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Abstract. This work introduces a locally refined version of the Adini finite
element for the planar biharmonic equation on rectangular partitions with at

most one hanging node per edge. If global continuity of the discrete functions

is enforced, for such method there is some freedom in assigning the normal
derivative degree of freedom at the hanging nodes. It is proven that the con-

vergence order h2 known for regular solutions and regular partitions is lost

for any such choice, and that assigning the average of the normal derivatives
at the neighbouring regular vertices is the only choice that achieves a super-

linear order, namely h3/2 on uniformly refined meshes. On adaptive meshes,

the method behaves like a first-order scheme. Furthermore, the reliability and
efficiency of an explicit residual-based error estimator are shown up to the best

approximation of the Hessian by certain piecewise polynomial functions.

1. Introduction and main results

While Galerkin methods enjoy the error bound from Céa’s lemma and, therefore,
local mesh refinement with nested spaces does not increase the approximation error,
in nonconforming discretizations —a popular choice for the biharmonic equation—
local refinement of the mesh resolution may potentially disimprove the situation.
The main purpose of this work is an analysis of this phenomenon in a model situ-
ation. The Adini finite element method (FEM) is one of the earliest methods for
numerically solving the biharmonic equation [1, 5]. It is a standard four-noded
rectangular element in the engineering literature, and therein also referred to as
Adini–Clough–Melosh element [11]. Given a rectangular partition T of the under-
lying domain Ω ⊆ R2, the shape function space for every rectangle T is the space of
cubic polynomials over T enriched by the two monomials x3y and xy3, where the
Cartesian coordinates of a point in the plane are denoted by x, y and the mesh is
assumed to be aligned with the Cartesian axes. The corresponding twelve degrees
of freedom are the point evaluation of a function and the evaluation of its first-
order partial derivatives in any of the four vertices. The resulting finite element,
schematically shown in the mnemonic diagram of Figure 1, is easy to implement
and its a priori error analysis is theoretically well understood when regular parti-
tions are used. Regularity of a partition T means that if any vertex z of an element
T ∈ T belongs to some element K ∈ T, it is automatically also a vertex of K. For
such regular meshes it is known that the method converges at the order h2 under
uniform mesh refinement if the solution is sufficiently regular, h being the maximal
mesh size [5, 10, 9]. In presence of singularities of the solution, the convergence
order is significantly reduced and adaptive mesh refinement towards the singularity
becomes mandatory, a case not studied so far in the literature on the Adini FEM.
On rectangular partitions with bounded aspect ratio, such refinement necessarily
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Figure 1. Mnemonic diagram of Adini’s finite element (left); de-
grees of freedom at a hanging node (right).

requires elements with irregular vertices (commonly called hanging nodes), i.e., a
vertex z of a rectangle T may belong to an edge of another rectangle K without
being a vertex of it. The degrees of freedom attached to that hanging node are
then subject to some interpolation constraint. The typical situation is displayed
in Figure 1. In the case of the Adini element, the value and the derivative in the
direction tangential to the edge are prescribed by the condition of the function to
be globally continuous. The continuity condition for the partial derivative in the
direction normal to the edge, however, is not canonically prescribed because the
Adini FEM is a nonconforming method, meaning that the discrete functions are
globally continuous but their gradients may be discontinuous so that the discrete
functions may possibly not belong to H2(Ω), the energy space for the biharmonic
equation. Two obvious possibilities (out of many others) are: either the degree of
freedom is set in such a way that it interpolates the partial derivative on the neigh-
bouring element; or it is simply chosen as the average of the partial derivatives at
the neighbouring vertices determining the edge that contains the irregular vertex z
in its interior. It is obvious that the latter choice cannot retain the quadratic ap-
proximation order h2 known from the regular case because the averaging operation
does not conserve cubic polynomials. However, in this work it is proven that it is
the only possible choice (in the class of linear, local, and coordinate-independent
couplings) that yields a superlinear order, namely h3/2 on uniform refinements of
an initial irregular mesh subject to the condition of Definition 2.1 below.

The design of the Adini element does not involve average integrals of normal
derivatives over edges as degrees of freedom, in contrast to nonconforming methods
like the Morley element and others [10]. This prevents the element from passing
certain patch tests, and the error analysis is more involved and relies on the choice
of the shape function space, which is the same as for the lowest-order serendipity
element [2]. Consequently, a reliability proof for a residual-based error estimator
has not been available [3, 6]. Furthermore, the definition of the element on meshes
with hanging nodes is not straightforward because an analogue to [4, condition
(A2)] is not satisfied by the normal derivative. As the first main results in this
work, it is shown that the quadratic approximation order is necessarily lost in the
presence of hanging nodes, showing that best-approximation results in the fashion
of [8] are unavailable. It is shown that a suitable assignment of local degrees of
freedom at hanging nodes can lead to h3/2 convergence.

Theorem A (a priori error estimate). Let f ∈ L2(Ω) be such that the exact solution
u to the biharmonic problem (2.1) satisfies u ∈ H4(Ω) ∩W 3,∞(Ω). Let (Th)h be
a sequence of uniform refinements of an initial partition that satisfies the mesh
condition of Definition 2.1 and contains at least one irregular vertex. Let uh ∈ Vh
denote the finite element solution to (2.2) where Vh is the Adini finite element space
with regular assignment in the sense of Definition 3.1. The averaging assignment,
that is the choice of Vh according to (3.2), satisfies

|||u− uh|||h . h2‖u‖H4(Ω) + h‖u‖H3(∪Tirr)



ADINI FEM WITH HANGING NODES 3

where ∪Tirr from (4.1) is the area covered by elements with irregular vertices. In
particular, it satisfies the asymptotic bound

|||u− uh|||h . h3/2(‖u‖H4(Ω) + ‖u‖W 3,∞(Ω))

on uniformly refined meshes. For any other admissible assignment there exists a
right-hand side f such that the solution u ∈ C∞(Ω) is smooth, but

|||u− uh|||h & h.

Furthermore, a residual-based a posteriori error estimator is shown to be reliable
and efficient up to terms that are second-order accurate on uniform meshes, but
only first-order on more general meshes (details on the notation follow in §2).

Theorem B (a posteriori error estimate). Let T be an 1-irregular partition satisfy-
ing the mesh condition of Definition 2.1 and Vh be chosen according to the averaging
assignment (3.2). The solution u to the biharmonic problem (2.1) with right-hand
side f ∈ L2(Ω) and its Adini finite element discretization uh from (2.2) satisfy,
with η, η(T ) defined in (5.2), the reliability estimate

|||u− uh|||h . η

and local efficiency

η(T ) . |||u− uh|||h,ωT
+ ‖(1−ΠT)D2u‖T + ‖h2(1−Π0)f‖ωT

for any T ∈ T with element patch ωT and the projection ΠT from (5.1).

While its efficiency part is not new and can be proven with standard arguments
[12], more importantly Theorem B also provides a reliability result of an a posteri-
ori error estimator for the Adini element, which partly proves a conjecture of [3]
and explains the results of their numerical experiments. Therein, the error estim-
ator η (up to the additional local projection error ‖(1−ΠT)D2u‖T not considered
there) was experimentally observed to be an upper error bound on uniformly re-
fined meshes. Theorem B theoretically justifies the observed convergence rates of
the error estimator in [3].

The results presented here allow for two conclusions. The first one is that the
Adini FEM can be used a first-order method for resolving corner singularities or
non-rectilinear (possibly curved) domains. Since the Adini shape function space is
that of the serendipity family [2], the element cannot be mapped to general quad-
rilaterals like trapeziums without loss of approximation quality, see the discussion
in [10]. The local resolution variant of the method proposed here thus makes the
Adini FEM more competitive for such situations. In some cases, it even satisfies
superlinear convergence. Secondly, and perhaps more fundamentally, the analysis
shows that the quadratic convergence order is necessarily lost under fairly reas-
onable coupling conditions at hanging nodes. This highlights that nonconforming
methods do not naturally generalize to irregular partitions in absence of further
structural conditions. In particular, local refinement can significantly deteriorate
the approximation (as proven in Theorem A and illustrated by numerical results in
§6.1), and best-approximation results analogous to those formulated in [8] do not
hold in this case.

This article is organized as follows: §2 defines the necessary data structures
around finite element meshes and introduces the Adini element. The assignment
at hanging nodes is discussed in §3. The proof of Theorem A is provided in §4,
while §5 provides the proof of Theorem B. Numerical experiments are shown in §6.
Finally, some important but technical estimates for discrete functions are provided
in the appendices §A–§D.
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Throughout this work, standard notation on Lebesgue and Sobolev spaces is
used. The L2 norm over a measurable set ω is denoted by ‖·‖ω with the convention
‖ · ‖ = ‖ · ‖Ω. Polynomial functions of total resp. partial degree not greater than k
are denoted by Pk resp. Qk. The notation a . b or b & a indicates an inequality
a ≤ Cb with a constant independent of the mesh size; a ≈ b means a . b . a.

2. Adini’s finite element for the biharmonic equation

Let Ω ⊆ R2 be an open and bounded rectilinear Lipschitz polygon. Given a right-
hand side f ∈ L2(Ω), the biharmonic problem with clamped boundary conditions
seeks u ∈ H2

0 (Ω) such that

(2.1) a(u, v) = (f, v)L2(Ω) for all v ∈ H2
0 (Ω),

where the bilinear form a is defined by

a(v, w) :=

∫
Ω

D2v : D2w for any v, w ∈ H2(Ω)

and the colon : denotes the Frobenius inner product of matrices.
The following notation related to a partition T of Ω is used. The set of vertices

(extremal points) of a rectangle is denoted by V(T ). The set of all vertices of T is
denoted by V. A vertex z ∈ V for which z ∈ T ∈ T implies z ∈ V(T ), i.e., z is one
of the four vertices of T , is called a regular vertex, and the set of such vertices is
denoted by Vreg. The remaining irregular vertices are denoted by Virr = V \ Vreg.
Throughout this work, the notions hanging node and irregular vertex are used
interchangeably. Any irregular z ∈ Virr necessarily lies on the interior of an edge E
of some rectangle T that is the convex combination of two vertices z1, z2 ∈ V(T ),
called the neighbouring vertices. In particular z ∈ E = conv{z1, z2}. Throughout
this paper, we work on classes of partitions with uniformly bounded aspect ratio.
The L2 projection to piecewise (possibly discontinuous) Pk functions is denoted by
Πk. For z ∈ V and T ∈ T we define the usual patches

ωz := int(∪{K ∈ T : z ∈ K}) and ωT := ∪{ωz : z ∈ V(T )}.

The outer unit normal of the boundary of a rectangle T is denoted by nT . The
set of all edges is denoted by E. Every edge has a (globally fixed) normal vector
nE and a tangential vector tE . If the meaning is clear from the context and there
is no risk of confusion, the symbols n and t are sometimes used without index in
expressions like ∂2

nn, ∂2
nt, etc. The diameter of a rectangle T and an edge E are

denoted by hT and hE , respectively. The piecewise constant mesh-size function h
is defined by h|T := hT for any T ∈ T. If the letter h is used in global expressions
like O(hs) or outside norms, it denotes the maximum of the mesh size function.

The piecewise Hessian with respect to T is denoted by D2
h, and the index h is

also used to indicate piecewise partial derivatives ∂j,h of piecewise smooth functions.
Any rectangle T ⊆ R2 will be assumed to be aligned with the Cartesian axes, so
that any of its faces is parallel to either the x or y axis. The shape function space
A is that of cubic polynomials enriched by the two elements xy3 and x3y, written

A = P3 + 〈xy3, x3y〉

where angle brackets denote the linear hull. If there is no risk of confusion, a
polynomial function will not be distinguished from its restriction to or its extension
from some subdomain of R2 throughout this work. Given a rectangle T , the twelve
degrees of freedom of the Adini finite element are the point evaluations of a function
and of its first partial derivatives in those vertices. A corresponding diagram is
displayed in Figure 1. Given Ω, let T be a finite partition into rectangles such that
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the elements of T cover the domain ∪T∈TT = Ω and the intersection of the interior
of any two distinct elements is empty. The space of piecewise Adini functions reads

A(T) := {v ∈ L∞(Ω) : v|T ∈ A for any T ∈ T}.
If T is any such partition (with or without hanging nodes), the global finite element
space with clamped boundary condition and gradient continuity at the regular
vertices reads

V̂h := C(Ω) ∩
{
v ∈ A(T)

∣∣∣∣∇v is continuous in the interior regular vertices of T

v and ∇v vanish on the boundary vertices of T

}
.

The continuity requirement shows that V̂h is spanned by A(T) functions that are
continuous in all vertices, with continuous gradient in all regular vertices and with
continuous tangential derivative at irregular vertices (‘tangential’ referring to the
edge containing the hanging node). No condition is made on the normal derivative
at such vertex although it is a local degree of freedom for the finite element. For

regular partitions, Vh = V̂h is the standard Adini finite element space known from
the literature. In this case it is known that Vh ⊆ C(Ω) is a space of continuous
functions with possibly discontinuous piecewise derivatives. This means that Vh is
a subspace of the Sobolev space H1

0 (Ω) but in general not a subspace of the energy
space H2

0 (Ω) for the biharmonic problem, whence it is referred to as nonconform-

ing. If the partition contains irregular vertices, a subspace Vh ⊆ V̂h needs to be
considered such that the discrete problem is well posed. The Adini finite element
discretization is based on the discrete bilinear form

ah(v, w) :=

∫
Ω

D2
hv : D2

hw for any v, w ∈ H2
0 (Ω) + V̂h

where D2
h denotes the piecewise Hessian with respect to T. Under the admissibility

condition of Definition 3.1 below, Vh is such that ah is positive definite over Vh.
The seminorm induced by ah and denoted by |||·|||h is a norm on Vh under this
assumption. The discretization seeks uh ∈ Vh such that

ah(uh, vh) = (f, vh)L2(Ω) for all vh ∈ Vh.(2.2)

It is well known that, for regular partitions, this is a convergent method on a
sequence of uniformly refined rectangles with maximal mesh size h. The error
bound shown in [9] states the quadratic order

|||u− uh|||h . h2‖u‖H4(Ω).

In the general case of possibly nonconvex domains, the assumed regularity is un-
realistic, and local mesh refinement is required for resolving singularities or the
domain geometry. For rectangular and shape-regular partitions, this necessarily
leads to hanging nodes. The main question is which continuity properties to en-
force at hanging nodes in the definition of Vh in order to obtain a method with good
convergence properties. Here, we focus on 1-irregular partitions with a maximum
of one hanging node per edge.

Definition 2.1 (mesh condition). We say that T satisfies the mesh condition if for
any irregular z ∈ Virr (1) its neighbouring vertices z1, z2 are regular; (2) z is the
midpoint of conv{z1, z2}; (3) any pair z1, z2 ∈ Vreg of regular vertices hosts at most
one irregular vertex, i.e., card(conv{z1, z2} ∩ Virr) ≤ 1.

This condition means that every edge contains at most one hanging node, which
is necessarily the midpoint; and that any edge with a hanging node connects two
regular vertices. Figure 2 shows some configurations excluded by this condition. Let
T be a partition satisfying the condition of Definition 2.1. Such partitions allow for
simple Q1 interpolation. For any function v over Ω that is continuous in the regular
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Figure 2. Mesh configurations excluded by Definition 2.1. Left:
some neighbouring vertices are irregular. Middle: an edge contains
more than one irregular vertex. Right: the irregular vertex is not
the midpoint of an edge.

vertices Vreg, the interpolation Qv is the globally continuous and piecewise bilinear
function defined by assigning the nodal value of v at the regular vertices and, for
irregular vertices, the average of the values at the two neighbouring vertices. That
is, Qw is defined by

Qv(z) =

{
w(z) if z ∈ Vreg

2−1(w(z1) + w(z2)) if z ∈ Virr has neighbouring vertices z1, z2.
(2.3)

Its approximation properties are discussed in Lemma B.1 in §B of the appendix.

The Adini space Vh over T is assumed to be a subspace of V̂h from §2. This
fixes the point values in all vertices, the gradient values in regular vertices, and, for
any irregular vertex z, the partial derivative in tangential direction of the edge E
containing z. It does not fix the partial derivative at z in the direction normal to
E. We will new discuss possible choices in the next section.

3. Continuity conditions at hanging nodes

For an 1-irregular partition T, an interior edge with a hanging node z ∈ Virr

will be shared by three rectangles: one rectangle T for which z is not a vertex,
z /∈ V(T ), and two rectangles K1, K2 which have z as a vertex, see Figure 3.
The local degrees of freedom related to z cannot be a global degree of freedom.
Instead, a choice for the value of the function and its gradient at z has to be made.
For global continuity, it is necessary that v and the tangential derivative of v are
continuous at z. The only freedom that is left is the choice of the derivative normal
to T at z. Any sensible choice must guarantee approximation and consistency. We
ask the assignment of the normal derivative to be linear, local, and invariant under
relabelling of coordinates:

Definition 3.1 (admissible assignment). Let z ∈ Virr be an irregular vertex. There
exist exactly three elements T,K1,K2 ∈ T that contain z, where z is a vertex of
K1, K2 and belongs to the interior of an edge E of T (see Figure 3) with normal

vector nE . A function v ∈ V̂h is said to satisfy an admissible assignment at z if

∂v|K1

∂nE
(z) =

∂v|K2

∂nE
(z) = L(v|T )

for a linear operator L that (1) is invariant under rotations by π/2 or reflections of
the coordinate system and linear scaling (homothety) and (2) conserves quadratic

polynomials. A subspace Vh ⊆ V̂h is said to satisfy an admissible assignment if any
vh ∈ Vh satisfies an admissible assignment at every z ∈ Virr and if the kernel of ah
over Vh equals {0}.

Throughout this work, we assume that Vh is a linear subspace of V̂h satisfying
an admissible assignment; in particular ah is a scalar product on Vh. Then problem
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T

K2

K1
z1

z2

z̃
E

nE

z

z̃

Figure 3. Left: Configuration with a hanging node z̃. Right:
Mesh configuration with a regular vertex z and exactly one irreg-
ular vertex z̃ on ∂ωz.

(2.2) has a unique solution uh ∈ Vh, and the classical a priori error bound [2,
Lemma 10.1.7] known as Berger–Scott–Strang lemma states that

(3.1) max{A,B} ≤ |||u− uh|||h ≤ A+B

for the approximation and consistency errors

A := inf
vh∈Vh

|||u− vh|||h and B := sup
vh∈Vh\{0}

ah(u− uh, vh)
/
|||vh|||h.

For the method to converge at rate hs it is necessary that both A and B decrease
at least at that rate. A priori error estimates are usually formulated on sequences
of uniformly refined meshes. Here, uniform refinement means that every rectangle
is split into four equal sub-rectangles by connecting the midpoints of opposite edges
with straight lines. If this refinement process is started from an initial 1-irregular
partition, eventually the partition will contain regular vertices z with exactly one
irregular vertex on the boundary of their vertex patch ωz, as displayed Figure 3.

We say a method is O(hs) if there exists a constant C > 0 such that |||u−uh|||h ≤
Chs(‖u‖H4(Ω) + ‖u‖W 3,∞(Ω)) provided the norm of u on the right-hand side is
finite. According to the assignment rule of Definition 3.1, the space Vh is spanned
by global basis functions related to the degrees of freedom at regular vertices. The
following lemma states that necessary for convergence better than O(h) is that the
basis functions related to gradient evaluations are continued by 0 by the admissible
assignment.

Lemma 3.2. Let T be an 1-irregular partition such that there exists a regular
vertex z ∈ Vreg with exactly one irregular vertex z̃ ∈ Virr on the boundary of its
vertex patch (see Figure 3). Let E ⊆ ∂ωz denote the edge containing z̃. Let ϕ =
ϕz,α with |α| = 1 denote the Adini basis functions with respect to the derivative
evaluation at z (defined in §A of the appendix) with respect to the multiindex α. If
∂nE

ϕz,α(z̃) follows an admissible assignment and ϕz,α is not continued by 0 outside
ωz, then there exists an f such that the solution u belongs to H4(Ω) ∩W 3,∞(Ω),
but |||u− uh|||h ≥ c1hE − c2h2

E with positive numbers c1, c2 independent of the mesh
size.

Proof. Let u be the solution to (2.1) and assume u ∈ H4(Ω). Consider the consist-
ency term B from the a priori result (3.1). Due to (2.2) it satisfies

B ≥ |||ϕ|||−1
h

(
ah(u, ϕ)−

∫
Ω

fϕ

)
.

We follow the notation of Figure 3 and denote by K1, K2 the rectangles with
z̃ ∈ V(K1) ∩ V(K2). Clearly, due to the locality in Definition 3.1, ϕ vanishes
identically outside ωz ∪K1 ∪K2, and we have with some real number c that

ϕ|K1∪K2 = cψ
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T

z1 z2

z3z4

z̃

Figure 4. Notation for the reference rectangle used in Lemma 3.3.

where ψ is the (local) basis function with ψ = ϕz̃,β on K1 ∪K2 with β 6= 0 parallel
to nE (see §A of the appendix for the notation around the Adini basis functions).
From standard scaling we thus have

‖D2
hϕ‖L2(K1∪K2) ≈ |c| and ‖D2

hϕ‖L2(ωz) ≈ 1.

The scaling invariance of Definition 3.1 implies |c| ≈ 1 so that

|||ϕ|||h ≈ 1.

Thus,

B &

(∫
ωz∪K1∪K2

D2u : D2ϕ−
∫

Ω

fϕ

)
.

From scaling of ϕ we also have∣∣∣∣∫
Ω

fϕ

∣∣∣∣ . h2
E‖f‖L2(Ω).

Further, it can be computed (see Lemma A.4 in §A of the appendix) that∫
ωz

p ∂2
jk,hϕ = 0 for any affine p ∈ P1 and any j, k = 1, 2.

Standard estimates thus show that
∫
ωz
D2u : D2ϕ is bounded by a constant times

h2
E‖u‖H4(Ω). We thus obtain constants C1, C2 such that

B ≥ −C1h
2
E(‖u‖H4(Ω) + ‖f‖L2(Ω)) + C2

∫
K1∪K2

D2u : D2
hϕ.

Now, by the above requirements, ϕ|K1∪K2
must coincide with cψ. We explicitly

compute with Lemma A.5 that∫
K1∪K2

D2
hϕ = c hE

[
γ1 0
0 γ2

]
with γ1γ2 = 0 and γ1 + γ2 6= 0.

Without loss of generality, assume that γ1 > 0. Then, if D2u is uniformly positive
definite in a neighbourhood of K1 ∪ K2, we get the asserted lower bound for B.
Such u can be easily obtained by multiplying the function x2 + y2 with a smooth
cutoff function. �

The foregoing Lemma 3.2 has the following implication. The lower bound in the
proof is better than linear only if c = 0. If ∂nE

ϕz,α(z̃) follows an admissible assign-
ment and the method convergence like O(hs) with s > 1 on quasi-uniform meshes,
then necessarily ϕz,α is continued by 0 outside ωz. For the assignment operator L,
using the notation for reference element displayed in Figure 4 with hanging node z,
the lemma states that L must map the basis functions ϕz1,α and ϕz4,α with |α| = 1
to zero. The next result shows that the averaging is the only potentially superlinear
admissible refinement rule that preserves quadratic polynomials. Recall the Adini
basis functions from §A of the appendix.
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Lemma 3.3. Consider the reference square (−1, 1)2 from Figure 4. with vertices
z1, . . . , z4 in counterclockwise enumeration starting with z1 = (−1,−1). Further
denote z̃ = (1, 0). The only linear admissible (in the sense of Definition 3.1) map
L : A→ R with

Lϕzj ,β = 0 for j = 1, 4 and |β| = 1 and ∂xp(z̃) = Lp for all p ∈ P2

is the averaging

Lp :=
1

2
(∂xp(z2) + ∂xp(z3)).

The space P3 of cubic polynomials is not invariant under such assignment.

Proof. Since P3 ⊆ A, any cubic polynomial can be represented in the Adini basis
as

p =

4∑
j=1

∑
|α|≤1

∂αp(zj)ϕj,α.

From linearity of L and the assumptions, we obtain

Lp =

4∑
j=1

p(zj)Lϕj,(0,0) +
∑
j=2,3

∑
|α|=1

∂αp(zj)Lϕj,α.

The quadratic polynomial q = (x− 1)2/4 then satisfies

Lq =
∑
j=1,4

q(zj)Lϕj,(0,0)

so that necessary for ∂xq(z̃) = Lp is Lϕ1,(0,0) + Lϕ4,(0,0) = 0 and thus Lϕ1,(0,0) =

Lϕ4,(0,0) = 0 from the coordinate-invariance. The quadratic polynomial q = (y2 −
1)/2 then satisfies

Lq =
∑
j=2,3

Lϕj,(0,1)

and, as above, this leads to Lϕz2,(0,1) = Lϕz3,(0,1) = 0. Plugging in the polynomial

q = y2 then yields with an analogous argument that Lϕ2,(0,0) = Lϕ3,(0,0) = 0. In
summary, we obtain the necessary condition

Lp = ∂(1,0)p(z2)Lϕz2,(1,0) + ∂(1,0)p(z3)Lϕz3,(1,0).

Obviously, the only choice that preserves quadratic polynomials (an their affine
derivatives) over the edge containing z̃ is that Lϕz2,(1,0) = Lϕz3,(1,0) = 1/2. It
remains to check that this choice cannot preserve all cubic polynomials. For the
choice p = (1 − y2)(1 − x), we see ∂xp vanishes at all vertices. Hence, we have
Lp = 0 but ∂xp(z̃) = −1. �

The foregoing two Lemmas 3.2–3.3 show that the averaging assignment is the
only candidate that potentially achieves superlinear convergence, which in particu-
lar proves the lower error bound stated in Theorem A. Hence, the choice proposed
here is to assign the average of the normal derivatives at the neighbouring vertices:
The global Adini finite element spaces is defined by

(3.2) Vh :=
{
v ∈ V̂h : Q∇v is continuous at Virr

}
.
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4. Analysis of the consistency error, Proof of Theorem A

Throughout this section, the choice of Vh is fixed through the averaging rule
(3.2). On any T we introduce local coordinates

ξ(x, y) = h−1
x (x−m) and η(x, y) = h−1

y (y −m)

ranging from −1 to 1, where m is the midpoint of T and hx, hy are the half widths in
x, y direction, respectively. By Q we denote the globally continuous and piecewise
bilinear interpolation from (2.3). By the assignment of the hanging node value as
in (3.2), the expression Q∂xw is well defined for any w ∈ Vh. We note the following
fact, which is essentially contained in [9].

Lemma 4.1. Let T be a rectangle with E an edge orthogonal to the x-axis. Then
any w ∈ A satisfies

(1−Q)∂xw|E = −
h3
y

3
∂4
xyyyw(η3 − η) +

h2
y

2
∂3
xyyw(η2 − 1).

Proof. We express the monomials of the Adini space in terms of ξ, η. It is obvious
that ∂xP2 and ∂x〈ξ2η, η3〉 belong to Q1. Further ∂x〈ξ3, ξ3η〉 consists of functions
that are linear in η and thus are interpolated exactly by Q on E. Therefore, the
only two remaining monomials are ξη2, ξη3, and

(1−Q)∂xu|E = (1−Q)∂x(aξη3 + bξη2)|E
with real coefficients a, b. The chain rule reveals ∂xξ = h−1

x , ∂yη = h−1
y . Taking

derivatives of w and comparing coefficients shows that

∂4
xyyyw =

6

hxh3
y

a and ∂3
xyyw =

1

hxh2
y

(6aη + 2b)

which leads to

a =
hxh

3
y

6
∂4
xyyyw and b =

hxh
2
y

2
∂3
xyyw − 3aη.

A direct computation of derivatives and interpolation leads to

(1−Q)∂x(aξη3 + bξη2) = h−1
x

(
a(η3 − η) + b(η2 − 1)

)
.

Inserting the values for a and b in this formula reveals the asserted identity. �

The previous lemma will be essential for bounding the consistency term in the
next lemma. We denote

(4.1) Treg := {T ∈ T : all vertices of T are regular} and Tirr := T \ Treg.

Lemma 4.2. Let the partition T satisfy the condition of Definition 2.1 and let Vh
be chosen according to (3.2). Let g ∈ C1(Ω) be a piecewise polynomial function and
w ∈ Vh. Then,∑

T∈T

∫
∂T

g(1−Q)∇w · nT . (‖(1−Π1)g‖∪Treg + ‖(1−Π0)g‖∪Tirr)‖D2
hw‖.

The constant hidden in the notation . may depend on the polynomial degree of g.

Proof. We consider the edges orthogonal to the x or y axis separately. For a rect-
angle T we denote by nx the x component of the outer unit normal (left −1, right
1, top and bottom 0). Fix any T with local coordinates (ξ, η). For (1 − Q)∂xw
we use the expression from Lemma 4.1 and the fundamental theorem of calculus so
that

(4.2)

∫
∂T

g(1−Q)∂xwnx = −
h3
y

3

∫
T

∂xg∂
4
xyyyw(η3−η) +

h2
y

2

∫
T

∂xg∂
3
xyyw(η2−1).
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Since the function η3 − η has vanishing average over T , and since the fourth de-
rivative of w is constant, we can use orthogonality to constants and the Cauchy
inequality for the first term on the right-hand side of (4.2) to see

(4.3a) −
h3
y

3

∫
T

∂xg∂
4
xyyyw(η3 − η) ≤

h3
y

3
‖(1−Π0)∂xg‖T ‖∂4

xyyyw‖T ‖η3 − η‖L∞(Ω).

With the inverse estimate and 0 ≤ η ≤ 1 we obtain that this is bounded by some
constant times

(4.3b) hy‖(1−Π0)∂xg‖T ‖∂2
xyw‖T .

Next, consider the second term of (4.2). With the global bilinear interpolation Q
from (2.3) we obtain with the abbreviation e := w − Qw (note that ∂3

xyyw and

∂3
xyye coincide) and integration by parts with respect to y that

h2
y

2

∫
T

∂xg(η2 − 1)∂3
xyyw = −

h2
y

2

∫
T

∂2
xyg(η2 − 1)∂2

xye− hy
∫
T

∂xgη∂
2
xye.

Again, with integration by parts with respect to x,

−hy
∫
T

∂xgη∂
2
xye = hy

∫
T

∂2
xxgη∂ye− hy

∫
∂T

∂xgη∂yenx.

Integrating by parts along any edge E parallel to the y axis with end points z−, z+

reveals

−hy
∫
E

∂xgη∂ye = hy

∫
E

∂2
xygηe+

∫
E

∂xge− hy((∂xge)(z+) + (∂xge)(z−)).

Combining the three foregoing displayed identities yields

h2
y

2

∫
T

∂xg(η2 − 1)∂3
xyyw

= −
h2
y

2

∫
T

∂2
xyg(η2 − 1)∂2

xye+ hy

∫
T

∂2
xxgη∂ye+ hy

∫
∂T

∂2
xygηenx +R(T )

(4.4)

with

R(T ) :=

∫
∂T

∂xgenx −
∑

z∈V(T )

hynx(∂xge)(z).

We note that the inverse inequality implies for any second-order derivative ∂2
jk of

the polynomial g|T that

‖∂2
jkg‖T . h−1

T ‖(1−Π0)∂jg‖T .

The combination of (4.2)–(4.4) with this estimate, the bound 0 ≤ η ≤ 1, trace
and inverse inequalities, and the approximation and stability properties of Q from
Lemma B.1, lead to∫

∂T

g(1−Q)∂xwnx . hT ‖(1−Π0)∂xg‖T ‖∂2
xyw‖T +R(T ).

Of course we have hT ‖(1 − Π0)∂xg‖T . ‖(1 − Π1)g‖T for the polynomial g|T .
Considering the sum over all T , since ∂xg and e are globally continuous, we have
that ∑

T∈T

∫
∂T

∂xgenx = 0.

We further note that e(z) = 0 for every regular vertex z. Therefore,∑
T∈T

R(T ) .
∑
T∈T

∑
z∈V(T )∩Virr

|hT (∂xge)(z)|.
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Given z ∈ V (T ) ∩ Virr, trace and inverse estimates show

|hy(∂xge)(z)| . ‖(1−Π0)g‖T ‖D2
he‖T .

Combining the above estimates results in the asserted identity with nT replaced by
nx. An analogous argument shows the same bound for nT replaced by ny, so that
eventually the full assertion follows. �

Proof of Theorem A. The abstract a priori error estimate (3.1) shows that
the error is bounded by A + B. We start by bounding A. Let Ihu denote the
standard Adini interpolation of u described in §D of the appendix. On any ele-
ment T ∈ Treg with regular vertices, the standard interpolation bound shows
‖D2

h(u − Ihu)‖T . h2
T ‖D4u‖T . If T ∈ Tirr contains an irregular vertex, Ih pre-

serves quadratic functions and therefore the standard interpolation bound shows
‖D2

h(u− Ihu)‖T . hT ‖D3u‖T . Altogether,

A2 ≤ ‖D2
h(u− Ihu)‖2∪Treg + ‖D2

h(u− Ihu)‖2∪Tirr . h4‖u‖2H4(∪Treg) + h2‖u‖2H3(∪Tirr).

Under uniform mesh refinement, the area covered by elements with irregular vertices
scales like

meas(∪Tirr) . h.

The assumed L∞ bound on the third derivatives thus shows

A2 . h4‖u‖2H4(∪Treg) + h3‖u‖2W 3,∞(∪Tirr).

For bounding the term B, consider any vh ∈ Vh with |||vh|||h = 1. Then, the solution
property of uh, integration by parts, and ∆2u = f show

a(u− uh, vh) =
∑
T∈T

∫
∂T

∂2
nnu∇w · nT =

∑
T∈T

∫
∂T

∂2
nnu(1−Q)∇w · nT

because Q∇w is continuous. Let g := JD2u ∈ [C1(Ω)]2×2 denote the (component-
wise) BFS averaging of D2u defined in §C. Adding and subtracting g in the above
identity results in

ah(u−uh, vh) =
∑
T∈T

∫
∂T

(∂2
nnu−gnn)(1−Q)∇w ·nT +

∑
T∈T

∫
∂T

gnn(1−Q)∇w ·nT .

Trace inequalities and the approximation and discrete stability properties of Q and
J from Lemma B.1 and Lemma C.1 bound the first sum on the right-hand side as
follows ∑

T∈T

∫
∂T

(∂2
nnu− gnn)(1−Q)∇w · nT . h2‖u‖H4(Ω)|||w|||h.

The second term in the above split is bounded with the help of Lemma 4.2. A
piecewise use of Poincaré’s inequality and Lemma C.1 then concludes the proof of
the upper error bounds in Theorem A. The stated lower error bound follows from
Lemmas 3.2–3.3.

5. A posteriori error estimate, Proof of Theorem B

We define the projection operator ΠT by

(5.1) ΠTv|T :=

{
Π1v|T if T ∈ Treg

Π0v|T if T ∈ Tirr.

Any edge is equipped with a fixed normal vector nE and tangential vector tE . The
jump across E is denoted by [·]E ; for boundary edges, [·]E denotes the trace.
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For any T ∈ T define the local error estimator contribution by

η2(T ) = h4
T ‖f‖2T +

3∑
j=1

∑
E∈E(T )

κEj h
2j−3
T

∥∥∥∥∥
[
∂juh

∂njE

]
E

∥∥∥∥∥
2

E

+ ‖(1−ΠT)D2uh‖2T(5.2a)

where E(T ) is the set of edges of T and

κEj =

{
0 if j ≥ 2 and E ⊆ ∂Ω,

1 otherwise

is introduced for excluding boundary edges from the sums when second- and third-
order normal derivatives of uh are considered. Define the total error estimator

η =

(∑
T∈T

η2(T )

)1/2

.(5.2b)

Proof of Theorem B. As in [3], the error is orthogonally split as follows

|||u− uh|||2h =

[
sup

ϕ∈H2
0 (Ω)\{0}

ah(u− uh, ϕ)

|||ϕ|||h

]2

+ min
v∈H2

0 (Ω)
|||uh − v|||2h

Since the second term on the right-hand side is directly bounded by η2 after plug-
ging in the BFS averaging v = J0uh with zero boundary conditions from §C and
using the bound from Lemma C.1 and inverse estimates, it remains to bound the
first term. Let ϕ ∈ H2

0 (Ω) with |||ϕ|||h = 1 and denote by IhJϕ its Adini quasi-
interpolation from §D of the appendix and abbreviate ϕ̂ := ϕ− IhJϕ. Equation 2.1
and the discrete solution property (2.1) yield

ah(u− uh, ϕ) =

∫
Ω

fϕ̂− ah(uh, ϕ̂).

The first term on the right-hand side is readily bounded by η through (D.1). For
the analysis of the second term, consider its contribution on any element T . Two
integrations by parts reveal∫

T

D2uh : D2ϕ̂ =

∫
∂T

∂2
nnuh∂nϕ̂+

∫
∂T

∂2
ntuh∂tϕ̂−

∫
∂T

(divD2uh) · nϕ̂.

Summing over all elements and noting that ϕ̂ and so ∂tϕ̂ is continuous, we obtain

ah(uh, ϕ̂) =
∑
T∈T

∫
∂T

∂2
nnuh∂nϕ̂+

∑
E∈E

(

∫
E

[∂2
ntuh]E∂tϕ̂−

∫
E

[divD2uh]E · nEϕ̂).

Standard estimates [12] with (D.1) bound the last two terms by η. In particular,
by ϕ̂ = ∂tϕ̂ = 0 on ∂Ω the boundary edges do not contribute to the sum. For
the analysis of the first sum on the right-hand side, denote by g := JD2

huh the
component-wise BFS averaging of the piecewise Hessian from §C. We have with
the continuity of g, ∇Jhϕ, and Q∇IhJϕ that∑
T∈T

∫
∂T

∂2
nnuh∂nϕ̂ =

∑
T∈T

(∫
∂T

(∂2
nnuh − gnn)∂nϕ̂+

∫
∂T

gnn(1−Q)∇IhJϕ · nT
)
.

The trace and inverse inequalities and Lemma 4.2 show that this is bounded by a
constant times ∑

j=1,2

(‖∂2
jjuh − gjj‖+ ‖(1−ΠT)gjj‖)

where we used (D.1) and ‖D2
hϕ‖ . 1. Since, obviously,

‖(1−ΠT)gjj‖ ≤ ‖(1−ΠT)∂2
jjuh‖+ ‖gjj − ∂2

jjuh‖
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we eventually have∑
T∈T

∫
∂T

∂2
nnuh∂nϕ̂ . (‖D2

huh − g‖+ ‖(1−ΠT)D2uh‖).

The last term is part of (and thus bounded by) η. The bound of the first term
follows from Lemma C.1. This concludes the proof of reliability. The efficiency
follows from known arguments [12, 3].

6. Numerical results

6.1. Illustration of Theorem A on quasi-uniform meshes. We start by nu-
merically illustrating the upper and lower a priori error bounds in an elementary
setting with the square Ω = (−1, 1)2 and f such that the exact solution is given
by the biquartic polynomial u = −(x4 − 2x2 + 1)(y4 − 2y2 + 1). We consider a
regular coarse initial partition consisting of four congruent squares, and sequences
of meshes following two refinement variants. In the first variant (Variant I), the
coarse mesh is uniformly refined once, and thereafter only one element containing
the point (0, 0) is refinement, resulting in an irregular partition. From this third
mesh on, again uniform refinements are performed. In the second variant (Vari-
ant II), five uniform refinements of the initial mesh are performed before the seventh
mesh is generated by refining only one element containing (0, 0). After that, the
refinements are again uniform.

Starting from the third mesh in the sequence, the partitions of Variant I are
irregular. Theorem A predicts the error to decrease as h3/2 for Vh as in (3.2) and
not better than h for any other choice. Up to the seventh mesh, the partitions of
Variant II are uniform, so that Theorem A states errors of the order h2 on these
regular partitions. After the local refinement, the partitions are irregular, and
Theorem A predicts the error for Vh as in (3.2) to gradually deteriorate to h3/2,
while any other method must immediately deteriorate from O(h2) to O(h).

Figure 5 displays the convergence history of the |||·|||h error with respect to the
squareroot of the number of degrees of freedom ndof, which for these quasi-uniform
meshes is proportional to h. Two assignments are compared: the assignment (3.2),
abbreviated by Vh in the legend, and the enforcement of strong continuity of the
normal derivative in irregular vertices, abbreviated by ‘hard’. The results are as
expected: for Variant I, the ‘hard’ interpolation results in convergence O(h), while
the method (3.2) reaches the predicted O(h3/2). For Variant II, as soon as a single
element is refined and, thus, the partition becomes irregular, the ‘hard’ interpolation
method deteriorates to O(h).

6.2. Approximation of a curvilinear domain. As an example for local resol-
ution of a curved boundary, consider Ω as the unit disk with f = 1 and the exact
solution given by u(x, y) = 2−6(x2 + y2 − 1)2 and discretization by the averaging
assignment (3.2). For the domain approximation, we consider a partition of the
square (−1, 1)2 where all degrees of freedom related to vertices outside Ω are set
to zero. On a sequence of uniformly refined meshes this results in convergence
of order h1/2 as can be seen in the convergence history of Figure 5. In a locally
refined variant, from the j-th uniform refinement of the background mesh, the ac-
tual partition is generated by repeating j times: mark all elements that touch the
boundary ∂Ω for local refinement and generate the smallest 1-irregular partition
where the marked elements are refined. Figure 6 shows an instance of such a mesh;
and the convergence history showing that this local refinement variant improves
the convergence order to h.
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Figure 5. Right: Numerical illustration of Theorem A with the
errors |||u−uh|||h for a smooth u on the unit square, setting of §6.1.
Left: Convergence history for the disk domain from §6.2.

Figure 6. Left: Locally resolved disk, 13 875 degrees of freedom.
Middle: Adaptive mesh of the L-domain, 36 798 degrees of freedom,
level 17. Right: Adaptive mesh of the cusp domain, 44 793 degrees
of freedom, level 20.

6.3. Adaptive mesh refinement. In this experiment, we consider the error es-
timator η with its local contributions η(T ) as a refinement indicator in an adapt-
ive mesh-refinement algorithm with Dörfler marking and bulk parameter chosen
as 1/2 in a standard adaptivity loop [12]. We consider the L-shaped domain

Ω = (−1, 1)
2 \ ([0, 1]× [−1, 0]). With α = 0.5444837 . . . and ω = 3π/2, the ex-

act singular solution from [7, p. 107] reads in polar coordinates as

(6.1) u(r, θ) = (r2 cos2 θ − 1)2(r2 sin2 θ − 1)2r1+αg(θ),

with the function

g(θ) =

(
s−(ω)

α− 1
− s+(ω)

α+ 1

)
(c−(θ)− c+(θ))−

(
s−(θ)

α− 1
− s+(θ)

α+ 1

)
(c−(ω)− c+(ω)).

and the abbreviations s±(z) = sin((α ± 1)z) and c±(z) = cos((α ± 1)z). The
convergence history with respect to the squareroot of the number of degrees of
freedom (ndof) is displayed in Figure 7. As expected, uniform mesh refinement
converges with the suboptimal rate dictated by α. Adaptive mesh refinement with
the averaging assignment (3.2) recovers first-order convergence, while the variant
enforcing the ‘hard’ interpolation constraint performs poorly (on the same adaptive
meshes) because its error is bounded from below by certain elements of large mesh
size (Theorem A), see the adaptive mesh displayed in Figure 6.
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Figure 7. Convergence history for the of the error |||u−uh|||h and
the estimator η for the L-shaped (left) and the cusp (right) domain
from §§6.3–6.4.

z = (0, 0)

K T

Figure 8. Vertex z = (0, 0) shared by T , K with common edge
lying on the y axis.

6.4. Approximation of a non-rectilinear domain. As an example for adaptive
resolution of a non-rectilinear domain, consider the corner domain Ω = (−1, 1)2 \
conv{(0, 0), (1,−1), (1, 0)} with exact solution given by (6.1) for the parameters
α = 0.50500969 . . . and ω = 7π/4. The line with angle 7π/4 describes the non-
rectilinear part of the boundary. We use an interior approximation with rectangles
and add on elements T touching the boundary the local error estimator contribution
h2
Tη

2 to η2(T ) in the marking process. This accounts for the error by the boundary
approximation. Figure 7 shows the convergence history. As in the previous example,
adaptive mesh refinement improves the reduced convergence observed on uniform
meshes. An adaptive mesh is displayed in Figure 6.

Appendix A. Properties of the Adini basis functions

The Adini basis function ϕz,α ∈ V̂h with respect to a regular vertex z ∈ Vreg and
a multiindex α ∈ {(0, 0), (1, 0), (0, 1)} satisfies

∂βϕz,α(z̃) = δz,z̃ δα,β for all z̃ ∈ Vreg and β ∈ {(0, 0), (1, 0), (0, 1)}

with the Kronecker δ. This uniquely defines ϕz,α on regular partitions. On
partitions with irregular vertices, it uniquely defines ϕz,α on elements T with
V(T ) ⊆ Vreg, that is, on elements with only regular vertices.

In what follows we consider two rectangles T , K sharing an edge lying on the
y axis, with one vertex being z = (0, 0), as shown in Figure 8. The ratio of the
x-widths of T , K is denoted by

ρ = diamx(T )/ diamx(K).

The following results are formulated in the coordinates (x, y) if T,K are considered.
If only T is considered, the usual local coordinates ξ, η are employed.
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Lemma A.1. In the configuration of Figure 8, ϕ = ϕz,(0,0) satisfies

(a)

∫
T

q ∂2
xxϕ = 0, (b)

∫
T∪K

x ∂2
xxϕ = 0, (c)

∫
T∪K

q ∂2
xyϕ = 0

for any integrable function q = q(y) depending only on y.

Proof. For the proof of (a), we use local coordinates ξ, η, write q̂(η) = q(y), and
observe that ϕ vanishes identically at η = 1 and ∂2

xxϕ is bilinear, so that there
exists a first-order polynomial p1 = p1(ξ) such that ∂2

xxϕ = (1− η)p1(ξ). Since ∂xϕ
vanishes at all vertices of T , considering η = −1 with the fundamental theorem of
calculus shows that ∫ 1

−1

∂2
xxp1(ξ) dξ = 0.

The original integral then reads∫
T

q̂(η)∂2
xxϕ = hxhy

∫ 1

−1

q̂(η)(1− η) dη

∫ 1

−1

∂2
xxp1(ξ) dξ = 0.

For the proof of (b), we use the symmetry ϕ|K(x, y) = ϕ|T (−ρx, y) for x ∈ K. By
the change of variables x̂ = −ρx we have for the (undirected) volume integrals that∫

K

x∂2
xxϕ(x, y) dxdy =

∫
T

−x̂
ρ
∂2
xxϕ(x̂, y)|−ρ−1| dx̂dy = −

∫
T

x̂∂2
x̂x̂ϕ(x̂, y) dx̂dy.

This implies (b). An analogous computation shows (c). �

Lemma A.2. In the configuration of Figure 8, ϕ = ϕz,(1,0) satisfies

(a)

∫
T

x ∂2
xxϕ = 0, (b)

∫
T

q ∂2
xyϕ = 0, (c)

∫
T∪K

q ∂2
xxϕ = 0.

for any integrable function q = q(y) depending only on y.

Proof. Since ϕ vanishes on all sides apart from {η = −1}, it contains the linear
factors (η−1)(ξ+ 1)(ξ−1). Since ϕ|T ∈ A, for ∂xϕ to vanish on the two endpoints
of the face ξ = 1, an additional factor (ξ − 1) is necessary. The presence of the
resulting factor (ξ−1)2 shows that ϕx vanishes on the whole face ξ = 1. Integration
by parts then reads ∫

T

x∂2
xxϕ = −

∫
T

∂xϕ.

This equals zero because ϕ has zero boundary conditions, which proves (a). For
the proof of (b), integration by parts with respect to y shows

hy

∫
T

q̂(η)∂2
xyϕ = hy

∑
σ=±1

∫
{η=σ}

q̂(σ)∂xϕ−
∫
T

∂y q̂(η)∂xϕ.

Integration by parts with respect to x shows that all these integrals vanish because
ϕ vanishes identically on the edges parallel to the y axis. This shows (b). We note
the symmetry ϕ|K(x, y) = −ρ−1ϕ|T (−ρx, y). A computation analogous to that of
the proof of (b) in Lemma A.1 thus proves (c). �

Lemma A.3. In the configuration of Figure 8, ϕ = ϕz,(0,1) satisfies∫
T∪K

q ∂2
xyϕ = 0 and ∂2

xxϕ = 0

for any integrable function q = q(y) depending only on y.

Proof. With the symmetry ϕ|K(x, y) = ϕ|T (−ρx, y), an argument similar to that of
the proof of (b) in Lemma A.1 proves the first identity. Since the bilinear function
∂2
xxϕ vanishes on the faces parallel to the x axis, we have ∂2

xxϕ = 0, which is the
second asserted identity. �
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Lemma A.4. Let z be a regular interior vertex with patch ωz. Any

ϕ ∈ {ϕz,(0,0), ϕz,(1,0), ϕz,(0,1)}
out of the three global Adini basis functions related to z satisfies∫

ωz

p ∂2
jkϕdx = 0 for any p ∈ P1 and any pair (j, k) ∈ {1, 2}2.

Proof. This follows from carefully combining the foregoing three lemmas with suit-
able changes of coordinates. �

Lemma A.5. In the configuration of Figure 8, ϕ = ϕz,(0,1) satisfies∫
T∪K

D2ϕ = hT

[
0 0
0 γ

]
with γ ≈ 1.

Proof. Lemma A.3 shows that
∫
T∪K ∂

2
jkϕ = 0 if min{j, k} ≤ 1. From the symmetry

ϕ|K(x, y) = ϕ|T (−ρx, y) and change of variables we further obtain∫
K

∂2
yyϕ = ρ−1

∫
T

∂2
yyϕ and therefore

∫
T∪K

∂2
yyϕ = (1 + ρ−1)

∫
T

∂2
yyϕ.

Since ϕ vanishes on all edges of T apart from {ξ = −1}, an argument analogous
to that of the proof of Lemma A.2 shows that ϕ = c(η − 1)2(η + 1)(ξ − 1) with
some c ≈ hy. Then, obviously, the integral of ∂2

yyϕ = h−2
y c(ξ − 1)(6η+ 2) over T is

nonzero and scales like hT . �

Appendix B. Bilinear interpolation with hanging-node constraint

B.1. Bilinear interpolation. Given a piecewise polynomial function w that is
continuous in the regular vertices of T, its globally continuous and piecewise bilinear
interpolation Qw is defined in (2.3).

Lemma B.1 (stability and approximation of bilinear interpolation). Let the 1-
irregular partition T satisfy the mesh condition of Definition 2.1 and let the function
w be globally continuous and piecewise polynomial with respect to T. Then

h−2
T ‖w −Qw‖T + h−1

T ‖∇(w −Qw)‖T + ‖D2Qw‖T . ‖D2
hw‖ωT

for any T ∈ T,

with the element patch ωT . The constant hidden in the notation . depends on the
polynomial degree of w.

Proof. If T exclusively has regular vertices, Q is the standard bilinear interpolation
on T and the result is obvious. Assume therefore that T has an irregular vertex z.
Then z belongs to an edge with two neighbouring regular vertices one of them lying
outside T . By the mesh condition, T must possess at least two regular vertices,
so that in total there are at least three regular vertices inside ωT . At these points
w = Qw holds. The asserted result thus follows from a standard scaling argument
and the finite number of possible local mesh configurations. �

Appendix C. BFS averaging

It is well known from the Bogner–Fox–Schmid (BFS) finite element [5] that, on
any rectangle, the 16 linear functionals

v 7→ ∂αv(z) for any vertex z of T and any α ∈ B

for the set B := {(0, 0), (1, 0), (0, 1), (1, 1)} of multiindices are linear independent
over Q3 (bicubic functions). The corresponding dual BFS basis of Q3 consists of
the 16 functions ψz,α with

∂βψz,α(z̃) = δz,z̃δα,β for all z, z̃ ∈ V(T ) and α, β ∈ B.
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As a basic averaging operator, introduce M and M0 mapping a piecewise smooth
function v to a piecewise Q3 function by assigning the mean of the above local
functionals at all vertices (resp. all interior vertices). More precisely, for every
rectangle T ∈ T and any vertex z ∈ V(T ) of T , they are defined by

(∂αMv|T )(z) :=
∑
K∈T:
z∈K

(∂αv|K)(z) and (∂αM0v|T )(z) :=

{
M(z) if z ∈ Ω

0 if z ∈ ∂Ω

(the Σ with the bar represents the average). This function is C1 continuous in
all regular vertices, but it may be discontinuous at irregular vertices. From Mv
(resp. M0v) we construct a globally C1 and piecewise bicubic (thus BFS) function
Jv (resp. J0v) by assigning the values of Mv (resp. M0v) at regular vertices and by
matching the values at irregular vertices by interpolation, more precisely

(∂αJv)(z) =

{
(∂αMv)(z) if z ∈ Vreg

(∂αMv|T )(z) if z ∈ Virr and z ∈ T \ V(T ).

The definition of J0 is analogous with M replaced by M0 in the above formula. In
the general case that v is piecewise H2-regular, we overload notation and extend J

by defining Jv := JΠQ3v for the L2 projection ΠQ3 to piecewise bicubic functions.
As in prior sections we denote by [·]E the jump across an edge E.

Lemma C.1. Let T be an 1-irregular partition satisfying the mesh condition of
Definition 2.1. Any piecewise Q3 (bicubic) function v ∈ L2(Ω) satisfies

‖v − J0v‖2 .
∑
E∈E

(
hE‖[v]E‖2E + h3

E‖[∇v]E‖2E
)
.

If v ∈ H2(Ω), we have

‖h−2(v − Jv)‖+ ‖h−1∇(v − Jv)‖+ ‖D2Jv‖ . ‖D2v‖.

Proof. Let v be piecewise bicubic. Let T ∈ T and z ∈ V(T ) be a vertex of T .
Standard techniques [2, 3] reveal for the basic averaging operator M0 that

∑
α∈B

h
1+|α|
T |∂α(v −M0v)(z)| .

( ∑
E∈E:z∈E

(hT ‖[v]E‖2E + h3
T ‖[∇v]E · nE‖2E)

)1/2

.

If z is a regular vertex, the same estimate obviously holds for M0 replaced by J0. If
z is an irregular vertex and K is the element with z ∈ K \ V(K), then (∂αJ0v)(z)
is defined by interpolation from information of M0v in the neighbouring vertices
z1, z2; and a scaling argument shows that

(∂α(v−J0v)|T )(z) = (∂αv|T−∂αM0v|K)(z) .
2∑
j=1

∑
β∈B

h
|β|−|α|
T

∣∣∂β(v −M0v)|Tj
(zj)

∣∣
where T1, T2 are the two rectangles with {z, zj} ⊆ V(Tj) (one of them being T ).
Since the expansion of v − J0v on T in terms of the BFS basis functions and the
scaling of the latter read

(v − J0v)|T =
∑
α∈B

∑
z∈V(T )

∂α(v − J0v)(z)ψα,z and ‖ψα,z‖T . h1+|α|
T ,

a direct computation with the triangle inequality and the above estimates at the
vertices and the local equivalence hT ≈ hE reveal that

‖v − J0v‖T =

 ∑
z∈V(T )

∑
E∈E:z∈E

(hE‖[v]E‖2E + h3
E‖[∇v]E · nE‖2E)

1/2

.
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This and the finite overlap of the element patches proves the first stated estimate
for J0. An analogous argument shows that the same upper bound is valid for
‖v − Jv‖2. The second stated estimate follows from combining this bound with
local trace inequalities and standard estimates for the piecewise L2 projection. �

We remark that in the upper bound of ‖v − Jv‖2 mentioned in the proof of the
foregoing lemma, the boundary edges can be dropped, which is, however, not made
use of in this work.

Appendix D. Adini quasi-interpolation

We denote by Ih the standard Adini interpolation with zero boundary data acting
an a sufficiently smooth function w as

Ihw|T =
∑

z∈V(T )∩Ω

∑
|α|≤1

∂αw(z)ϕz,α for any T ∈ T

with ϕz,α defined in §A. Let v ∈ H2
0 (Ω). We define the Adini quasi-interpolation

IhJv ∈ Vh, where J is the BFS averaging from §C. With Lemma C.1 and standard
discrete estimates we obtain

(D.1) ‖h−2(v − IhJv)‖+ ‖h−1∇(v − IhJv)‖+ ‖D2
hIhJv‖ . ‖D2v‖.

References

[1] A. Adini and R. W. Clough. Analysis of plate bending by the finite element method. NSF

report, G-7337, 1961.
[2] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods,

volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.

[3] C. Carstensen, D. Gallistl, and J. Hu. A posteriori error estimates for nonconforming finite
element methods for fourth-order problems on rectangles. Numer. Math., 124(2):309–335,

2013.

[4] C. Carstensen and J. Hu. Hanging nodes in the unifying theory of a posteriori finite element
error control. J. Comput. Math., 27(2-3):215–236, 2009.

[5] P. G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 4 of Studies in

Mathematics and its Applications. North-Holland, Amsterdam, 1978.
[6] D. Gallistl and S. Tian. A posteriori error estimates for nonconforming discretizations of

singularly perturbed biharmonic operators. SMAI J. Comput. Math., 10:355–372, 2024.

[7] P. Grisvard. Singularities in Boundary Value Problems, volume 22 of Recherches en
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