c and ` in
the following sense.

Condition 3.2. Any element u ∈ span{u1, . . . , uJ} in the linear hull of the first J
eigenfunctions satisfies the Pythagorean identity

‖Phu‖2` + ‖u− Phu‖2` = ‖u‖2` ,(i)

the stability estimate

‖Phu‖2c ≤ ‖u‖2c ,(ii)

and the orthogonality

Phu ⊥Ah
ker `.(iii)

Remark 3.3. In all practical examples listed in this paper the requirements from
Condition 3.2 can be verified for any u ∈ U .

Theorem 3.4 (abstract lower bound). Let Σ, U be Hilbert spaces with a symmetric
and positive definite bilinear form a on Σ and a continuous bilinear form b : Σ×U →
R such that the space U0 ⊆ U of admissible right-hand sides for (2.1) is dense. Let
the inf-sup condition (2.2), the inclusion of kernels from Condition 2.2 as well as
Condition 3.1 and Condition 3.2 be satisfied. Let Σh ⊆ Σ and Uh ⊆ U be an
inf-sup stable pair of finite-dimensional subspaces and let c and ` be continuous
bilinear forms on U such that ` acts nontrivially on Uh and there exist at least J
finite discrete eigenvalues λ1,h, . . . , λJ,h to (3.2) for a positive integer J . Let λJ
denote the Jth eigenvalue to (3.1) with an `-normalized eigenfunction uJ . Then,
the following lower bound for λJ holds

λJ,h
1 + δ2

hλJ,h
≤ λJ .

Proof. Let u1, . . . , uJ denote a basis of `-normalized eigenfunctions corresponding
to the eigenvalues λ1, . . . , λJ . In a first step, we assume that the projected eigen-
functions (Phuj : j = 1, . . . , J) are linear independent. Since the projected eigen-
functions are linear independent and, by Condition 3.2(iii) they are Ah-orthogonal

to the kernel of `, they form an admissible J-dimensional subspace ṼJ and there
are coefficients α1, . . . , αJ , normalized to

∑
j α

2
j = 1, such that

vh := Phu for u :=

J∑
j=1

αjuj

maximizes the Rayleigh quotient over ṼJ . The discrete Rayleigh quotient (3.3), ele-
mentary properties of the minimum, Lemma 2.5, the nonexpansivity of orthogonal
projections, and Condition 3.2(ii) imply

‖vh‖2`λJ,h ≤ ‖Ghvh‖2a + ‖vh‖2c ≤
∥∥∥ J∑
j=1

αjGuj

∥∥∥2

a
+
∥∥∥ J∑
j=1

αjuj

∥∥∥2

c
= λJ
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because different eigenfunctions are mutually A-orthogonal. Condition 3.2, Condi-
tion 3.1, and the normalization of the coefficients αj show

‖vh‖2` = ‖u‖2` − ‖u− Phu‖2` ≥ 1− δ2
hλJ .

The combination of the two foregoing displayed formulas results in

(1− δ2
hλJ)λJ,h ≤ λJ .

Rearranging this formula yields the asserted lower eigenvalue bound.
In the remaining case that the projected eigenfunctions (Phuj : j = 1, . . . , J) are

linear dependent, we apply an idea from [21]. There exist coefficients β1, . . . , βJ
with

∑J
j=1 β

2
j = 1 and a linear combination u :=

∑J
j=1 βjuj with ‖u‖` = 1 and

Phu = 0. Condition 3.1 implies

1 = ‖u‖2` = ‖u− Phu‖2` ≤ δ2
h(‖Gu‖2a + ‖u‖2c) ≤ δ2

hλJ .

The last inequality follows from the A-orthogonality of the eigenfunctions and the
normalization of the coefficients βj . Since, in particular, δh > 0, we infer 1/δ2

h ≤ λJ .
Elementary estimates lead to

λJ,h
1 + δ2

hλJ,h
≤ λJ,h
δ2
hλJ,h

=
1

δ2
h

≤ λJ ,

which implies the asserted lower eigenvalue bound. �

4. Application to the Laplacian

This section is to fix notation and to present the application of Theorem 3.4 to
the eigenvalues of the Laplacian. Let Ω ⊆ Rn be an open, bounded, connected,
polytopal Lipschitz domain. The eigenvalue problem for the Dirichlet-Laplacian
seeks eigenpairs (λ, u) with

−∆u = λu in Ω u = 0 on ∂Ω

where the eigenfunction u ∈ H1
0 (Ω)\{0} belongs to the first-order L2-based Sobolev

space with vanishing trace on the boundary, and the Laplacian ∆ is understood in
the sense of weak derivatives. The mixed formulation is based on the choice

Σ = H(div,Ω) and U = L2(Ω)

where L2(Ω) is the space of square-integrable measurable functions and H(div,Ω)
is the space of vector fields over Ω whose components as well as distributional
divergence belong to L2(Ω). The inner product in (any power of) L2(Ω) is denoted
by (·, ·)L2(Ω). The form a is defined as the L2 inner product of vector fields, a(·, ·) :=
(·, ·)L2(Ω), and b is defined by

b(τ, v) := (div τ, v)L2(Ω) for any (τ, v) ∈ Σ× U.

With the choice c = 0 and `(·, ·) = (·, ·)L2(Ω), it is well known [4, 5] that the
eigenvalues of the Laplacian correspond to those of system (3.1) and that the form
b satisfies the inf-sup condition (2.2).

Let Σh and Uh be an inf-sup stable pair of finite-dimensional spaces with the
property div Σh ⊆ Uh, which guarantees Condition 2.2. It is assumed that the
discrete spaces are related to a partition T of Ω̄ in convex polytopes (for example a
simplicial triangulation) and that the space P0(T) of piecewise constant functions
over T is contained in Uh. The most prominent example of such a pair is the choice
of Σh as the lowest-order Raviart–Thomas space with respect to T and Uh = P0(T),
but many other choices are possible [5]. Since the piecewise constants are contained
in Uh, we have

‖u− Phu‖U ≤ ‖u−Π0,hu‖L2(Ω)
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Figure 1. Initial triangulation of the L-shaped domain.

h×
√

2 λ1,h lower bound upper bound
20 8.60144 5.99088 13.1991

2−1 9.25186 8.28147 10.5739
2−2 9.49208 9.21512 9.91654
2−3 9.58268 9.51054 9.72837
2−4 9.61746 9.59919 9.66981

Table 1. Results for the Laplace eigenvalues on the L-shaped do-
main.

for the L2 projection Π0,h onto the piecewise constants. Each element T ∈ T of
the partition is convex, whence the constant of the Poincaré inequality is explicitly
known [20] and equals hT /π with the diameter hT := diam(T ) of T . Therefore

‖u− Phu‖U ≤
h

π
‖∇u‖L2(Ω) =

h

π
‖Gu‖L2(Ω)

for the maximal element diameter h := maxT∈T hT , where it has been used that
u ∈ U0 possesses a weak gradient in [L2(Ω)]n. This verifies Condition 3.1 with
δh = h/π. Condition 3.2 is trivially satisfied because ` is the L2 inner product and
c = 0. In conclusion, Theorem 3.4 applies and the resulting lower bound for the
Laplacian reads as follows.

Corollary 4.1 (guaranteed lower eigenvalue bound for the Laplacian). Assume
the above setting for the mixed formulation of the Dirichlet-Laplacian. Let Σh ⊆
Σ, Uh ⊆ U be an inf-sup stable pair of finite-dimensional subspaces related to a
partition T in convex polytopes with P0(T) ⊆ Uh and div Σh ⊆ Uh. Then, the Jth
eigenvalue λJ of (3.1) and the Jth discrete eigenvalue λJ,h of (3.2) satisfy

λJ,h
1 + (h2/π2)λJ,h

≤ λJ .

Remark 4.2. It is known that for n = 2 and triangular partitions the constant of the
Poincaré inequality can be slightly improved [18]. In this case, π2 in Corollary 4.1
can be replaced by j2

1,1 where j1,1 is the first root of the Bessel function of the first
kind.

Example 4.3. Consider the first eigenvalue of the Dirichlet-Laplacian on the L-
shaped domain (−1, 1)2 \ [0, 1]2. Let T be a triangulation of Ω and let Σh be
the lowest-order Raviart–Thomas finite element space [5], which is the subspace of
H(div,Ω) of vector fields that, when restricted to any T ∈ T, are linear combina-
tions of constants and the identity x 7→ x. The corresponding space Uh = P0(T)
is the space of piecewise constants. The initial triangulation is displayed in Fig-
ure 1. Table 1 displays the discrete eigenvalue, the guaranteed lower bound from
Corollary 4.1, and an upper bound computed with a first-order conforming FEM
on a sequence of uniformly refined meshes. The computed bound is that from
Corollary 4.1 and disregards the slight improvement mentioned in Remark 4.2.
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5. Scalar elliptic operator

As a generalization of the eigenvalue problem from the previous section we con-
sider the eigenvalue problem

−div(A∇u) + γu = λu in Ω u = 0 on ∂Ω.(5.1)

Here A is a symmetric matrix field over Ω with L∞(Ω) coefficients satisfying the
bounds

a0|ξ|2 ≤ ξTAξ ≤ a1|ξ|2 for any ξ ∈ Rn a.e. in Ω

with real numbers 0 < a0 ≤ a1 < ∞; and γ ∈ L∞(Ω) is a nonnegative function
with 0 ≤ γ0 ≤ γ ≤ γ1 almost everywhere. As in the Laplacian case, the spaces for
the mixed formulation are

Σ = H(div,Ω) and U = L2(Ω).

For simplicity it is assumed that A and γ are piecewise constant with respect to a
given triangulation T, which will also be used for the discretization.

The mixed formulation is based on the substitution σ = A∇u. The form a is
defined as a(·, ·) := (·, A−1·)L2(Ω), and b is defined by

b(τ, v) := (div τ, v)L2(Ω) for any (τ, v) ∈ Σ× U.
With the choice c(·, ·) = (·, γ·)L2(Ω) and `(·, ·) = (·, ·)L2(Ω), it is not difficult to verify
that system (3.1) is then inf-sup stable and equivalent to the original problem (5.1).

Let Σh and Uh be an inf-sup stable pair of finite-dimensional spaces with the
property div Σh ⊆ Uh. It is again assumed that the discrete spaces are related to a
partition T of Ω̄ in convex polytopes and that Uh contains the piecewise constant
functions P0(T). In addition, it is assumed that Uh does not include a constraint on
inter-element continuity. More precisely, it is assumed that Uh is of the structure

(5.2) Uh =
∏
T∈T

VT

where VT is a subspace of L2(T ) and the embedding L2(T ) ⊆ L2(Ω) is understood
through extensions by zero. This assumption ensures that the L2 projection to
Uh localizes to the elements of T. This property is used for the verification of the
stability property from Condition 3.2(ii): Since the L2 projection onto Uh equals
the local L2 projection, we have

‖Phu‖2c ≤
∑
T∈T

γ|T ‖Πh,Tu‖2L2(T ) ≤
∑
T∈T

γ|T ‖u‖2L2(T ) = ‖u‖2c .

For verifying Condition 3.1 and determining the constant, we use the local Poincaré
inequality and infer

‖u− Phu‖2` = ‖u−Π0,hu‖2L2(Ω) ≤
h2

π2
‖∇u‖2L2(Ω) ≤

h2

a0π2
‖A1/2∇u‖2L2(Ω)

so that Condition 3.1 is satisfied with δh = h/(a
1/2
0 π). Theorem 3.4 therefore

implies the following result.

Corollary 5.1 (guaranteed lower eigenvalue bound for elliptic operators). Assume
the above setting for the mixed formulation of (5.1). Let Σh ⊆ Σ, Uh ⊆ U be
an inf-sup stable pair of finite-dimensional subspaces related to a partition T in
convex polytopes with P0(T) ⊆ Uh and div Σh ⊆ Uh where Uh is a space without
interelement continuity requirements in the sense of the structure from (5.2). Then,
the Jth eigenvalue λJ of (3.1) and the Jth discrete eigenvalue λJ,h of (3.2) satisfy

λJ,h
1 + λJ,hh2/(a0π2)

≤ λJ .
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3

1 3

1

5

4

5

Figure 2. Coefficients A (left) and γ (middle) and the initial tri-
angulation (right) in Example 5.3.

h×
√

2 λ1,h lower bound upper bound
20 13.4656 10.3977 15.4049

2−1 13.4010 12.4008 13.9124
2−2 13.3898 13.1187 13.5205
2−3 13.3877 13.3185 13.4207
2−4 13.3873 13.3699 13.3956

Table 2. Results for eigenvalue problem (5.1) of the scalar elliptic
operator on the square domain.

In the case that the lower bound γ0 to the low-order coefficient γ in the elliptic
eigenvalue problem is positive, one can take advantage of a spectral shift and obtain
a sharper lower bound.

Corollary 5.2 (guaranteed lower eigenvalue bound for elliptic operators with shift).
Under the assumptions of Corollary 5.1, the Jth eigenvalue λJ of (3.1) and the Jth
discrete eigenvalue λJ,h of (3.2) satisfy

λJ,h
1 + (λJ,h − γ0)h2/(a0π2)

+ γ0
(λJ,h − γ0)h2/(a0π

2)

1 + (λJ,h − γ0)h2/(a0π2)
≤ λJ .

Proof. The eigenvalues λ̂ of the shifted problem

−div(A∇u) + (γ − γ0)u = λ̂u in Ω u = 0 on ∂Ω

are related to the ones of (5.1) by λ̂j + γ0 = λj and an analogous shift property

applies to the discrete problem so that λ̂j,h+γ0 = λj,h. Since γ−γ0 is nonnegative,
Corollary 5.1 applies and proves

λ̂J,h

1 + λ̂J,hh2/(a0π2)
≤ λ̂J .

Equivalently,
λJ,h − γ0

1 + (λJ,h − γ0)h2/(a0π2)
+ γ0 ≤ λJ .

This implies the asserted lower bound. �

Example 5.3. On the square domain Ω = (−1, 1)2 choose the coefficients

A(x) =

(
2 +

x1x2

|x1| |x2|

)
I2×2 and γ(x) = 4 + 1{|x2|>1/2}

where I2×2 is the two-dimensional unit matrix. The lower bounds on the coefficients
read a0 = 1 and γ0 = 4. The coefficients and the initial triangulation are displayed
in Figure 2. Table 2 compares the discrete eigenvalues, the guaranteed lower bound
from Corollary 5.2, and upper bounds from a conforming standard FEM on a
sequence of uniformly refined meshes.
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6. Application to linear elasticity

Let Ω be a domain as in the previous sections with a disjoint partition ∂Ω =
ΓD∪ΓN of the boundary where ΓD is assumed, for simplicity of the presentation, to
have positive surface measure. For the sake of a simple exposition, it is furthermore
assumed that the parts ΓD and ΓN are resolved by the boundary faces of some
underlying polytopal partition T of Ω̄. The linear elasticity eigenvalue problem
seeks eigenvalues λ and vector-valued eigenfunctions u 6= 0 such that

−divCε(u) = λu in Ω and u = 0 on ΓD Cε(u)n = 0 on ΓN .

Here, n is the outward pointing unit vector to ΓN , ε(u) = 1
2 (Du + (Du)T ) is the

symmetric part of the derivative matrix, and the elasticity tensor C reads

C(A) = 2µA+ κ tr(A)In×n for any symmetric matrix A

for given material parameters µ, κ > 0 and the n-dimensional unit matrix In×n.
The action of the divergence to a n × n matrix field is understood row-wise. The
mixed formulation is based on the space Σ := HΓN

(div,Ω;S) of symmetric matrix
fields σ whose rows belong to H(div,Ω) and that satisfy the homogeneous Neumann
boundary condition σn = 0 on ΓN ; and U := [L2(Ω)]n. The bilinear forms a, b are
defined as a(·, ·) := (·,C−1·)L2(Ω), and

b(τ, v) := (div τ, v) for any (τ, v) ∈ Σ× U
while c = 0 and `(·, ·) = (·, ·)L2(Ω). It is known that this is an inf-sup stable
formulation of the linear elastic eigenvalue problem [3, 2, 5].

Let Σh and Uh be an inf-sup stable pair of finite-dimensional spaces with div Σh ⊆
Uh. Instances of such spaces with pointwise symmetry for the stress field can be
based on piecewise polynomials [3, 2] or on piecewise rational trial functions [16].
It is assumed that the discrete spaces are related to a partition T of Ω̄ in convex
polytopes and that the space{

v ∈ [L2(Ω)]n : for any T ∈ T, D(v|T ) is constant and skew-symmetric
}

of piecewise infinitesimal rigid body motions with respect to T is contained in Uh.
Since the infinitesimal rigid-body motions on an element T include all constants,
the Poincaré inequality yields on any T ∈ T for the L2 projection ΠRM,h onto the
piecewise infinitesimal rigid-body motions,

‖u−ΠRM,hu‖L2(T ) ≤
hT
π
‖D(u−ΠRM,hu)‖L2(T ).

Korn’s inequality on T with constant CK(T ) then yields

‖u−ΠRM,hu‖L2(T ) ≤
hT
π
‖D(u−ΠRM,hu)‖L2(T ) ≤

CK(T )hT
π

‖ε(u)‖L2(T ).

Thus, with 1/(2µ) as the smallest eigenvalue of the elasticity tensor C and

δh :=
maxT∈T CK(T )hT√

2µπ

it follows that

‖u− Phu‖2U ≤
maxT∈T CK(T )2h2

T

π2
‖ε(u)‖2L2(Ω) ≤ δ

2
h‖C1/2ε(u)‖2L2(Ω)

which verifies Condition 3.1.

Corollary 6.1 (guaranteed lower eigenvalue bound for elasticity). Assume the
above setting for the mixed formulation of the elasticity system. Let Σh ⊆ Σ, Uh ⊆
U be an inf-sup stable pair of finite-dimensional subspaces related to a partition T

in convex polytopes with div Σh ⊆ Uh where Uh contains the piecewise infinitesimal
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rigid-body motions. Then, the Jth eigenvalue λJ of (3.1) and the Jth discrete
eigenvalue λJ,h of (3.2) satisfy

λJ,h
1 + (maxT∈T CK(T )2h2

T )/(2µπ2))λJ,h
≤ λJ .

For practical and guaranteed bounds, upper bounds on the local Korn constants
CK(T ) are needed. In two dimensions, upper bounds for CK(T ) on convex polygons
can be explicitly computed from the bound on the continuity constant of a right-
inverse of the divergence operator available in [13, Section 5.1.2]. It is known that
the latter has a close relation to the Korn constant, and the precise argument is
given as follows. Let ω ⊆ Rn be an open, bounded, connected Lipschitz domain.
It is well known [1] that there exists a constant Cdiv <∞ such that any p ∈ L2(Ω)
with

´
ω
p dx = 0 can be represented as p = div v with a vector field v ∈ [H1

0 (Ω)]n

with ‖Dv‖L2(Ω) ≤ Cdiv‖p‖L2(Ω). If ω ⊆ R2 is in addition a convex planar polygon
with corners z1, . . . , zm, a fixed (arbitrary) interior point x0 ∈ ω, and the geometric
parameter

d :=
dist(x0, ∂ω)

maxj=1,...,m |x0 − zj |
,(6.1)

then the following bound provided by [13] is valid

(6.2) Cdiv ≤
√

2

d2
(1 +

√
1− d2).

In what follows, we will always choose x0 as the centre of the largest incribed
ball of the polyhedron. Then, for example, any right-isosceles triangle T̂ satisfies

d(T̂ ) = 1/
√

4 + 2
√

2 and, accordingly,

Cdiv(T̂ ) ≤ 5.1259.

The following lemma shows how the bound on Cdiv can be used for bounding
the Korn constant in two space dimensions. The usual rotation of two-dimensional
vector fields reads rot v = ∂2v1 − ∂1v2.

Lemma 6.2 (explicit bound on local Korn inequality in 2D). Let ω ⊆ R2 be a
bounded, open, convex polygon with the geometric parameter d from (6.1) and let
v ∈ [H1(ω)]2 be a vector field with

´
ω

rot v dx = 0. Then

‖Dv‖L2(ω) ≤
√

1 +
4

d2
(1 +

√
1− d2)‖ε(v)‖L2(ω).

Proof. The tensor field τ = Dv is irrotational, which is equivalent to the fact
that the field τ⊥ := (−τ12, τ11;−τ22, τ21) is divergence-free. Further, the prop-
erty

´
ω

rot v dx = 0 is equivalent to
´
ω

tr τ⊥ dx = 0. By a classical argument [5,
Proposition 9.1.1] it can be shown that

‖ tr τ⊥‖L2(Ω) ≤ 2Cdiv‖τ⊥ −
1

2
tr τ⊥I‖L2(Ω).

This implies, with I⊥ :=
(

0 −1
1 0

)
that

‖τ21 − τ12‖L2(Ω) ≤ 2Cdiv‖τ −
1

2
(τ21 − τ12)I⊥‖L2(Ω) = 2Cdiv‖

1

2
(τ + τT )‖L2(Ω)

so that the skew-symmetric part of τ is controlled by the symmetric part of τ .
From the orthogonality of symmetric and skew-symmetric matrices we then infer
with ε(v) = 1

2 (τ + τT ) that

‖τ‖2L2(Ω) = ‖ε(v)‖2L2(Ω) + ‖1

2
(τ21 − τ12)I⊥‖2L2(Ω) ≤ (1 + 2C2

div)‖ε(v)‖2L2(Ω).

The asserted estimate then follows with the bound (6.2) on Cdiv. �
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ΓD
ΓN

Figure 3. Cook’s membrane with initial trianulation.

h λ1,h lower bound upper bound
33.14 5.62812e-4 4.40411e-5 1.00153e-3
16.57 5.68410e-4 1.43028e-4 9.07262e-4
8.287 5.71724e-4 3.27099e-4 7.68356e-4
4.143 5.73587e-4 4.82990e-4 6.58116e-4
2.071 5.74507e-4 5.48734e-4 6.05333e-4

Table 3. Results for the elasticity eigenvalues on Cook’s mem-
brane.

Lemma 6.2 shows that the Korn constant on a convex polygon ω can be bounded
as

CK ≤
√

1 +
4

d2
(1 +

√
1− d2).

For example, given a right-isosceles triangle T̂ , the value of the Korn constant
satisfies the bound

CK(T̂ ) ≤ 7.318.

Remark 6.3. For domains with sufficiently regular boundary, there exists a sharper
alternative to the the bound of Lemma 6.2, see [17] and the references therein.

Example 6.4. The Dirichlet boundary ΓD of Cook’s membrane Ω ⊆ R2 is given by
the straight line from (0, 0) to (0, 44). The domain Ω is given as the interior of the
convex combination of ΓD with the points (48, 44) and (48, 60), and, accordingly,
ΓN = ∂Ω\ΓD is the Neumann boundary. The domain with its initial triangulation
is displayed in Figure 3. In the numerical example, the Lamé parameters are chosen
as µ = 1 and κ = 100. The spaces Σh and Uh are taken according to the Arnold–
Winther finite element method [3] based on a regular triangulation T, that is,
Σh is the subspace of Σ consisting of symmetric matrix fields whose components,
when restricted to any triangle of T , are at most cubic polynomials on T , and
whose divergence is piecewise affine, while Uh is the space of piecewise affine vector
fields. Table 3 displays the discrete eigenvalue, the guaranteed lower bound from
Corollary 4.1, and an upper bound computed with a first-order conforming FEM
on a sequence of uniformly refined meshes. It should be remarked, that the optimal
order of convergence of the Arnold–Winther method is better than linear, so that
in general the guaranteed lower bound including the global mesh size h is expected
to be sub-optimal if sufficient smoothness of the eigenfunctions is available. This
effect is not visible in this experiment because of the Dirichlet–Neumann corners
in the configuration of the boundary, which lead to reduced regularity. There exist
lower-order methods respecting the symmetry of stresses (see, e.g., [3, 16]), but their
implementation is not necessarily easier compared with the usual Arnold–Winther
finite element.



14 DIETMAR GALLISTL

Remark 6.5. A similar reasoning yields lower eigenvalue bounds for the Stokes
system, which corresponds to the formal limit κ→∞. It is known that the mixed
formulation of the Lamé system is robust (locking-free) with respect to this limit.

Remark 6.6. The technique from [13] for bounding Cdiv extends to domains ω that
are star-shaped with respect to all points of some open nonempty ball B ⊆ ω.

Remark 6.7. The stated bounds on Korn’s constant do not apply to three-dimen-
sional element domains. Upper bounds can be numerically computed with the
method of [14], but their theoretical justification relies on (asymptotic) assumptions
the verification of which turns out difficult in practice.

7. Application to the Steklov eigenvalue problem

Let Ω ⊆ Rn be a domain as in prior sections with outer unit normal n. As a
model problem we consider the problem of finding (λ,w) with nontrivial w such
that

−∆w + w = 0 in Ω

∂w

∂n
= λw on ∂Ω.

The eigenvalue relation on the boundary subject to a homogeneous linear partial
differential equation in the domain is related to the spectrum of a Dirichlet-to-
Neumann map. The standard variational formulation is posed in the Sobolev space
H1(Ω). Since no dual mixed formulation has been studied in the literature so far, it
is explained here in more detail than the classical models of the foregoing sections.
The idea is to introduce the variables σ = ∇w and (w, γ) with γ = w|∂Ω. Let
Σ := HΓ(div,Ω) be the subspace of all τ ∈ H(div,Ω) whose normal trace τ · n|∂Ω

belongs to L2(∂Ω), equipped with the norm

‖τ‖HΓ(div,Ω) :=
√
‖τ‖2H(div,Ω) + ‖τ · n‖2L2(∂Ω)

and let U := L2(Ω)× L2(∂Ω). Let a(·, ·) := (·, ·)L2(Ω) be chosen as the L2 product
and let

b(τ, (v, η)) := (div τ, v)L2(Ω) − (τ · n, η)L2(∂Ω).

With c(·, ·) := (·, ·)L2(Ω) and `(·, ·) := (·, ·)L2(∂Ω), the Steklov eigenvalue problem
can then be rewritten as system (3.1). For convenience, the eigenvalue problem is
explicitly rewritten in the following: Seek (σ, (w, γ)) ∈ Σ× U and λ ∈ R such that

(σ, τ)L2(Ω) + (div τ, w)L2(Ω) − (τ · n, γ)L2(∂Ω) = 0
(div σ, v)L2(Ω) − (w, v)L2(Ω) = 0
−(σ · n, η)L2(∂Ω) = −λ(γ, η)L2(∂Ω)

for all (τ, (v, η)) ∈ Σ× U . It is not difficult to see that the system is inf-sup stable
and the finite eigenvalues coincide with those of the original system. Furthermore,
the relations div σ = w and σ ·n = λγ allow for substitutions in the first row of the
system resulting in the equivalent eigenvalue problem

(σ, τ)L2(Ω) + (div σ, div τ)L2(Ω) = λ−1(σ · n, τ · n)L2(Ω) for all τ ∈ Σ.

An analogous equivalence can be used for the discretization and results in a positive
definite system matrix, which is beneficial from a practical point of view.

The model discretization presented here is based on a partition T in convex
polytopes, a subspace Σh ⊆ Σ from an inf-sup stable pair (Σh, Vh) for the Laplacian
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(as in Section 4) with the compatibility condition div Σh ⊆ Vh, and Uh := Vh ×
tr∂Ω Σh (the symbol tr∂Ω refers to the normal trace). This implies the relation

(div, tr∂Ω)Σh ⊆ Uh
sufficient for Condition 2.2 to hold. The verification of Condition 3.2 is immediate
because the orthogonal projection in Uh is the product of the orthogonal projec-
tions with respect to the components w, γ. The assumption that the trace variable
is discretized with tr∂Ω Σh allows for a reduction to a positive-definite system as
outlined above for the continuous setting.

Example 7.1. On simplicial triangulations, the simplest example is the pairing of
the lowest-order Raviart–Thomas space Σh and the product space of piecewise con-
stants with respect to T and the piecewise constants with respect to the boundary
faces F(∂Ω), written

Uh := P0(T)× P0(F(∂Ω)).

The inf-sup stability of the discrete system and the compatibility condition are then
consequences of standard results on the Raviart–Thomas element [5].

In what follows it is assumed that Uh contains the subspace P0(T)× P0(F(∂Ω))
of piecewise constant functions. In order to verify Condition 3.1, it then suffices to
determine a constant δh such that

‖w −Π0,F(∂Ω)w‖2L2(∂Ω) ≤ δ
2
h(‖∇w‖2L2(Ω) + ‖w‖2L2(Ω))

where Π0,F(∂Ω) is the L2 projection onto the piecewise constants with respect to the

boundary faces. Note that w ∈ H1(Ω) so that w|∂Ω ∈ H1/2(∂Ω). This is achieved
with the following trace inequality for convex polytopes in terms of the geometry
of an inscribed simplex.

Lemma 7.2. Let ω ⊆ Rn be a convex polytope with a face F and let T ⊆ ω be an
inscribed simplex with F as one of its faces. Let v ∈ H1(ω) with

´
F
v ds = 0. Then

‖v‖L2(F ) ≤

√
measn−1(F )

measn(T )
hT

√
n+ 2π

nπ2
‖∇v‖L2(ω)

where the symbol measn−1(F ) denotes the (n − 1)-dimensional surface measure of
F and measn(T ) denotes the volume of T .

Proof. Without loss of generality one may assume
´
T
v dx = 0 because ‖v‖L2(F ) ≤

‖v−c‖L2(F ) for any real constant c, in particular for the volume average c =
ffl
T
v dx.

Let P denote the vertex of T opposite to F . The integration-by-parts formula with
the outer unit normal nT to ∂T implies

n

ˆ
T

v2 dx+

ˆ
T

(• − P ) · ∇(v2) dx =

ˆ
∂T

v2(• − P ) · nT ds.

The vector (x − P ) is tangential to ∂T for almost all x ∈ ∂T \ F and thus ortho-
gonal to nT . If x belongs to the interior of F , an elementary geometric consideration
(volume of a cone in Rn) shows that (x−P )·nT = nmeasn(T )/measn−1(F ). There-
fore the integral on the right-hand side equals nmeasn(T )/measn−1(F )

´
F
v2 dx.

This leads to the classical trace identityˆ
F

v2 ds =
measn−1(F )

measn(T )

ˆ
T

v2 dx+
measn−1(F )

nmeasn(T )

ˆ
T

(• − P ) · ∇(v2) dx

≤ measn−1(F )

measn(T )

ˆ
T

v2 dx+
2hT measn−1(F )

nmeasn(T )

ˆ
T

|v| |∇v| dx.
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Using the Young inequality with an arbitrary scaling parameter α > 0, the second
term on the right-hand side can be bounded as follows

2hT measn−1(F )

nmeasn(T )

ˆ
T

|v| |∇v| dx ≤ hT measn−1(F )

nmeasn(T )

(
α‖v‖2L2(T ) +

1

α
‖∇v‖2L2(T )

)
.

Together with the Poincaré bound ‖v‖L2(T ) ≤ (hT /π)‖∇v‖L2(T ) this yields

‖v‖2L2(F ) ≤
measn−1(F )

measn(T )

(
h2
T (1 + hTα/n)

π2
+
hT
n

1

α

)
‖∇v‖2L2(T ).

For α := π/hT we obtain

‖v‖2L2(F ) ≤
measn−1(F )

measn(T )
h2
T

(
1

π2
+

2

πn

)
‖∇v‖2L2(T ).

�

If m is the maximal possible number of faces of a polytope K of T and T is not
a singleton set, an overlap argument and Lemma 7.2 show that Condition 3.1 is
satisfied with

δh =
√
m− 1 max

K∈T
F⊆T⊆K

√
measn−1(F )

measn(T )
hT

√
n+ 2π

nπ2
.

The notation F ⊆ T ⊆ K indicates that F is a boundary face and there exists a
simplex T inscribed to the polytope K ∈ T such that F is simultaneously a face of
T and K.

Corollary 7.3 (guaranteed lower Steklov eigenvalue bound). Assume the above
setting for the mixed formulation of the Steklov eigenproblem. Let Σh ⊆ Σ, Uh ⊆
U be an inf-sup stable pair of finite-dimensional subspaces related to a partition
T (with at least two elements) in convex polytopes (with at most m faces) with
(div, tr∂Ω)Σh ⊆ Uh where Uh contains the piecewise constants P0(T)× P0(F(∂Ω)).
Then, the Jth eigenvalue λJ of (3.1) and the Jth discrete eigenvalue λJ,h of (3.2)
satisfy

λJ,h

1 + (m− 1) max
K∈T

F⊆T⊆K

measn−1(F )

measn(T )
h2
T

n+ 2π

nπ2
λJ,h

≤ λJ .

Remark 7.4. Under shape-regularity assumptions, in the bound of Corollary 7.3
the prefactor of λh,J in the denominator is proportional to h.

Example 7.5. In this example, the Steklov eigenvalue problem in two dimensions
is discretized with the lowest-order Raviart–Thomas finite element pairing from
Example 7.1 with respect to a regular triangulation. The domain under considera-
tion is the L-shaped domain from Example 4.3 with the initial triangulation from
Figure 1. Table 4 displays the discrete eigenvalue, the guaranteed lower bound from
Corollary 7.3, and an upper bound computed with a first-order conforming FEM,
on a sequence of uniformly refined meshes.

8. Conclusive remarks

There are many more applications of Theorem 3.4 beyond the model problems
highlighted in this paper. For example, the Stokes eigenvalues in the formulation
without symmetry constraint on the stress can be discretized in a dual pseudostress
formulation [7], which can be applied for the computation of guaranteed lower
eigenvalue bounds of the Stokes system, with or without lower order terms. Another
example is the biharmonic eigenvalue problem, where a dual mixed method has
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h×
√

2 λ1,h lower bound upper bound
20 0.340304 0.188241 0.344375

2−1 0.341129 0.242816 0.342217
2−2 0.341342 0.283844 0.341624
2−3 0.341397 0.309994 0.341469
2−4 0.341411 0.324951 0.341430

Table 4. Results for the Steklov eigenvalues on the L-shaped do-
main.

been provided by [12]. A computable quantity δh then requires knowledge on the
fundamental frequency of the biharmonic operator with free boundary condition
over reference polyhedra. Those can be numerically computed as in [8].
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Rational Mech. Anal., 82(2):165–179, 1983.

[18] R. S. Laugesen and B. A. Siudeja. Minimizing Neumann fundamental tones of triangles: an
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