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LOCALIZED IMPLICIT TIME STEPPING FOR THE WAVE
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Abstract. This work proposes a discretization of the acoustic wave equation with possibly os-
cillatory coefficients based on a superposition of discrete solutions to spatially localized subproblems
computed with an implicit time discretization. Based on exponentially decaying entries of the global
system matrices and an appropriate partition of unity, it is proved that the superposition of localized
solutions is appropriately close to the solution of the (global) implicit scheme. It is thereby justi-
fied that the localized (and especially parallel) computation on multiple overlapping subdomains is
reasonable. Moreover, a restart is introduced after a certain number of time steps to maintain a
moderate overlap of the subdomains. Overall, the approach may be understood as a domain decom-
position strategy in space on successive short time intervals that completely avoids inner iterations.
Numerical examples are presented.
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1. Introduction. We consider the acoustic wave equation

\partial 2
t u - \nabla \cdot (A\nabla u) = f in \Omega \times (0, tfin)(1.1a)

in an open, bounded, connected Lipschitz polytope \Omega \subset \BbbR d in d dimensions until some
final time tfin > 0, subject to the boundary condition

u= 0 on \partial \Omega \times (0, tfin)(1.1b)

and the initial conditions

u| t=0 = u0 and \partial tu| t=0 = v0 in \Omega .(1.1c)

Here u is the (unknown) wave field, A\in L\infty (\Omega ) is a positive and bounded coefficient
that satisfies \alpha \leq A(x) \leq \beta almost everywhere for given positive constants \alpha and \beta ;
u0 and v0 are the initial data and f is a given source term. Details can be found in
section 2. Note that, more generally, a matrix-valued coefficient could be considered
as well, but we stick to a scalar-valued coefficient for ease of presentation. Explicit
time integration schemes, such as the leapfrog method as analyzed, e.g., in [19, 7],
--for the numerical solution of (1.1) are easy to implement and computationally cheap
in every single time step, particularly if mass lumping is used. However, the time
step size is typically limited by the CFL condition that bounds the time step size by
the spatial mesh parameter. The advantage of implicit methods, such as analyzed
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1590 DIETMAR GALLISTL AND ROLAND MAIER

in, e.g., [10, 4], is that such a restriction can be avoided, at the expense of solving a
more involved linear system in each time step. While the propagation speed of the
solution to (1.1) is finite, the support of the discrete solution defined by an implicit
scheme will usually equal \Omega after the first time step. This suggests that, although the
discrete information outside the cone of propagation may be essential for the approx-
imation to fulfill some discrete conservation of energy, it may be of minor importance
in terms of approximation of the function u. Given locally supported initial data and
right-hand side, the discrete functions computed from a global implicit method, or
the same method restricted to a subdomain that includes the physical cone of prop-
agation, should therefore have comparable approximation properties. The approach
proposed in this work is based on this reasoning. Although the matrix inversion re-
lated to each time step of an implicit scheme transports information globally over
\Omega , relevant information decays fast and can be captured by solving a system over a
smaller subdomain, which implies less computational cost. Global initial data and
sources can be localized through a partition of unity, and the discrete solution can be
defined by superposition of the solutions to local subproblems that can be solved in
parallel.

In this paper, we work out this approach for the Crank--Nicolson discretiza-
tion of (1.1) with first-order finite elements in space. We first present the classical
(global) scheme and some preliminaries in section 2. We then quantify the decay of
information and thus the localizability of the problem in the energy norm and pro-
vide an error estimate between the Crank--Nicolson solution and a localized version
(section 3). We then define the superposition scheme (referred to as the local su-
perposition method) and provide an error estimate in section 4. Finally, numerical
experiments are presented (section 5).

We emphasize that the general aim of our strategy is to avoid global computations
at the cost of some limited overlap. This is particularly important if very fine dis-
cretization parameters are considered (e.g., in the context of multiscale problems with
highly oscillatory coefficients), where global computations quickly become unfeasible.
Other approaches that address this issue are multiscale methods, as considered, e.g., in
[1, 2, 27, 26, 23] for the wave equation. These methods operate on a coarse (spatial)
scale and only locally incorporate fine information into a suitable low-dimensional
trial space, which needs to be built before the actual simulation. In [17], such ideas
are combined with a coefficient-adapted lumping strategy to achieve a fully explicit
multiscale method. Note that multiscale methods typically use fine-scale information
to provide approximation properties with respect to the coarse scale, whereas we use
the coarse scale to make the computation of the fine-scale solution more efficient.

Conceptually, our approach has some connections to classical domain decomposi-
tion strategies; see, e.g., [15, 14, 16] for works in the context of the wave equation.
However, compared to such methods we do not require multiple iterations, and we
completely avoid the necessity of properly defining transmission conditions between
the subdomains at the cost of larger overlaps. Domain splitting ideas are also used in
connection with locally implicit or local time-stepping schemes; see [9, 18, 5, 6]. From
a practical point of view, our approach easily allows for a combination of different
schemes in various subdomains as well, without the need for an appropriate coupling.
Finally, we would like to mention that the general idea of exploiting the fact that
waves stay within the physical cone of propagation is also used in connection with
so-called tent-pitching methods; see [28, 12, 11].
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LOCALIZED IMPLICIT TIME STEPPING 1591

Notation. Throughout this work, C > 0 denotes a generic constant that is in-
dependent of the scales H,\varepsilon ,h, and \vargamma but might depend on the dimension d and the
parameters \alpha and \beta . The value of C might change from line to line in the estimates.
Further, we write \theta \lesssim \eta if \theta \leq C\eta and \theta \eqsim \eta if \theta \lesssim \eta \lesssim \theta . For ease of notation, we
assume that the diameter of the domain satisfies diam(\Omega )\eqsim 1. Finally, for \omega \subseteq \Omega we
use the notation (\cdot , \cdot )\omega := (\cdot , \cdot )L2(\omega ), a\omega (\cdot , \cdot ) := (A\nabla \cdot ,\nabla \cdot )\omega , \| \cdot \| \omega := \| \cdot \| L2(\omega ), as well as
\| \cdot \| 2a,\omega := a\omega (\cdot , \cdot ). Further, we abbreviate (\cdot , \cdot ) := (\cdot , \cdot )\Omega , a(\cdot , \cdot ) := a\Omega (\cdot , \cdot ), \| \cdot \| := \| \cdot \| \Omega ,
and \| \cdot \| a := \| v\| a,\Omega .

2. Preliminaries.

2.1. Model problem. Assuming that f \in L\infty (0, tfin;L
2(\Omega )), u0 \in H1

0 (\Omega ), and
v0 \in L2(\Omega ), the weak formulation of (1.1) reads as follows: find u\in L\infty (0, tfin;H

1
0 (\Omega )),

with \partial tu \in L\infty (0, tfin;L
2(\Omega )) and \partial 2

t u \in L\infty (0, tfin;H
 - 1(\Omega )), such that u| t=0 = u0,

\partial tu| t=0 = v0, and

\langle \partial 2
t u,w\rangle + a(u,w) = (f,w) for all w \in H1

0 (\Omega ) and a.e. t\in (0, tfin)

with the duality pairing \langle \cdot , \cdot \rangle of H - 1(\Omega ) with H1
0 (\Omega ). Well-posedness of this problem

follows directly by [20, Chap. 3, Thm. 8.1 and Rem. 8.2]. If also \partial tf \in L\infty (0, tfin;
L2(\Omega )), v0 \in H1

0 (\Omega ), and f | t=0+\nabla \cdot (A\nabla u0)\in L2(\Omega ), we have \partial 2
t u\in L\infty (0, tfin;L

2(\Omega ))
and can replace the duality pairing by the L2-inner product.

2.2. Classical discretization. In order to solve the model problem computa-
tionally, we discretize in space using the first-order finite element space Vh, which is a
subspace of H1

0 (\Omega ) consisting of piecewise polynomials with coordinate degree at most
one on a regular and quasi-uniform mesh \scrT h with characteristic mesh size h. Further,
for \omega \subseteq \Omega we set Vh(\omega ) := \{ vh \in Vh : supp(vh)\subseteq \omega \} . For ease of notation, we assume
Q1 finite elements over parallelepipedal meshes, but the arguments of this paper are
valid for P1 finite elements over simplicial triangulations as well. In time, we choose
a Crank--Nicolson scheme with time step size \tau . It involves the second-order centered
difference quotient

\^\partial 2
\tau z

n
h := \tau  - 2(zn+1

h  - 2znh + zn - 1
h )

in time and the averages

\widehat znh :=
1

4
(zn+1

h + 2znh + zn - 1
h )

of given functions (znh )n. The fully discrete scheme seeks (un
h)n with un

h \in Vh such
that

(\^\partial 2
\tau u

n
h, vh) + a(\widehat un

h, vh) = (\widehat fn
h , vh) for all vh \in Vh(2.1)

given appropriate initial conditions u1
h, u

0
h \in Vh. Here, fk

h is an approximation of
f(k\tau ) in Vh, e.g., its L

2-projection. We emphasize that the scheme (2.1) is obtained
when the classical Crank--Nicolson scheme, which traces back to [8], is employed for
the first-order formulation of the wave equation and the second variable is eliminated
afterwards. Therefore, we use the term Crank--Nicolson scheme here as well. Using
the mass matrix Mh and stiffness matrix Sh, the scheme can be written as a system
of linear equations as\biggl( 

Mh +
\tau 2

4
Sh

\biggr) 
un+1
h = \tau 2Mh

\widehat fn
h +Mh(2u

n
h  - un - 1

h ) - \tau 2

4
Sh(2u

n
h + un - 1

h ),
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1592 DIETMAR GALLISTL AND ROLAND MAIER

where we tacitly identify uh with its coefficient vector with respect to a spatial basis.
We will use the conventions

D\tau z
n+1/2
h :=

zn+1
h  - znh

\tau 
, z

n+1/2
h :=

zn+1
h + znh

2
for sequences (znh )n.(2.2)

We define the discrete energy norm

\| v\| \scrE ,\omega =
\bigl( 
\| D\tau v\| 2\omega + \| v\| 2a,\omega 

\bigr) 1/2
,

where we drop the domain dependence in the notation if \omega = \Omega , and the discrete
energy

\scrE n+1/2
h,\tau :=

1

2
\| un+1/2

h \| 2\scrE .

We have the following result concerning the energy conservation of the scheme.

Theorem 2.1 (energy conservation of the Crank--Nicolson method). If f \equiv 0, we
have energy conservation in the sense that

\scrE n+1/2
h,\tau = \scrE 1/2

h,\tau .

If f \not = 0, it holds that \sqrt{} 
\scrE n+1/2
h,\tau \leq 

\sqrt{} 
\scrE 1/2
h,\tau +

n\sum 
j=1

\tau \surd 
2

\bigm\| \bigm\| \widehat f j
h

\bigm\| \bigm\| 
L2(\Omega )

.(2.3)

Proof. The result follows directly with the choice

vh = un+1
h  - un - 1

h = (un+1
h  - un

h) + (un
h  - un - 1

h )

as a specific test function in (2.1) after some minor algebraic modifications. A detailed
proof is provided in, e.g., [21, Thm. 3.3.4].

3. Decay and localization. In this section, we investigate the behavior of a
discrete solution corresponding to local data. In particular, we investigate decay
properties and motivate a localization of the discrete solution.

3.1. Decaying solutions. In every time step, the system (2.1) seeks the solution
un+1
h \in Vh to an equation characterized on the left-hand side by the bilinear form

\scrK (zh, vh) := (zh, vh)L2(\Omega ) +
\tau 2

4
a(zh, vh).

For h\approx \tau , the inverse of the system matrix (with respect to the Lagrange basis) of this
bilinear form has exponentially decaying entries away from the diagonal (cf. Figure 1).
Therefore, relevant information is only propagated by a certain amount from one time
step to the subsequent one, similarly to the physical propagation of a (local) wave.

To make this observation more rigorous, we show an appropriate decay estimate.
Therefore, we require a special norm that is associated to the left-hand side of the
Crank--Nicolson scheme and reads, for any \omega \subseteq \Omega ,

| | | vh| | | 2\omega :=\scrK \omega (vh, vh) = \| vh\| 2L2(\omega ) +
\tau 2

4
\| vh\| 2a,\omega , vh \in Vh,

and abbreviate | | | vh| | | := | | | vh| | | \Omega . Further, we require the concept of element patches
around a subset \omega \subseteq \Omega . We define

\ttN \ell (\omega ) := \ttN (\ttN \ell  - 1(\omega )), \ell \geq 2, \ttN 1(\omega ) = \ttN (\omega ) := int
\bigcup \bigl\{ 

K \in \scrT h | \omega \cap K \not = \emptyset 
\bigr\} 
.

Further, we set \ttN 0(\omega ) := int\omega . We can now state the following result.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LOCALIZED IMPLICIT TIME STEPPING 1593

Fig. 1. Values of the inverse system matrix of the Crank--Nicolson scheme in two dimensions
on a uniform and lexicographically ordered mesh with logarithmic color coding; mesh size (and time
step) are h= \tau = 2 - 4 (left) and h= \tau = 2 - 6 (right).

Lemma 3.1 (decaying discrete solution). Let \omega \subseteq \Omega be a union of elements such
that suppf \subseteq \omega , suppu1

h \subseteq \omega , suppu0
h \subseteq \omega . For any n\in \BbbN and \ell \in \BbbN , we have

| | | un+1/2
h | | | \Omega \setminus \ttN \ell (\omega ) \leq (\ell + 1)n/2\gamma \ell max

k\leq n
| | | uk+1/2

h | | | ,(3.1)

with

0<\gamma =

\sqrt{} \biggl( 
C\tau ,h +

1

2

\biggr) 
/(1 +C\tau ,h)< 1

for a constant C\tau ,h \eqsim \beta \alpha  - 1(\tau /h+ h/\tau ) that also depends on d.

Proof. The proof adopts the main ideas of decay proofs as used in the context of
the multiscale method known as localized orthogonal decomposition; see, e.g., [24, 22].
For n = 0, a related result was proved to show the decay of the Green's function
for linear Schr\"odinger operators in an energy norm that is similar to our norm | | | \cdot | | | ;
see [3].

For any \ell , we define the cutoff function \eta \ell \in Vh with values 0 \leq \eta \ell \leq 1 and the
following properties:

\eta \ell =

\Biggl\{ 
0 in \ttN \ell  - 1(\omega ),

1 in \Omega \setminus \ttN \ell (\omega )
and \| \nabla \eta \ell \| L\infty (\Omega ) \leq 2(d - 1)/2 h - 1.(3.2)

Further, we require the nodal interpolation operator Ih : C
0(K)\rightarrow Vh onto Q1 finite

elements. Standard interpolation estimates and the inverse inequality prove for any
K \in \scrT h and all q \in Q2(K) (the space of biquadratic polynomial functions over K)
that

\| (\sansi \sansd  - Ih)q\| a,K \leq C\beta 1/2 h\| \nabla 2q\| K \leq C\beta 1/2\alpha  - 1/2\| q\| a,K .(3.3)

The triangle inequality thus implies the stability property

\| Ihq\| a,K \leq \| q\| a,K + \| (\sansi \sansd  - Ih)q\| a,K \leq (1 +C\beta 1/2\alpha  - 1/2)\| q\| a,K(3.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1594 DIETMAR GALLISTL AND ROLAND MAIER

for any q \in Q2(K). Using \eta \ell and Ih, we estimate for any zh \in Vh

| | | zh| | | 2\Omega \setminus \ttN \ell (\omega ) =\scrK \Omega \setminus \ttN \ell (\omega )(zh, zh)

\leq (zh, zh\eta \ell ) +
\tau 2

4

\bigl( 
A\nabla zh, \eta \ell \nabla zh

\bigr) 
= (zh, zh\eta \ell ) +

\tau 2

4
a(zh, \eta \ell zh) - 

\tau 2

4

\bigl( 
A\nabla zh, zh\nabla \eta \ell 

\bigr) 
=\scrK (zh, Ih(zh\eta \ell )) - 

\tau 2

4

\bigl( 
A\nabla zh, zh\nabla \eta \ell 

\bigr) 
+\scrK (zh, (\sansi \sansd  - Ih)(zh\eta \ell )).

(3.5)

Using that the support of \nabla \eta \ell is the closure of R\ell := \ttN \ell (\omega ) \setminus \ttN \ell  - 1(\omega ), the bound from
(3.2) on \nabla \eta \ell , and a weighted Young's inequality with weight \delta = 2(3 - d)/2\tau  - 1h\beta  - 1/2,
we obtain \bigm| \bigm| \bigm| \bigm| \tau 24 \bigl( A\nabla zh, zh\nabla \eta \ell 

\bigr) \bigm| \bigm| \bigm| \bigm| \leq 1

2\delta 

\tau 2

4
\| zh\| 2a,R\ell 

+
\beta \delta 

2
2(d - 1) h - 2 \tau 

2

4
\| zh\| 2R\ell 

\leq 2(d - 3)/2h - 1\tau \beta 1/2| | | zh| | | 2R\ell 
.

(3.6)

For the last term in (3.5), we employ the fact that supp((\sansi \sansd  - Ih)(zh\eta \ell )) \subseteq R\ell , a
classical L2-interpolation result of Ih, as well as (3.3). This leads to

\scrK (zh, (\sansi \sansd  - Ih)(zh\eta \ell )) =\scrK R\ell 
(zh, (\sansi \sansd  - Ih)(zh\eta \ell ))

= (zh, (\sansi \sansd  - Ih)(zh\eta \ell ))R\ell 
+

\tau 2

4
aR\ell 

(zh, (\sansi \sansd  - Ih)(\eta \ell zh))(3.7)

\leq 
\biggl( 
C\alpha  - 1/2h\| zh\| R\ell 

+C\beta 1/2\alpha  - 1/2 \tau 
2

4
\| zh\| a,R\ell 

\biggr) 
\| zh\eta \ell \| a,R\ell 

.

Further, from the product rule and the bound from (3.2), we have

\| zh\eta \ell \| a,R\ell 
\leq Ch - 1\beta 1/2\| zh\| R\ell 

+ \| zh\| a,R\ell 
.(3.8)

Going back to (3.7), we arrive at

\scrK (zh, (\sansi \sansd  - Ih)(zh\eta \ell ))\leq C(\beta /\alpha )1/2| | | zh| | | 2R\ell 
+C\beta \alpha  - 1/2

\biggl( 
h+

\tau 2

4h

\biggr) 
\| zh\| R\ell 

\| zh\| a,R\ell 
.

(3.9)

A weighted Young's inequality with \delta = \tau /2 gives\biggl( 
h+

\tau 2

4h

\biggr) 
\| zh\| R\ell 

\| zh\| a,R\ell 
\leq 
\biggl( 
h+

\tau 2

4h

\biggr) \biggl( 
1

2\delta 
\| zh\| 2R\ell 

+
\delta 

2
\| zh\| 2a,R\ell 

\biggr) 
=

\biggl( 
h

\tau 
+

\tau 

4h

\biggr) 
| | | zh| | | 2R\ell 

.

The combination with (3.9) shows that there exists a constant C > 0 such that

\scrK (zh, (\sansi \sansd  - Ih)(zh\eta \ell ))\leq C\beta \alpha  - 1/2

\biggl( 
h

\tau 
+

\tau 

4h

\biggr) 
| | | zh| | | 2R\ell 

.(3.10)

Altogether, inserting (3.6) and (3.10) into (3.5), we obtain

| | | zh| | | 2\Omega \setminus \ttN \ell (\omega ) \leq C1| | | zh| | | 2R\ell 
+\scrK (zh, Ih(zh\eta \ell )),(3.11)

with a constant C1 \eqsim \beta \alpha  - 1/2(\tau /h+ h/\tau ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LOCALIZED IMPLICIT TIME STEPPING 1595

We now turn to specific choices of zh \in Vh and prove the decay property (3.1) by

induction over n. For n= 0 and zh = u
1/2
h , we have

\scrK 
\Bigl( 
u
1/2
h , Ih(u

1/2
h \eta \ell )

\Bigr) 
= 0

since, by assumption, the supports of u1
h and u0

h have a trivial intersection with the

support of \eta \ell and thus with the support of Ih(\eta \ell u
1/2
h ). Employing the elementary set

identity

R\ell = (\Omega \setminus \ttN \ell  - 1(\omega )) \setminus (\Omega \setminus \ttN \ell (\omega )),

we therefore obtain from (3.11) that

| | | u1/2
h | | | 2\Omega \setminus \ttN \ell (\omega ) \leq C1| | | u1/2

h | | | 2\Omega \setminus \ttN \ell  - 1(\omega )  - C1| | | u1/2
h | | | 2\Omega \setminus \ttN \ell (\omega ),

and thus with \delta :=
\sqrt{} 
C1/(1 +C1)< 1,

| | | u1/2
h | | | 2\Omega \setminus \ttN \ell (\omega ) \leq \delta 2\ell | | | u1/2

h | | | 2.

In particular, (3.1) holds for n= 0 and any \delta \leq \gamma < 1.

Next, we consider the case n = 1 with zh = u
3/2
h . We use u

3/2
h = 1

2u
2
h + 1

2u
1
h and

an argument similar to that for the case n = 0 above, together with supp(fh) \subseteq \omega ,
to estimate the last term on the right-hand side of (3.11) (where we abbreviate y :=

Ih(u
3/2
h \eta \ell )) as follows:

\scrK (u
3/2
h , y) =

1

2
\scrK (u2

h, y) =
\tau 2

2
(\widehat f1

h , y) +
1

2
(2u1

h  - u0
h, y) - 

1

2

\tau 2

4
a(2u1

h + u0
h, y) = 0.

As above, we therefore get | | | u3/2
h | | | 2\Omega \setminus \ttN \ell (\omega ) \leq \delta 2\ell | | | u3/2

h | | | 2, and particularly (3.1) for n= 1
with \delta \leq \gamma < 1.

Now let n \geq 2 and assume that (3.1) holds for any k < n. We abbreviate w :=

Ih(u
n+1/2
h \eta \ell ) and observe from (3.4) that \| w\| a is bounded from above by a constant

times \| un+1/2
h \| a. For the last term in (3.11), we therefore estimate

\scrK (u
n+1/2
h , Ih(u

n+1/2
h \eta \ell )) =\scrK (u

n+1/2
h ,w)

= \tau 2
\biggl( 

\widehat 
f
n - 1/2
h ,w

\biggr) 
+ (2u

n - 1/2
h  - u

n - 3/2
h ,w) - \tau 2

4
a(2u

n - 1/2
h + u

n - 3/2
h ,w)

\leq 1

2
| | | un+1/2

h | | | 2\Omega \setminus \ttN \ell  - 1(\omega ) +C2

\biggl( 
1

2
| | | un - 1/2

h | | | 2\Omega \setminus \ttN \ell  - 1(\omega ) +
1

2
| | | un - 3/2

h | | | 2\Omega \setminus \ttN \ell  - 1(\omega )

\biggr) 
,

with an appropriate constant C2 (proportional to \beta \alpha  - 1) using a weighted Young's

inequality. Going back to (3.11) (with the specific choice zh = u
n+1/2
h ), we therefore

get

| | | un+1/2
h | | | 2\Omega \setminus \ttN \ell (\omega ) \leq C\tau ,h| | | un+1/2

h | | | 2R\ell 
+
1

2
| | | un+1/2

h | | | 2\Omega \setminus \ttN \ell  - 1(\omega )+
C\tau ,h

2

\sum 
\nu =1,3

| | | un - \nu /2
h | | | 2\Omega \setminus \ttN \ell  - 1(\omega ),

where C\tau ,h := max\{ C1,C2\} \eqsim \beta \alpha  - 1(\tau /h+ h/\tau ) with C1 as defined after (3.11). Re-
arranging terms, we arrive at

(1+C\tau ,h)| | | un+1/2
h | | | 2\Omega \setminus \ttN \ell (\omega )\leq 

\biggl( 
C\tau ,h+

1

2

\biggr) 
| | | un+1/2

h | | | 2\Omega \setminus \ttN \ell  - 1(\omega )+
C\tau ,h

2

\sum 
\nu =1,3

| | | un - \nu /2
h | | | 2\Omega \setminus \ttN \ell  - 1(\omega ).
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1596 DIETMAR GALLISTL AND ROLAND MAIER

Dividing by (1 + C\tau ,h) on both sides and setting \gamma :=
\sqrt{} 
(C\tau ,h + 1

2 )/(1 +C\tau ,h) < 1

(note that \delta \leq \gamma ), we further obtain

| | | un+1/2
h | | | 2\Omega \setminus \ttN \ell (\omega ) \leq \gamma 2

\Biggl( 
| | | un+1/2

h | | | 2\Omega \setminus \ttN \ell  - 1(\omega ) +
1

2

\sum 
\nu =1,3

| | | un - \nu /2
h | | | 2\Omega \setminus \ttN \ell  - 1(\omega )

\Biggr) 
,

and iterating the argument for j = \ell  - 1, . . . ,1, we get

| | | un+1/2
h | | | 2\Omega \setminus \ttN \ell (\omega ) \leq \gamma 2\ell | | | un+1/2

h | | | 2 + 1

2

\ell  - 1\sum 
j=0

\gamma 2(\ell  - j)
\sum 
\nu =1,3

| | | un - \nu /2
h | | | 2\Omega \setminus \ttN j(\omega ).

From the assumption that (3.1) holds for any k < n, we obtain for the sum on the

right-hand side and Muh
:=maxk\leq n| | | uk+1/2

h | | | that

1

2

\ell  - 1\sum 
j=0

\gamma 2(\ell  - j)
\sum 
\nu =1,3

| | | un - \nu /2
h | | | 2\Omega \setminus \ttN j(\omega ) \leq 

\ell  - 1\sum 
j=0

\gamma 2(\ell  - j)(j + 1)(n - 1)\gamma 2jM2
uh

\leq \ell (\ell + 1)(n - 1)\gamma 2\ell M2
uh
,

so that altogether,

| | | un+1/2
h | | | 2\Omega \setminus \ttN \ell (\omega ) \leq (\ell + 1)n\gamma 2\ell max

k\leq n
| | | uk+1/2

h | | | 2,

which is the bound asserted in (3.1).

3.2. Localized computations. We now turn to the computation of a discrete
solution to the wave equation on localized patches. Therefore, assume that the initial
conditions of (2.1) fulfill u1

h, u
0
h \in Vh(\omega ) and that f has support in \omega \subseteq \Omega . The

localized variant of (2.1) now seeks (\~un
h)n\geq 2 \in Vh(\ttN \ell (\omega )) such that

(\^\partial 2
\tau \~u

n
h, vh)\ttN \ell (\omega ) + a\ttN \ell (\omega )(\widehat \~un

h, vh) = (\widehat fn
h , vh)\ttN \ell (\omega ) for all vh \in Vh(\ttN \ell (\omega ))(3.12)

for some \ell \in \BbbN given the initial conditions \~u1
h = u1

h, \~u
0
h = u0

h \in Vh(\omega ). We define \~u
n+1/2
h

following the convention (2.2). We emphasize that (3.12) includes zero boundary
conditions for \~un

h on the boundary of \ttN \ell (\omega ) due to the definition of the space Vh(\ttN \ell (\omega )).
Next, we use Lemma 3.1 in order to show that the discrete solutions to the wave
equation with local data can be computed in a localized way with only a reasonable
impact on the overall error.

Theorem 3.2 (localization error). Let the assumptions of Lemma 3.1 hold. Then

for \ell \in \BbbN the error \xi n := \~u
n+1/2
h  - u

n+1/2
h between the solutions (un

h)n\geq 0 of (2.1) and
(\~un

h)n\geq 0 of (3.12) fulfills

| | | \xi n| | | = | | | un+1/2
h  - \~u

n+1/2
h | | | \lesssim C\tau ,h(9\ell )

n/2\gamma \ell max
k\leq n

| | | uk+1/2
h | | | 

for any n\in \BbbN 0 and \gamma and C\tau ,h as in Lemma 3.1.

Proof. For n= 0,1 the result follows from \xi n = 0 by the choice of initial conditions.
For n\geq 1, we define zn+1

h \in Vh(\ttN \ell (\omega )) as the solution to

\tau  - 2(zn+1
h  - 2un

h + un - 1
h , vh)\ttN \ell (\omega ) +

1

4
a\ttN \ell (\omega )(z

n+1
h + 2un

h + un - 1
h , vh) = (\widehat fn

h , vh)\ttN \ell (\omega )
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LOCALIZED IMPLICIT TIME STEPPING 1597

for all vh \in Vh(\ttN \ell (\omega )). We define z
n+1/2
h following (2.2) and observe that \mu n :=

\~u
n+1/2
h  - z

n+1/2
h solves

\scrK \ttN \ell (\omega )(\mu 
n, vh) = (2\xi n - 1  - \xi n - 2, vh)\ttN \ell (\omega )  - 

\tau 2

4
a\ttN \ell (\omega )(2\xi 

n - 1 + \xi n - 2, vh)

for n\geq 2. With the choice vh = \mu n, this leads to

| | | \mu n| | | \leq 2| | | \xi n - 1| | | + | | | \xi n - 2| | | .

Using this estimate and the triangle inequality repeatedly, we obtain with \nu n :=
u
n+1/2
h  - z

n+1/2
h that

| | | \xi n| | | \leq | | | \nu n| | | + | | | \mu n| | | \leq | | | \nu n| | | + 2| | | \xi n - 1| | | + | | | \xi n - 2| | | \leq 
n\sum 

k=0

3n - k| | | \nu k| | | (3.13)

since the initial conditions for (2.1) and (3.12) coincide. Due to

\scrK (\nu k, vh) =\scrK 
\Bigl( 
u
k+1/2
h  - z

k+1/2
h , vh

\Bigr) 
= 0 for all vh \in Vh(\ttN \ell (\omega )),

we obtain the best-approximation property

| | | \nu k| | | \leq | | | uk+1/2
h  - w| | | for any w \in Vh(\ttN \ell (\omega )).

With the cutoff function \eta \ell defined in (3.2) and the nodal interpolation operator Ih,

we define the particular choice w := Ih((1 - \eta \ell )u
k+1/2
h ). With the arguments from the

proof of Lemma 3.1, particularly (3.8) and (3.9), we get with R\ell = \ttN \ell (\omega ) \setminus \ttN \ell  - 1(\omega )
that

| | | \nu k| | | \leq | | | uk+1/2
h  - w| | | = | | | uk+1/2

h  - w| | | \Omega \setminus \ttN \ell  - 1(\omega )

\leq | | | uk+1/2
h \eta \ell | | | \Omega \setminus \ttN \ell  - 1(\omega ) + | | | (\sansi \sansd  - Ih)((1 - \eta \ell )u

k+1/2
h )| | | \Omega \setminus \ttN \ell  - 1(\omega )

\lesssim C\tau ,h | | | uk+1/2
h | | | \Omega \setminus \ttN \ell  - 1(\omega )

with C\tau ,h from Lemma 3.1. Inserting this bound in (3.13) and using Lemma 3.1, we
further get

| | | \xi n| | | \lesssim C\tau ,h

n\sum 
k=0

3n - k\ell k/2\gamma \ell  - 1max
j\leq k

| | | uj+1/2
h | | | \lesssim C\tau ,h 3

n+1\ell n/2\gamma \ell  - 1max
k\leq n

| | | uk+1/2
h | | | .

Therefore, the asserted estimate follows.

Remark 3.3 (choice of \ell ). Aiming for an error of order \scrO (\varepsilon ) in Theorem 3.2 for
a fixed n\in \BbbN , we may set

C\tau ,h(9\ell )
n/2\gamma \ell = \varepsilon ,

from which we get that

log\gamma (C\tau ,h) +
n

2
log\gamma (9\ell ) + \ell = log\gamma (\varepsilon ).

This results in

\ell \eqsim 
1

| log\gamma | 
\bigl( 
n log \ell + | log \varepsilon | + logC\tau ,h

\bigr) 
.
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1598 DIETMAR GALLISTL AND ROLAND MAIER

Using that

| log\gamma | = 1

2
| log

\biggl( \biggl( 
C\tau ,h +

1

2

\biggr) \bigg/ 
(1 +C\tau ,h)

\biggr) \bigm| \bigm| \bigm| \bigm| = 1

2
log

\biggl( 
1 +

1

1+ 2C\tau ,h

\biggr) 
and log(1 + 1

x ) = - 
\sum \infty 

n=1 n
 - 1( - x) - n \leq 1

x , which is a good approximation for x\gg 1,
we deduce the essential scaling

1

| log\gamma | 
\eqsim C\tau ,h

and thus

\ell \eqsim C\tau ,hn log \ell +C\tau ,h| log \varepsilon | +C\tau ,h logC\tau ,h.

Note that \ell \gtrsim C\tau ,hn log \ell is satisfied for \ell \gtrsim  - (C\tau ,hn)W - 1( - 1
C\tau ,hn

), where W - 1

denotes a branch of the usual Lambert W function (product logarithm). For 0<x\leq 
exp( - 1) and y := W - 1( - x), the functional identity  - x = y exp(y) and elementary
estimates yield

1 - exp( - 1)\leq log(1/x)

 - W - 1( - x)
\leq 1,

therefore \ell \gtrsim (C\tau ,hn) log(C\tau ,hn) implies \ell \gtrsim  - (C\tau ,hn)W - 1( - 1
C\tau ,hn

), and furthermore

\ell \gtrsim C\tau ,h logC\tau ,h. This gives the sufficient condition

\ell \gtrsim C\tau ,h

\Bigl( 
n
\bigl( 
logn+ logC\tau ,h

\bigr) 
+ | log \varepsilon | 

\Bigr) 
(3.14)

for the scaling of \ell . Thus, if (3.14) is satisfied, there exists a constant C > 0, which
is independent of n, \varepsilon , and \ell but depends on d, \alpha , and \beta , such that the estimate of
Theorem 3.2 simplifies to

| | | un+1/2
h  - \~u

n+1/2
h | | | \lesssim C\tau ,h(9\ell )

n/2\gamma \ell max
k\leq n

| | | uk+1/2
h | | | \leq C \varepsilon max

k\leq n
| | | uk+1/2

h | | | .

That is, to retain a reasonable approximation after n time steps when computing
the discrete solution to (2.1) locally (given that f , u1

h, and u0
h have support in a

local domain \omega ), we essentially need to extend \omega by \scrO (\tau n/h log(\tau n/h)) layers of fine
elements in the relevant regime \tau \geq h. We emphasize that in order to capture the
physically expected wave cone, an extension of the support \omega by at least \scrO (\tau n/h)
additional layers is reasonable, which corresponds to the number of layers that a
locally defined wave travels within the time frame \tau n (provided that the wave speed
is of order \scrO (1)). In that regard, our result only requires a logarithmic overhead to
incorporate the fact that the discrete wave is not fully local. We also refer the reader
to section 4.3 for a discussion of the choice of parameters.

4. Local superposition method. In this section, we utilize the localization
result of the previous section to construct a fairly simple local superposition strategy
that is easily parallelizable. To obtain local data, initial conditions and the right-hand
side are localized by a partition of unity, where we exploit the linearity of the wave
equation. The approach may be understood as a domain decomposition strategy in
space on successive coarse time intervals that requires neither multiple iterations nor
a sophisticated definition of boundary conditions between the different subregions.
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LOCALIZED IMPLICIT TIME STEPPING 1599

4.1. The algorithm. Before we state the full algorithm, we require some ad-
ditional definitions. Let \scrT H be a regular and quasi-uniform mesh with mesh size H,
and assume for simplicity that the mesh \scrT h is a refinement of \scrT H and H/h\in \BbbN . The
assumption of nestedness is not necessary but simplifies the overall presentation. We
also introduce the coarse time step size T with T/\tau \in \BbbN to be specified later. Let
\Lambda i, i = 1, . . . ,M , be the nodal Q1 basis functions corresponding to the mesh \scrT H . In
particular,

M\sum 
i=1

\Lambda i \equiv 1, 0\leq \Lambda i \leq 1, i= 1, . . . ,M, \| \nabla \Lambda i\| L\infty (\Omega ) \lesssim H - 1.(4.1)

We denote with \omega i = supp\Lambda i the support of \Lambda i that consists of 2
d (coarse) elements.

The idea of our approach is to approximate the solution (un
h)n of (2.1) by localized

computations only. More precisely, let u1
h, u

0
h \in Vh and fn

h \in Vh, n \in \BbbN 0 be the
(possibly globally supported) discrete initial conditions and right-hand side functions
of (2.1). For a given i, let

fn
h,i := Ih(\Lambda if

n
h ), u1

h,i = Ih(\Lambda iu
1
h), u0

h,i = Ih(\Lambda iu
0
h).(4.2)

These initial conditions and right-hand side functions are only locally supported on
the domain \omega i. Therefore, we can compute the respective solutions locally as in (3.12).
More precisely, we compute the local solutions

(\^\partial 2
\tau \=u

n
h,i, vh)\ttN \ell (\omega i) + a\ttN \ell (\omega i)(\widehat \=un

h,i, vh) = (\widehat fn
h,i, vh)\ttN \ell (\omega i) for all vh \in Vh(\ttN \ell (\omega i)),(4.3)

for n\leq T/\tau , and with

\ell \gtrsim C\tau ,h

\biggl( 
T

\tau 
log

\biggl( 
C\tau ,h

T

\tau 

\biggr) 
+ | logh| + | log\vargamma | + tfin

T
| logH| 

\biggr) 
,(4.4)

where C\tau ,h \eqsim max\{ \tau /h,h/\tau \} as before. The stated assumption on \ell will become
clear in Theorem 4.1 and will be further discussed in section 4.3. Note that the
hidden constant in (4.4) depends on \alpha and \beta . However, these dependencies are not
severe as observed in the numerical examples. Recall that the local problems (4.3) are
solved with zero boundary conditions. In particular, specifically designed conditions
to connect different patches are not required. The aim of our local superposition
strategy is to achieve an error of order \scrO (\vargamma ), where \vargamma optimally scales like the error
of the global Crank--Nicolson scheme, i.e., \vargamma \eqsim h+ \tau 2. This is due to the fact that the
distance to the exact solution cannot scale better than the error of the classical Crank--
Nicolson solution. Given the respective initial conditions, these local solutions are
completely independent of each other, such that the computations can be parallelized.
If we are interested in the global solution at a certain time step, we can sum up the
corresponding local contributions.

After nres := T/\tau time steps, we reset the algorithm to avoid the computation on
patches that require a too large choice of \ell . More precisely, the summed up discrete
solutions

\=un\mathrm{r}\mathrm{e}\mathrm{s}+1
h :=

M\sum 
i=1

un\mathrm{r}\mathrm{e}\mathrm{s}+1
h,i and \=un\mathrm{r}\mathrm{e}\mathrm{s}

h :=

M\sum 
i=1

un\mathrm{r}\mathrm{e}\mathrm{s}

h,i

can be used as new initial conditions, which are once again decomposed into local
contributions through the partition of unity \{ \Lambda i\} Mi=1. This strategy is repeated after
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1600 DIETMAR GALLISTL AND ROLAND MAIER

Algorithm 4.1 The local superposition method.
Input: f , u0, v0, H, h, T , \tau , tfin, \ell 

NT := tfin/T
Compute initial conditions a at time 0 and b at time \tau using f , u0, v0
for k= 1, . . . ,NT do

for i= 1, . . . ,M do

set f
(k)
i =\Lambda if(\bullet , k T + \bullet )

(ai,bi) = \sansC \sansN (\ttN \ell (\omega i), T,h, \tau , f
(k)
i ,\Lambda ia,\Lambda ib)

end for

b :=
\sum M

i=1 bi
a :=

\sum M
i=1 ai

\=ukT
h := a

end for
Output: \=uT

h , \=u
2T
h , . . .

function \sansC \sansN (\omega , t, h, \tau , g, a, b)
Solve Crank--Nicolson over the domain \omega with time horizon t+ \tau , mesh size h,
step size \tau , right-hand side g, initial data a, b; return the solution at the last
two time steps (i.e., at t and t+ \tau )

end function

another nres time steps and ensures that the computational domains do not grow too
much. The usage of the notation \=(\bullet ) instead of \~(\bullet ) refers to these local solutions that
are regularly reset.

For an illustration of the method, we refer the reader to Algorithm 4.1. It requires
the given data, the coarse and fine mesh sizes, and time steps H, h, T , and \tau , as well
as the patch size \ell . The main ingredient is a standard (localized) Crank--Nicolson
method on different patches combined with the successive localization of the data.
The algorithm is written in such a way that only the global solutions \=uT

h , \=u
2T
h , etc. at

the coarse time points kT are stored, where k indicates the number of resets. If the
solution at a specific (fine) time point between these coarse time points is required,
the respective local solutions could be stored and summed up as well. Alternatively,
they can be cheaply computed retroactively starting from the stored solution at the
previous coarse time point.

4.2. Error analysis. To bound the error between the solution \=un
h and the global

Crank--Nicolson solution un
h at the time point n\tau , we now state and prove an error

estimate. The proof makes use of the discrete norm

\| vh\| \scrE h
:=
\bigl( 
| | | D\tau vh| | | 2 + \tau  - 2| | | vh| | | 2

\bigr) 1/2
for any vh \in Vh (that we implicitly assume to be defined for successive time steps).
We obtain as a consequence of the upper bound on A and an inverse estimate that

\| D\tau vh\| 2 \leq | | | D\tau vh| | | 2 \lesssim (1 + \tau 2h - 2)\| D\tau vh\| 2.

Furthermore, the Poincar\'e--Friedrichs estimate and the lower bound on A show

\| vh\| 2a \leq 4\tau  - 2| | | vh| | | 2 \lesssim \tau  - 2\| vh\| 2a.
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LOCALIZED IMPLICIT TIME STEPPING 1601

From these norm equivalences we deduce that the discrete norm is equivalent to the
energy norm in the sense that

min\{ \tau ,h/\tau \} \| vh\| \scrE h
\lesssim \| vh\| \scrE \lesssim \| vh\| \scrE h

.(4.5)

The (hidden) constants depend on the bounds on A. Apart from these norm
equivalences, we also make use of the following observation: for any n \in \BbbN 0, we
have for the nonlocalized Crank--Nicolson solution un

h (cf. (2.1)) that un
h =

\sum M
i=1 u

n
h,i,

where un
h,i, m+1<n\leq (k+1)nres+1 with m= k nres for some k \in \BbbN 0 is the solution

to

(\^\partial 2
\tau u

n
h,i, vh)\ttN \ell (\omega i) + a\ttN \ell (\omega i)(\widehat un

h,i, vh) = (\widehat fn
h,i, vh)\ttN \ell (\omega i) for all vh \in Vh(\ttN \ell (\omega i))(4.6)

with initial conditions um+1
h,i := Ih(\Lambda iu

m+1
h ) and um

h,i := Ih(\Lambda iu
m
h ). This follows from

the linearity of the scheme (2.1) (with respect to the right-hand side and the initial
conditions) and the observation that by construction of the localized initial data and
right-hand side in (4.2), it holds that

fn
h =

M\sum 
i=1

fn
h,i, um+1

h =

M\sum 
i=1

um+1
h,i , um

h =

M\sum 
i=1

um
h,i.

We now have all tools at hand to prove an error estimate for the local superposition
method.

Theorem 4.1 (error of the local superposition method). Let \ell be chosen as in
(4.4), and let \vargamma > 0. Then for any n\in \BbbN 0, n\leq tfin/\tau =:N , we have the error estimate

\| \=un+1/2
h  - u

n+1/2
h \| \scrE \lesssim \vargamma 

\left(  \| u1/2
h \| \scrE +

N\sum 
j=1

\tau 
\bigm\| \bigm\| \widehat f j

h

\bigm\| \bigm\| \right)  ,

where the hidden constant depends on \alpha , \beta , and d.

Proof of Theorem 4.1. Let a time step n \in \BbbN be fixed, and let m < n  - 1 be
the point in time where the domain decomposition strategy was restarted for the last
time (or m = 0 for n \leq nres + 1). We denote with \~znh , n \geq m, the auxiliary localized
solution computed as in (4.3) from the starting values

\~zm+1
h,i := Ih(\Lambda iu

m+1
h ), \~zmh,i := Ih(\Lambda iu

m
h ) for i= 1, . . . ,M.

By Theorem 3.2 and Remark 3.3, we can guarantee with the choice of \ell in (4.4) that

| | | un+1/2
h,i  - \~z

n+1/2
h,i | | | \lesssim \vargamma min\{ \tau ,h/\tau \} H\kappa +2 max

m\leq k\leq m+n\mathrm{r}\mathrm{e}\mathrm{s}

| | | uk+1/2
h,i | | | (4.7)

for m \leq n \leq m + nres, where we abbreviate \kappa := tfin/T and explicitly choose \varepsilon \eqsim 
\vargamma min\{ \tau ,h/\tau \} H\kappa +2. Note that the result in Theorem 3.2 holds for the discrete tem-
poral derivative as well, employing linearity arguments. That is, in our setting we
also have

| | | D\tau u
n+1/2
h,i  - D\tau \~z

n+1/2
h,i | | | \lesssim \vargamma min\{ \tau ,h/\tau \} H\kappa +2 max

m\leq k\leq m+n\mathrm{r}\mathrm{e}\mathrm{s}

| | | D\tau u
k+1/2
h,i | | | .(4.8)

We now estimate the global error. We define \=en := \=un
h - un

h as well as enz := \~znh - un
h

and \=enz := \~znh  - \=un
h. By the triangle inequality, we have

\| \=en+1/2\| \scrE \leq \| \=en+1/2
z \| \scrE + \| en+1/2

z \| \scrE .(4.9)
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1602 DIETMAR GALLISTL AND ROLAND MAIER

The last term on the right-hand side can be estimated using (4.5) and the decompo-
sition into local subproblems. Indeed, abbreviating enz,i = \~znh,i  - un

h,i, we have from
(4.5) that

\| en+1/2
z \| \scrE \lesssim \| en+1/2

z \| \scrE h
\lesssim 

\Biggl( 
M\sum 
i=1

\| en+1/2
z,i \| 2\scrE h

\Biggr) 1/2

and deduce from (4.7) and (4.8) that

\| en+1/2
z \| \scrE \lesssim \vargamma H\kappa +2

\Biggl( 
M\sum 
i=1

max
m<k\leq m+n\mathrm{r}\mathrm{e}\mathrm{s}

min\{ \tau 2, (h/\tau )2\} \| uk+1/2
h,i \| 2\scrE h

\Biggr) 1/2

.(4.10)

In what follows we use the shorthand notation

\scrF k
r,i :=

k\sum 
j=r

\tau 
\bigm\| \bigm\| \Lambda i

\widehat 
f j
h

\bigm\| \bigm\| and \scrF k
r :=

k\sum 
j=r

\tau 
\bigm\| \bigm\| \widehat f j

h

\bigm\| \bigm\| .
With (4.5) and the stability estimate in Theorem 2.1, we get

min\{ \tau ,h/\tau \} \| uk+1/2
h,i \| \scrE h

\lesssim \| um+1/2
h,i \| \scrE ,\omega i +\scrF m+n\mathrm{r}\mathrm{e}\mathrm{s}

m,i

\lesssim (1 +H - 1)\| um+1/2
h \| \scrE ,\omega i

+\scrF m+n\mathrm{r}\mathrm{e}\mathrm{s}
m,i ,

where we use the definition of u
m+1/2
h,i , the product rule, and the bound (4.1) in the

last step. Going back to (4.10) and leveraging the limited overlap of the supports \omega i,
we obtain

\| en+1/2
z \| \scrE \lesssim \vargamma H\kappa +1

\Bigl[ 
\| um+1/2

h \| \scrE +\scrF m+n\mathrm{r}\mathrm{e}\mathrm{s}
m

\Bigr] 
\lesssim \vargamma H\kappa +1

\Bigl[ 
\| u1/2

h \| \scrE +\scrF N
1

\Bigr] 
.(4.11)

To bound the first term on the right-hand side of (4.9), we observe that the functions
\=enz,i, n>m+ 1, solve the equation

(\^\partial 2
\tau \=e

n
z,i, vh)\ttN \ell (\omega i) + a\ttN \ell (\omega i)(\widehat \=enz,i, vh) = 0 for all vh \in Vh(\ttN \ell (\omega i)).

With Theorem 2.1, we obtain the error estimate

\| \=en+1/2
z,i \| \scrE ,\ttN \ell (\omega i) \lesssim \| \=em+1/2

z,i \| \scrE ,\omega i
\lesssim \| D\tau \=e

m+1/2\| \omega i
+ (1+H - 1)\| \=em+1/2\| a,\omega i

,

where we have used the initial condition \=e
m+1/2
z,i = - Ih(\Lambda i\=e

m+1/2), the stability (3.4),
and the product rule with the bound from (4.1). In particular, we have

\| \=en+1/2
z \| \scrE \lesssim \| D\tau \=e

m+1/2\| +H - 1\| \=em+1/2\| a.(4.12)

Finally, going back to (4.9) and using (4.11) and (4.12) multiple times, we obtain

\| \=en+1/2\| \scrE \lesssim 
N/n\mathrm{r}\mathrm{e}\mathrm{s}\sum 
j=1

\vargamma H\kappa +1H - j
\Bigl[ 
\| u1/2

h \| \scrE +\scrF N
1

\Bigr] 
\lesssim \vargamma H\kappa +1H - N/n\mathrm{r}\mathrm{e}\mathrm{s} - 1

\Bigl[ 
\| u1/2

h \| \scrE +\scrF N
1

\Bigr] 
\lesssim \vargamma 
\Bigl[ 
\| u1/2

h \| \scrE +\scrF N
1

\Bigr] 
,

where we use that by definition, nres = T/\tau and thus N/nres = tfin/T = \kappa . This is the
assertion.
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LOCALIZED IMPLICIT TIME STEPPING 1603

Remark 4.2 (generalizations). Instead of (2.1), we could as well employ the more
general Newmark scheme [25]

(\^\partial 2
\tau u

n
h, vh)L2(\Omega ) + a(\widehat un

h, vh) = (\widetilde fn
h , vh)L2(\Omega ) for all vh \in Vh,(4.13)

with the alternative definition

\widehat un
h :=

1

2

\bigl( 
2c1u

n+1
h + (1 - 4c1 + 2c2)u

n
h + (1+ 2c1  - 2c2)u

n - 1
h

\bigr) 
for given parameters c1, c2. Here, \widetilde fn

h realizes an appropriate weighting of fn+1
h , fn

h ,
and fn - 1

h . Our results directly carry over to this scheme up to a change in constants.
We emphasize that the choice c1 = 1/4 and c2 = 1/2 resembles the above Crank--
Nicolson scheme.

Note further that also higher-order finite elements could be considered. This
would only introduce a dependence on the polynomial degree, but the main arguments
follow along the same lines.

4.3. Choice of parameters and computational complexity. Finally, we
would like to comment on the scaling of \ell as specified in (4.4) and the corresponding
possible/optimal parameter choices for our method. To start with, the second and
third terms in (4.4) only include a moderate logarithmic scaling (provided that \vargamma \eqsim 
h+ \tau 2) and are therefore typically much smaller than the other two terms. Moreover,
for T \eqsim H and with the realistic choice \tau \geq h, the first term in (4.4) scales like

C\tau ,h
T

\tau 
log

\biggl( 
C\tau ,h

T

\tau 

\biggr) 
\eqsim 

\tau 

h

H

\tau 
log

\biggl( 
\tau 

h

H

\tau 

\biggr) 
\eqsim 

H

h
log

\biggl( 
H

h

\biggr) 
.

Note that a linear scaling with H/h is physically reasonable to capture the wave cone,
such that the first term includes only a logarithmic overhead. In particular, we have a
reasonable scaling with respect to the spatial parameters independently of the choice
of \tau . The last term in (4.4), however, is still scaled by \tau /h such that a variable
scaling between \tau and h influences the necessary choice of \ell ; see also the examples
in section 5.2 below. There, we also present two examples where the first term is
dominant (which is the case for h\leq H2). In that setting, the scaling of the last term
in (4.4) is not critical even for larger choices of \tau \geq h.

We summarize some optimal choices of the involved parameters, which are also
observed in the numerical examples below:

\bullet Due to the better scaling in time of the Crank--Nicolson scheme, \tau \geq h is
reasonable;

\bullet for H rather close to h, the choice of \tau has an influence on the decay behavior,
which, to some extent, can be compensated for by a smaller choice of T (reset
time);

\bullet for h \leq H2, the choice of \tau has no severe influence and T = H/\beta is an
appropriate reset time that takes into account faster propagation for larger
values of \beta ;

\bullet experimentally, \ell \geq CH/h for some C \geq 2 appears to be sufficient in the
regime under consideration (cf., e.g., Figure 5) when h \ll H, although the
theory predicts a logarithmic overhead.

Finally, we comment on the computational overhead introduced by our strategy.
Without leveraging the fact that the computations on the subdomains are parallel,
the overhead is mainly dependent on the number of overlapping subdomains. It scales
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1604 DIETMAR GALLISTL AND ROLAND MAIER

like (\ell h/H)d, and \ell h/H is the number of coarse layers that are added (it makes sense
here to count with respect to the coarse mesh on which the patches are defined). The
advantage of our strategy, however, is that global computations are avoided and that
the computational overhead can be easily compensated for by parallel computations
with an appropriate computer. The computational overhead and the possibility of
parallelizing computations are also features that our approach shares with classical
domain decomposition methods; see, e.g., [29, 13], and particularly [15, 14, 16] in the
context of the wave equation. However, domain decomposition approaches may use
much smaller overlaps between the subdomains and require specifically chosen bound-
ary conditions. Moreover, they typically involve multiple iterations. Our approach
is noniterative but needs larger overlaps. A very attractive feature is also that it is
very easy to implement, and the subdomains only communicate at fixed reset times
without the need for specific boundary conditions. A more in-depth comparison of
the different approaches will be the subject of future research.

5. Numerical examples. In this section, we illustrate the applicability of the
local superposition method with a set of numerical examples. We measure all oc-
curring errors in a discrete L2(0, tfin;H

1
0 (\Omega ))-norm. More precisely, for the discrete

function vh := (vkh)k\leq NT
\in Vh evaluated at the coarse time points kT , we define

\| vh\| 2h,T :=
\sum 

k\leq NT

T \| vkh\| 2a.

All computations are based on MATLAB. To better compare the results of the dif-
ferent settings, we set \Omega = (0,1)2, fix the right-hand side f \equiv 1, and choose zero
initial conditions. Further, we set tfin = 1. Note that in the examples, we refer to the
edge length of an element by H and h, respectively (instead of the diameter) to avoid
explicitly writing the additional factor

\surd 
2.

5.1. Constant coefficient and equal scaling. For the first experiment, we
choose a rather optimal setting regarding the scaling of the decay constant \gamma in
Lemma 3.1. That is, A \equiv 1, \tau = h, and T = H. Figure 2 (left) shows the rela-
tive errors in \| \cdot \| h,T between the classical global Crank--Nicolson scheme and the
local superposition method for the fixed choice \ell = 2H/h. As mentioned above, the

10 - 1.5 10 - 1 10 - 0.5
10 - 14

10 - 11

10 - 8

10 - 5

10 - 2

101

mesh size H

re
l.
er
ro
r

h = 2 - 6

h = 2 - 7

h = 2 - 8

h = 2 - 9

16 24 32
10 - 14

10 - 11

10 - 8

10 - 5

10 - 2

101

parameter \ell 

re
l.
er
ro
r

\ell -\mathrm{p}\mathrm{a}\mathrm{t}\mathrm{c}\mathrm{h}

Fig. 2. Errors between the local superposition method and the global Crank--Nicolson method
for A\equiv 1. Left: with respect to H for \ell = 2H/h and variable h. Right: with respect to \ell for h= 2 - 8

and H = 2 - 4.
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LOCALIZED IMPLICIT TIME STEPPING 1605

first term in (4.4) is only dominant if h \leq H2. This is also observed in the figure as
the errors deteriorate for the fixed choice of \ell when H approaches h. For the case
h = 2 - 9 ( ), we do not observe a deterioration of the error, which is significantly
smaller than the error of the classical Crank--Nicolson scheme (the scaling h = 2 - 9

is indicated by the green dashed line). In particular, the moderate choice \ell = 2H/h,
which corresponds to an increase of the local supports \omega i by two layers of coarse ele-
ments, is sufficient to achieve an almost identical solution with our localized scheme.
In Figure 2 (right), the influence of the choice of \ell is depicted for fixed h = 2 - 8 and
H = 2 - 4. We observe that the error does not improve if \ell \leq H/h, which is in line
with the localization result in Theorem 3.2, where the polynomial prefactor in \ell is
dominant compared to the exponential term for smaller choices of \ell . From a physical
point of view, this effect is also reasonable, because H/h layers are required to cap-
ture the wave cone in the first place. For \ell \geq H/h, we observe a rapid exponential
improvement of the error up to \ell \approx 2H/h, where the error no longer improves (at a
relative error of the order 10 - 12). Note that \ell = H/h and \ell = 2H/h are highlighted
by the vertical dashed gray lines.

5.2. Constant coefficient and variable scaling. In a second experiment, we
investigate the influence of the scaling between \tau and the mesh parameter h. First, we
choose A\equiv 1, h= 2 - 9 and multiple values of \tau and keep an equal scaling T =H. We
also choose \ell = 2H/h as above. For different values of H, the results are presented in
Figure 3 (left). As expected, we observe a deterioration of the errors if \tau /h is increased
or decreased away from 1 since \ell needs to be suitably adapted according to (4.4)
(in particular, the scaling of the last term). The size of h is once again indicated
by the dashed line. Note that for larger values of H, the effect is less influential
because the choice of \ell leads to (almost) global computations for coarse values of
H. In Figure 3 (right), the decay behavior with respect to \ell is presented for the
fixed choices h = 2 - 8, H = 2 - 4, T = H and multiple values of \tau . The orange line
( ) corresponds to the decay plot in Figure 2 (right), where \tau = h. Note that only
every fourth value of \ell is plotted, and multiples of H/h are once again highlighted
by vertical dashed gray lines. The plot shows a slower decay behavior for \tau /h \not = 1,
where the influence of \tau < h is less significant than the influence of \tau > h. That is,
the theoretically predicted scaling of \ell (cf. (4.4)) seems to be pessimistic for \tau < h as

10 - 1.5 10 - 1 10 - 0.5
10 - 14

10 - 11

10 - 8

10 - 5

10 - 2
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mesh size H
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er
ro
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\tau /h = 0.25

\tau /h = 0.5

\tau /h = 1

\tau /h = 2

\tau /h = 4

16 32 48 64 80
10 - 14

10 - 11

10 - 8

10 - 5

10 - 2
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l.
er
ro
r

\tau /h = 0.25

\tau /h = 0.5

\tau /h = 1

\tau /h = 2

\tau /h = 4

Fig. 3. Errors between the local superposition method and the global Crank--Nicolson method
for A\equiv 1. Left: with respect to H for \ell = 2H/h and h= 2 - 9, and variable \tau /h. Right: with respect
to \ell for h= 2 - 8, H = 2 - 4, and variable \tau /h.
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1606 DIETMAR GALLISTL AND ROLAND MAIER
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Fig. 4. Errors between the local superposition method and the global Crank--Nicolson method
for h= 2 - 8, H = 2 - 4 with respect to \ell Left: A\equiv 1 and variable choices of \tau and T . Right: oscillatory
A, \tau = h, and T =H/\beta .

the plots do not even indicate a linear scaling of \ell with respect to \tau /h in that case.
Nevertheless, to avoid larger patches due to an influence on \ell one can use a smaller
parameter T , which, in turn, increased the number of resets in our algorithm. Any
choice T/H < 1 reduces the requirements on \ell in the practical regime, where the first
term in (4.4) is dominant compared to the last term. The effect is illustrated for the
case of \tau /h= 0.25 and T/H \in \{ 0.25,0.5,1\} , as well as \tau /h= 2 and T/H \in \{ 0.5,1\} , in
Figure 4 (left). The case T/H = 1 ( and , solid lines) corresponds to the respective
lines in Figure 3 (right). It can be observed that the adjustment of T/H has a positive
effect on the exponential decay.

We also present two examples where h and H are not as close as in the above ex-
periments. As predicted by the theory, for h\leq H2, the first dominant term regarding
the choice of \ell in (4.4) is independent of the value of \tau provided that \tau \geq h. Therefore,
a change of the scaling between \tau and h has no severe influence on the decay behavior,
which is illustrated in the following. First, we consider a two-dimensional example
with A \equiv 1 and a right-hand side such that u(x, t) = sin(\pi x1) sin(\pi x2) sin(0.5\pi t)

2 is
the exact solution, and we choose H = T = 2 - 4, h = 2 - 11, and \tau = 2 - 8 for different
values of \ell . The results are plotted in Figure 5 (left). The gray vertical dashed lines
once again indicate multiples of H/h, while the red horizontal dashed line indicates
the size of h. We observe that the decay with respect to \ell starts for \ell \approx H/h and
stagnates at \ell \approx 2H/h as for the above cases where \tau = h. Since we compare the
result of our algorithm to the exact solution, the level of stagnation is larger, related
to the choice of h. This is in line with our theoretical findings. The results of a second
similar example in one dimension with exact solution u(x, t) = sin(\pi x) sin(0.5\pi t)2 is
presented in Figure 5 (right). Here, we choose H = T = 2 - 4, h= 2 - 16, \tau = 2 - 8 =

\surd 
h

and once again plot different values of \ell . As before, the decaying behavior is observed
from \ell \approx H/h to \ell \approx 2H/h, although the factor \tau /h is even larger than before.

5.3. Variable coefficient and equal scaling. Finally, we present some results
for a variable coefficient. More precisely, we choose A as piecewise constant on a mesh
of scale 2 - 5 with randomly chosen values between \alpha and \beta . In Figure 4 (right), we
present the decay rates for \alpha = 1, \beta = 8 and \alpha = 0.125, \beta = 1, respectively. As before,
we choose h = 2 - 8 and H = 2 - 4. Recall the definition of C\tau ,h in Lemma 3.1, which
is proportional to \beta \alpha  - 1. Although \ell in (4.4) depends on C\tau ,h, one observes that a
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Fig. 5. Errors between the local superposition method and the exact solution in 2D for h= 2 - 11,
\tau = 2 - 8, and H = T = 2 - 4 (left) and in 1D for h = 2 - 16, \tau = 2 - 8, and H = T = 2 - 4 (right) with
respect to \ell .

smaller \alpha actually does not have a negative effect on the decay behavior. Further,
as discussed in section 4.3, T = H/\beta is chosen. This choice makes physical sense to
compensate for the larger wave speed and results in a similar decay rate as observed
for the case A\equiv 1; see also Figure 2. Both observations are generally in line with the
expected physical behavior for larger or smaller wave speeds.

6. Conclusions. In this work, we have proposed a localized discretization strat-
egy for the acoustic wave equation. The idea is based on a superposition of lo-
cal discrete solutions on overlapping subdomains using a combination of an implicit
Crank--Nicolson scheme and a first-order finite element method. The localization is
mathematically justified and evolves around the physical observation that waves travel
with finite speed. In particular, a physically reasonable overlap of the subdomains
already allows one to well-approximate the globally defined Crank--Nicolson scheme.
The algorithm may be understood as a domain decomposition strategy in space on
successive short time intervals that does not require additional iterations or carefully
designed boundary conditions. Moreover, parallelization with respect to the spatial
variable is straightforward, and communication between the different subdomains is
only required at coarse time steps. The presented numerical experiments confirm the
theoretical findings.

Our approach may be directly extended to other spatial discretizations and time
discretization schemes, such as a general Newmark method. Moreover, different dis-
cretization methods could be used on the respective subdomains, which would allow
for a more flexible localized discretization. However, this requires a more involved
analysis.
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