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Abstract

For a discretization of the Reissner–Mindlin plate model proposed by
the authors in [SIAM J. Numer. Anal. 59(3), 2021], a residual-based
a-posteriori error estimator is proven to be reliable and efficient. The
estimates are robust in the plate thickness parameter. Numerical experi-
ments assess the behaviour of the individual error estimator components
and the application to adaptive mesh refinement.
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1 Introduction

The use of the Helmholtz decomposition of the shear force in the Reissner–
Mindlin plate model [BF86] revealed a structure that established a guideline
for shear-locking free discretizations. This structure is preserved in the low-
order nonconforming method of [AF89a] in a pointwise sense thanks to a dis-
crete Helmholtz decomposition established by those authors. For that method,
[Car02] proved residual-based a posteriori error estimates. A higher-order gen-
eralization of the method [AF89a] was proposed in [GS20, GS21] based on a gen-
eralization [Sch17] of the Crouzeix–Raviart method. What makes the method
from [GS21] attractive is that it is based on the generalized Taylor–Hood pair
[BBF13] and therefore on standard trial spaces. Moreover, the rotation employs
the full approximation properties of the Taylor–Hood space. The interplay of
local forces, corner singularities, and boundary layers of different strengths de-
pending on the boundary conditions makes a priori mesh grading very challen-
ging, in particular for high-order methods. In order to explore the possibility of
adaptive mesh refinement, in this work we prove the reliability and efficiency of
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A posteriori error estimates for Reissner–Mindlin

a residual-based a posteriori error estimator for the methods of [GS20, GS21].
The methods are based on an alternative formulation related to the Schur com-
plement of some mixed system. Given an open, bounded, simply connected
polygonal domain Ω ⊆ R2, and the load function ℓ ∈ L2(Ω), the classical
Reissner–Mindlin model [BBF13, Bra07] seeks the displacement w ∈ H1

0 (Ω)
and the rotation ϕ ∈ [H1

0 (Ω)]
2 such that

a(ϕ, ψ) + λt−2(∇w − ϕ,∇v − ψ)L2(Ω) = (ℓ, v)L2(Ω) (1)

for all (v, ψ) ∈ H1
0 (Ω) × [H1

0 (Ω)]
2. Here, t > 0 is the plate thickness and the

bilinear form a(·, ·) is defined by a(ϕ, ψ) := (ε(ϕ),Cε(ψ))L2(Ω) for the linear
Green strain ε(·) = symD(·) and the linear elasticity tensor C that acts on any
symmetric matrix A ∈ R2×2 as follows

CA =
E

12(1− ν2)
((1− ν)A+ ν tr(A)I2×2)

with Young’s modulus E > 0 and the Poisson ratio 0 < ν < 1/2. The constant
λ in (1) reads λ = (1+ν)−1Eκ/2 with a shear correction factor κ usually chosen
as 5/6. The method of [GS21] considered here and described in Section 2 below
involves ϕ and a scalar-valued variable α with boundary values complementary
to those of w, and a vector field η with the property −div η = ℓ. They are
directly related to the shear force by ζ = η − Curlα, with analogous discrete
relations, and therefore these nonstandard variables directly enter the error
estimator based on residuals of the stress (and thus ϕ) and the shear force
ζ. Although the displacement w can be recovered from the system, it is not
further relevant for a posteriori error estimation. The results generalize the low-
order case considered in [Car02]. In particular, the efficiency proof presented
here differs from [Car02], is based on locally adapted bubble functions following
[Ver98, Ver13] (also employed in [CS06, HH10]), and applies to more general
boundary conditions as discussed in Section 2.4. For a posteriori error estimates
and adaptive computations with alternative methods we refer to [CW03, CW01,
CH08].

The remaining parts of this article are organized as follows. Section 2 revisits
the alternative formulation and discretization of [GS21], states the main result,
namely the residual-based a posteriori error estimate, and comments on the ap-
plication to more general boundary conditions. The proof of the main result is
given in Section 3, where the system is considered in a non-dimensional form in
order to focus on robustness with respect to the critical parameters in the sys-
tem. The numerical experiments of Section 4 conclude the paper. Appendix A
collects certain longer formulas.

Standard notation on Lebesgue and Sobolev spaces applies throughout this
paper. The L2 inner product is denoted by (v, w)L2(ω) for a domain ω ⊆ Ω and

∥•∥ω := ∥•∥L2(ω) and ∥•∥ := ∥•∥Ω denote the L2 norm. The Hk seminorm over
ω ⊆ Ω is denoted by |•|k,ω and |•|k := |•|k,Ω. The space of H1(Ω) functions
with vanishing global average is denoted by H1(Ω)/R. For a function v and a
vector field ψ, the following differential operators are defined

divψ = ∂1ψ1 + ∂2ψ2, rotψ = ∂1ψ2 − ∂2ψ1, Curl v =

(
−∂2v
∂1v

)
.
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A posteriori error estimates for Reissner–Mindlin

The notation A ≲ B abbreviates A ≤ CB for some constant C that is inde-
pendent of the mesh size, the plate’s thickness t, and Young’s modulus E (but
it may depend on the fixed constant κ and on the bounds 0 and 1/2 of ν). The
notation A ≈ B abbreviates A ≲ B ≲ A.

2 Discretization and a posteriori error estimate

2.1 Equivalent formulation

The a posteriori error analysis below will rely on a reformulation of the Reissner–
Mindlin equation (1) that is based on η ∈ H(div,Ω) satisfying −div η = ℓ, which
can be computed based on ℓ. Define the bilinear forms b : L2(Ω;R2)×H1(Ω) →
R and c : H1(Ω)×H1(Ω) → R by

b(ψ, β) = (ψ,Curlβ)L2(Ω) ,

c(α, β) = (Curlα,Curlβ)L2(Ω) .

The introduction of a Lagrange multiplier α ∈ H1(Ω)/R in the Schur comple-
ment of [GS21] yields the problem: Find (ϕ, α) ∈ [H1

0 (Ω)]
2 ×H1(Ω)/R with

a(ϕ, ψ) + b(ψ, α) = (η, ψ)L2(Ω)

b(ϕ, β)− λ−1t2c(α, β)L2(Ω) = −λ−1t2b(η, β)
(2)

for all (ψ, β) ∈ [H1
0 (Ω)]

2 ×H1(Ω)/R. Note that this is a standard saddle point
problem with penalty term [Bra07]. The following result from [GS21] proves
the equivalence with (1) and provides the formula for the shear force.

Theorem 1 ([GS21, Prop. 4.2]). The problems (1) and (2) are equivalent in
the following sense: If (ϕ,w) ∈ [H1

0 (Ω)]
2 × H1

0 (Ω) is a solution of (1), then
there exists α ∈ H1(Ω)/R such that (ϕ, α) solves (2). On the other hand, if
(ϕ, α) ∈ [H1

0 (Ω)]
2×H1(Ω)/R solves (2), then there exists w ∈ H1

0 (Ω), such that
(ϕ,w) solves (1). Furthermore, w and α satisfy

∇w + λ−1t2 Curlα = ϕ+ λ−1t2η

and, therefore, the shear force is given by

ζ = λt−2(∇w − ϕ) = η − Curlα. (3)

2.2 Discretization

Let T be a regular triangulation of Ω from a shape-regular family, consisting of
at least three triangles. Let Pk(T) denote the space of piecewise polynomials of
degree not larger than k and let Πk denote the L2 projection to Pk(T). Further
define

Sk(T) := Pk(T) ∩H1(Ω) and Sk0 (T) := Pk(T) ∩H1
0 (Ω).

The discretization of (2) employs the following discrete spaces for k ≥ 0

Φh := Sk+2
0 (T;R2)

Qh := Sk+1(T) ∩H1(Ω)/R

3
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and seeks (ϕh, αh) ∈ Φh ×Qh with

a(ϕh, ψh) + b(ψh, αh) = (Πkη, ψh)L2(Ω)

b(ϕh, βh)− λ−1t2c(αh, βh)L2(Ω) = −λ−1t2b(η, βh)
(4)

for all (ψh, βh) ∈ Φh × Qh. Note that Φh and Qh are the stable (generalized)
Taylor–Hood pair [BBF13] for the Stokes system.

The approximation ζh of the shear variable ζ is defined according to (3),
namely

ζh = Πkη − Curlαh ∈ Pk(T;R2). (5)

Remark 1. Similar to the continuous case, the discretization (4) is equivalent to a
problem of the form: Find (σh, ϕh) ∈ Zh×Φh such that for all (τh, ψh) ∈ Zh×Φh
there holds

a(ϕh, ψh) + λt−2(Πkϕh − σh,Πkψh − τh)L2(Ω) = (η, τh)L2(Ω), (6)

where

Zh := {σh ∈ Pk(T;R2) | (σh,Curl qh)L2(Ω) = 0 for all qh ∈ Qh}

denotes a space of discrete (nonconforming) gradients. Here, the L2 projection
Πk plays the role of a reduction or reduced integration operator. Such operators
are commonly met in the discretization of Reissner–Mindlin plates [Bra07]. In
the lowest-order case, k = 0, the discrete Helmholtz decomposition of [AF89a]
shows that Zh equals the space of piecewise gradients of the nonconforming P1

finite element functions [CR73]. According to (3), the approximation σh of ∇w
can be directly reconstructed by

σh = Πk(ϕh + λ−1t2η)− λ−1t2 Curlαh ∈ Zh. (7)

The equivalence is shown in [GS21, Prop. 4.3], compare also [GS20, Section 2.2.2]
for a version formulated with matrices.

2.3 Main result

We are now in the position to define the error estimator for the discretization
of (1). Let E denote the set of edges of T and E(Ω) the set of interior edges.
For any interior edge F ∈ E(Ω) we fix the two triangles T+, T− ∈ T with
F = T+∩T−, while for a boundary edge, let T+ ∈ T be the unique triangle with
F ⊆ T+. Then, let νF = νT+ |F be the unit normal on F and τF = (0,−1; 1, 0)νF
denotes the unit tangent on F . Furthermore, for an interior edge F ∈ E(Ω),
let [v]F := v|T+

− v|T− denote the jump across F and for a boundary edge
F ∈ E \ E(Ω), let [v]F := v|T+

. The diameter of T and F is denoted by hT and
hF , respectively. Recall that ζh := Πkη − Curlαh denotes the discrete shear
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force, see (5). For every T ∈ T, we define the local error estimator contributions

µ2
1(T ) :=

h2T
E2

∥ − divCε(ϕh)− ζh∥2T ,

µ2
2(T ) :=

∑
F∈E(Ω)
F⊆T

hF
E2

∥[Cε(ϕh)]F νF ∥2F ,

µ2
3(T ) := min

{
1,
hT

√
λ

t
√
E

}2 ∥∥∥∥rot(ϕh + t2

λ
ζh

)∥∥∥∥2
T

,

µ2
4(T ) :=

∑
F∈E
F⊆T

t3

λ3/2
√
E

min

{
1,
hT

√
λ

t
√
E

}
∥[ζh]F · τF ∥2F ,

µ2
5(T ) :=

(
h2T
E2

+
t2

Eλ

)
∥η −Πkη∥2T ,

and the total local and global error estimator

µ2(T ) :=

5∑
j=1

µ2
j (T ) and µ :=

√∑
T∈T

µ2(T ).

The following main result states reliability and local efficiency of the error
estimator up to data approximation errors.

Theorem 2. The exact solution (ϕ, α) ∈ [H1
0 (Ω)]

2 ×H1(Ω)/R and its discret-
ization (ϕh, αh) ∈ Φh ×Qh satisfy

|ϕ− ϕh|1 + E−1∥α− αh∥+
t√
Eλ

|α− αh|1 ≲ µ

and

µ(T ) ≲ |ϕ− ϕh|1,ωT
+ E−1∥α− αh∥ωT

+
t√
Eλ

|α− αh|1,ωT
+

(
hT
E

+
t√
Eλ

)
∥η −Πkη∥ωT

,

where ωT =
⋃
{K ∈ T | T ∩K ̸= ∅} is the element patch.

Proof. The proof follows from a direct re-scaling of the result in Theorem 3
below in combination with (9).

Remark 2. Theorem 2 measures the error ϕ − ϕh in the H1 seminorm. An
error estimate in the energy norm corresponding to the form a can be directly
derived with Korn’s inequality and the scaling |ψ|1 ≈ E−1∥C1/2ε(ψ)∥ for any
ψ ∈ [H1

0 (Ω)]
2.

Remark 3. If η ∈ H(div,Ω) is piecewise smooth and in a suitable finite-di-
mensional space allowing for discrete estimates, ζh can be replaced by ζ̃h :=
η−Curlαh in the definition of the error estimator. The differences in the error
estimator can be estimated via an inverse and a trace inequality by µ5. There-
fore, the two definitions are equivalent. However, for arbitrary η ∈ H(div,Ω),
the rotation and tangential jumps of η do not exist in general.
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Remark 4. The discretization of [GS20] employs a generalized Mini finite ele-
ment pair for the discretization of Φh and Qh instead of the Taylor–Hood finite
element pair in this paper. Since the discrete formulation then has the form
(4), see also [GS20, Section 2.2.2], the proof of Theorem 2 carries over to this
discretization as well.

2.4 Boundary conditions

The theory from the foregoing sections as well as that of [GS20, GS21] easily
extends to other boundary conditions. Table 1 lists the most relevant boundary
conditions following the exposition in [AF89b] and their implications on the
nonstandard variables α and η on the boundary. The boundary is assumed to
be decomposed as

∂Ω = Γhc ∪ Γsc ∪ Γhss ∪ Γsss ∪ Γf

in hard clamped (hc), soft clamped (sc), hard simply supported (hss), soft simply
supported (sss), and free (f) parts, where we assume that Γf is connected. We
assume that the edges of the triangulation match with this partition of the
boundary and denote by Ehc, Esc, Ehss, Esss, Ef the edges belonging to the
respective parts of the boundary.

The modifications for the method and the a posteriori error estimator are
described in this section. In absence of free boundary parts, only boundary
conditions on ϕ are prescribed in the Schur complement while the boundary
data of η are not relevant and uniqueness of α is enforced by the usual condi-
tion

∫
Ω
α = 0. If the free boundary has positive surface measure, α satisfies

homogeneous Dirichlet conditions there and η must be chosen with vanishing
normal trace on that part of the boundary. The proofs of [GS20, GS21] are eas-
ily adapted to these more complicated configurations. The same applies to the
residual-based a posteriori error estimator. While the volume terms µ1(T ) and
µ3(T ) are not modified, the terms µ2(T ) and µ4(T ) have different contributions
for boundary edges. Let RF and SF denote the edge residuals from µ2 and µ4,
respectively, see Section 3 for the precise definition. The term µ2

2(T ) then reads
as ∑

F∈E(Ω)∪E(Γf )
∪E(Γsss)
F⊆T

hF ∥RF ∥2F +
∑

F∈E(Γsc)
F⊆T

hF ∥RF · τF ∥2F +
∑

F∈E(Γhss)
F⊆T

hF ∥RF · νF ∥2F

while µ4 is written as

µ2
4(T ) = (κT /d)

∑
F∈E\E(Γf )

F⊆T

∥SF ∥2F

with d = t
√
E/λ and κT = min{1, hT /d} as in Section 3.

3 Proof of the main result

Since we are interested in error estimates uniform in the material parameters
E, t, λ, we rewrite the system (2) in a dimensionless format with â = E−1a,
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physical variables our variables

ϕ · τ ϕ · ν w α η · ν natural BC
hc 0 0 0 — — —
sc — 0 0 — — τ · σν = 0
hss 0 — 0 — — ν · σν = 0
sss — — 0 — — σν = 0
free — — — 0 0 σν = 0 and (∇w − ϕ) · ν = 0

Table 1: Boundary conditions. We denote σ = Cε(ϕ).

Ĉ = E−1C, α̂ = E−1α, α̂h = E−1αh, f = E−1η, g = −λ−1t2η and the rescaled
thickness d := t

√
E/λ as

â(ϕ, ψ) + b(ψ, α̂) = (f, ψ)L2(Ω)

b(ϕ, β)− d2 c(α̂, β) = b(g, β).
(8)

By Korn’s inequality [Bra07] the energy norm with respect to â is equivalent to
the standard H1 norm. The theory for saddle point problems with penalty term
[Bra07] proves the equivalence of the error with the residual of the system (8),
i.e.,

|ϕ− ϕh|1 + ∥α̂− α̂h∥1,d ≈ ∥Res1∥H−1(Ω) + ∥Res2∥(H1(Ω)/R)⋆,d (9)

with the residuals Res1 ∈ ([H1
0 (Ω)]

2)⋆ and Res2 ∈ (H1(Ω)/R)⋆ defined by

Res1(ψ) := â(ϕh, ψ) + b(ψ, α̂h)− (f, ψ)L2(Ω),

Res2(β) := b(ϕh, β)− d2c(α̂h, β)− b(g, β)

for all ψ ∈ [H1
0 (Ω)]

2 and β ∈ H1(Ω)/R. Here,

∥β∥1,d := ∥β∥+ d |β|1 and ∥F∥(H1(Ω)/R)⋆,d := sup
v∈(H1(Ω)/R)\{0}

F (v)

∥v∥1,d
.

For a triangle T ∈ T and an edge F ∈ E we define the local residuals as

RT := (−div Ĉε(ϕh) + Curl α̂h −Πkf)|T , RF := [Ĉε(ϕh)]F νF ,
ST := rot(ϕh − d2 Curl α̂h −Πkg)|T , SF := [ϕh − d2 Curl α̂h −Πkg]F · τF .

We define
κT = min{1, hT /d}.

Define the local error estimator contributions

µ̂1(T ) := hT ∥RT ∥T + hT ∥(f −Πkf)∥T , µ̂3(T ) := κT ∥ST ∥T + d−1∥g −Πkg∥T ,

µ̂2(T ) :=

√√√√ ∑
F∈E(Ω)
F⊆T

hF ∥RF ∥2F , µ̂4(T ) := (κT /d)
1/2

√√√√∑
F∈E
F⊆T

∥SF ∥2F .

The following result proves the reliability and efficiency of the error estimator
for the rescaled system.
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Theorem 3. The error estimator is reliable and efficient in the sense that

∥Res1∥H−1(Ω) ≲

√∑
T∈T

(
µ̂2
1(T ) + µ̂2

2(T )
)
,

∥Res2∥(H1(Ω)/R)⋆,d ≲

√∑
T∈T

(
µ̂2
3(T ) + µ̂2

4(T )
) (10)

and, for any T ∈ T,

µ̂1(T ) + µ̂2(T ) ≲ |ϕ− ϕh|1,ωT
+ ∥α̂− α̂h∥ωT

+ ∥hT (f −Πkf)∥ωT
,

µ̂3(T ) + µ̂4(T ) ≲ κT |ϕ− ϕh|1,ωT
+ d |α̂− α̂h|1,ωT

+ d−1∥g −Πkg∥ωT
.

Proof. Proof of reliability, first part. Let ψ ∈ [H1
0 (Ω)]

2 with ∥∇ψ∥ = 1
be arbitrary. Let ψh ∈ Φh be an L2-stable quasi-interpolation [Ver13] of ψ.
The discrete equation (4) shows that Res1(ψh) equals −(f − Πkf, ψh)L2(Ω).
Therefore, a piecewise integration by parts and the continuity of eψ := ψ − ψh
prove

Res1(ψ) = Res1(eψ)− (f −Πkf, ψh)L2(Ω)

=
∑
T∈T

(RT , eψ)L2(T ) +
∑

F∈E(Ω)

(RF , eψ)L2(F ) − (f −Πkf, ψ)L2(T ).

A weighted Cauchy inequality reveals

Res1(ψ) ≤
∑
T∈T

∥hTRT ∥T ∥h−1
T eψ∥T +

∑
F∈E(Ω)

∥RF ∥F ∥eψ∥F

+
∑
T∈T

∥hT (f −Πkf)∥T ∥h−1
T (ψ −Πkψ)∥T .

The trace inequality [Ver13, Remark 3.6], the approximation properties of ψh,
and standard estimates imply the claimed bound.

Proof of reliability, second part. Let now β ∈ H1(Ω)/R be given with
∥β∥1,d = 1 and βh ∈ Qh its quasi-interpolant. We write eβ := β − βh. The
inclusion Qh ⊆ ker(Res2) from (4) proves

Res2(β) = Res2(eβ) = (ϕh − d2 Curl α̂h −Πkg,Curl eβ)L2(Ω) + b(g −Πkg, eβ).

Integration by parts yields

Res2(β) = −
∑
T∈T

(ST , eβ)L2(T ) +
∑
F∈E

(SF , eβ)L2(F ) + b(g −Πkg, eβ). (11)

The approximation properties of the quasi interpolant [Ver13]

∥eβ∥T ≲ min{∥β∥ωT
, hT |β|1,ωT

} and |eβ |1,T ≲ |β|1,ωT
(12a)

prove

h
−1/2
T ∥eβ∥T ≲

√
∥β∥ωT

|β|1,ωT
and ∥eβ∥T ≲ κT ∥β∥1,d,T (12b)
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for the local norm

∥β∥1,d,T := ∥β∥T + d|β|1,T .

The multiplicative trace inequality and the Young inequality therefore prove

∥eβ∥F ≲ h
−1/2
F ∥eβ∥TF

+ ∥eβ∥1/2TF
|eβ |1/21,TF

≲ d−1/2∥β∥ωTF
+ d1/2|β|1,ωTF

for any TF ∈ T with F ⊆ T . On the other hand, the standard trace inequality
and (12) lead to

∥eβ∥F ≲ h
−1/2
F ∥eβ∥TF

+ h
1/2
F |eβ |1,TF

≲ h
1/2
F |β|1,ωTF

.

Hence,

∥eβ∥F ≲ min{d−1/2, h
1/2
F /d} ∥β∥1,d,ωTF

≈ (κTF
/d)1/2 ∥β∥1,d,ωTF

.

Therefore, the second term in (11) can be estimated as∑
F∈E

(SF , eβ)L2(F ) ≲
√√√√∑
T∈T

∑
F∈E
F⊆∂T

d−1κT ∥SF ∥2F .

This and (12b) and standard estimates for the remaining terms of (11) show
the second estimate of (10).

Proof of efficiency of µ̂1 and µ̂2. Since the volume residual can be
rewritten as

RT =
(
− div(Cε(ϕh)− α̂hI

⊥)−Πkf
)
|T with I⊥ =

[
0 −1
1 0

]
,

well-known local efficiency estimates [Ver13] show the stated bound for µ̂1, µ̂2.
Proof of efficiency of µ̂3. To this end, define the volume bubble ♭T ∈

H1
0 (T ) by ♭T := λ1λ2λ3 for the barycentric coordinates λj , j = 1, 2, 3 of T

and let φ := ♭TST . Equivalence of norms and the second equation of (8) with
piecewise integration by parts lead to

∥ST ∥2L2(T ) ≈ (ST , φ)L2(T ) = b(ϕ− ϕh, φ)− d2 c(α̂− α̂h, φ)− b(g −Πkg, φ).

The local support and the scaling of φ then lead to

κT ∥ST ∥T ≲ κT |ϕ− ϕh|1,T + d|α̂− α̂h|1,T + d−1∥g −Πkg∥T (13)

where we used the elementary formula dκT /hT ≤ 1.
Proof of efficiency of µ̂4. Similar to [Ver98, Ver13], we define the d-

dependent edge bubble ♭F,d in the following way. For any T = conv{a, b, c} ∈ T

and any edge F = conv{a, b} ∈ E(T ), define the triangle KT,d by

KT,d = T if d ≥ hT,F , and KT,d = conv{a, b, cd} if d < hT,F ,

where cd = (a+ b)/2+ d(c− (a+ b)/2) and hT,F = |c− (a+ b)/2|, see Figure 1.
In what follws, we fix T ∈ T and an edge F of T and will bound µ̂4(T ). If F
is an interior edge, let T+, T− ∈ T denote the two triangles with F = T+ ∩ T−
(one of them being T ). Let ♭F,d ∈ H1

0 (Ω) be the edge bubble of F with respect
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dd
cd

Figure 1: Subtriangles for d < hT .

to the triangles KT+,d and KT−,d. In particular, supp(♭F,d) = ωF,d with ωF,d :=
int(KT+,d ∪KT−,d). Moreover, ∥♭F,d∥L∞(Ω) ≤ 1 and

∥∇♭F,d∥L∞(Ω) ≲ min{d, hT }−1 ≈ (dκT )
−1. (14)

Let J ∈ H1(ωF,d) be a continuation of SF that is constant in the normal direc-
tion. Define φ := ♭F,dJ ∈ H1

0 (ωF,d). Then

∥φ∥ ≤ ∥J∥ωF,d
≲ min{d, hT }1/2∥J∥F ≈ (dκT )

1/2∥J∥F . (15)

Moreover, the product rule, the properties of the continuation J , an inverse
inequality along F , and the scaling property (14) imply

∥∇φ∥ ≲ ∥∇J∥ωF,d
+ (dκT )

−1∥J∥ωF,d

≲ min{d, hT }1/2(∥∂J/∂τ∥F + (dκT )
−1∥J∥F )

≲ (dκT )
−1/2∥J∥F ,

(16)

where for the last step, elementary calculations show h−1
T (dκT )

1/2 ≤ (dκT )
−1/2.

We abbreviate Z := ϕh−d2 Curl α̂h−Πkg. Equivalence of norms and integration
by parts lead to

∥SF ∥2F = ([Z]F · τF , φ)L2(F ) = (Z,Curlφ)L2(ωF,d) + (rotTZ,φ)L2(ωF,d). (17)

Let ωF = T+ ∪ T− denote the patch of F . The second equation of (8) proves
for the first term on the right-hand side that

(Z,Curlφ)L2(ωF,d)

= −b(ϕ− ϕh, φ) + d2 c(α̂− α̂h, φ) + b(g −Πkg, φ)

≤ |ϕ− ϕh|1,ωF
∥φ∥+ d2|α̂− α̂h|1,ωF

∥∇φ∥+ ∥g −Πkg∥ωF
∥∇φ∥

≲ ∥J∥F
(
(dκT )

1/2|ϕ− ϕh|1,ωF
+ (dκT )

− 1
2 (d2|α̂− α̂h|1,ωF

+ ∥g −Πkg∥ωF
)
)
,

where we used the scaling (15)–(16) of φ in the last step. The Cauchy inequality
and the scaling (15) lead for the second term on the right-hand side of (17) to

(rotTZ,φ)L2(ωF,d) =
∑

K=T+,T−

(SK , φ)L2(K) ≲ (dκT )
1/2∥J∥F

∑
K=T+,T−

∥SK∥K .

The combination of the foregoing three displayed formulae with the bound (13)
reveals

(κT /d)
1/2∥SF ∥F ≲ κT |ϕ− ϕh|1,ωF

+ d|α̂− α̂h|1,ωF
+ d−1∥g −Πkg∥ωF

.

If F is a boundary edge, the proof follows the same lines with T− = ∅. Summa-
tion over the edges of T then proves the stated efficiency of µ̂4(T ).

10
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Figure 2: Initial triangulation and mesh after two refinements of the experiment
from Section 4.1 and initial triangulation of the experiment from Section 4.2.

Remark 5. Estimate (13) reveals the sharper efficiency bound

µ̂3(T ) ≲ κT |ϕ−ϕh|1,T +min{1, d/hT }d|α̂− α̂h|1,T +min{h−1
T , d−1}∥g−Πkg∥T .

4 Numerical results

This section is devoted to two numerical experiments. In the experiments, the
error estimator was computed with η instead of Πkη. According to Remark 3,
these two quantities are equivalent. We refrain from introducing new symbols
for these slightly modified estimators and simply use the notation µ1, . . . , µ5 for

the global estimators µj :=
√∑

T∈T µ
2
j (T ). Let h := max{hT | T ∈ T} denote

the maximal mesh-size of T.

4.1 Disc domain with exact solution

We consider the solution provided by [AF89b] for the unit disc Ω = {x2+y2 < 1}
with simply supported boundary Γsss = ∂Ω. In this example, the exact solution
is known and the exact error can be compared to the error estimator. The
precise data can be found in Appendix A. We choose the material parameters
as E = 1000, ν = 0.3, κ = 5/6.

As explained in [AF89b, AF90], in this case D2+kϕ is of order t−(k+1) in a
strip of width proportional to t close to the boundary for k = 0, 1. This im-
plies ∥D2+kϕ∥ ≈ t−(k+1/2). The error bound involving hk+1∥D2+kϕ∥ therefore
suggests that asymptotic convergence can be observed is visible for h ≲ t1/2 if
k = 0 and for h ≲ t3/4 if k = 1.

To resolve the curved boundary of Ω, we choose polygonal approximations
from the interior and the following mesh refinement method: uniform mesh
refinement (red refinement), after which the resulting boundary vertices are
projected to the boundary ∂Ω, is followed by one local refinement of all elements
near the boundary. More precisely, we mark all triangles containing a boundary
vertex and refine with newest-vertex bisection [Ver13], and then project new
boundary points to the boundary of Ω. Since in all diagrams, the symbol h
refers to the maximal mesh size, the locally refined meshes have a resolution
of order h2 near the boundary. The initial triangulation and the triangulation
with maximal mesh-size h =

√
2/16 is displayed in Figure 2.

The convergence history of the errors and error estimators for the discret-
ization for k = 0 and k = 1 is plotted in Figure 3 for t = 1 and in Figure 4

11
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Figure 3: Numerical results for the disc domain t = 1 for k = 0 (left) and k = 1
(right) from Subsection 4.1.
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Figure 4: Numerical results for the disc domain t = 1/100 for k = 0 (left) and
k = 1 (right) from Subsection 4.1.
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for t = 1/100. The error |ϕ − ϕh|1 shows a convergence rate of hk+2 in all
experiments as predicted by [GS21], while the error t|α − αh|/

√
Eλ converges

with rate hk+1. Moreover, t|α−αh|/
√
Eλ shows for t = 1/100 a preasymptotic

stagnation and the start of the asymptotic convergence rate can be observed for
approximately h = 1/10. The single parts of the error estimator also converge
with different convergence rates. While µ1 and µ2 converge with rate hk+2 for
t = 1, the error estimator parts µ3, µ4, and µ5 converge with rate hk+1. While
in the efficiency bound of µ3 and µ4 in Theorem 3 the norm t|α − αh|1/

√
Eλ

enters, the upper bound for µ1 and µ2 contains only the L2 norm of the error in
α. The right-hand side in this example possesses the smoothness η ∈ H2−ε(Ω)
for any ε > 0, which explains the convergence order hk+1 with k = 0, 1 for µ5.
For t = 1/100, the observed asymptotic convergence rates are similar for k = 2,
but the convergence starts after a preasymptotic range. For k = 0, the range of
mesh sizes under consideration seems not sufficient for observing the asymptotic
convergence order h in the case t = 1/100.

4.2 L-shaped domain

We consider the domain Ω = (−1, 1)2 \ ([0, 1] × [−1, 0]) with hard clamped
boundary Γhc = {0} × [−1, 0]∪ [0, 1]× 0 and free boundary Γf = ∂Ω \ Γhc. The
vertical force ℓ takes the value −16 on the square (− 3

4 ,−
1
2 )

2 and 0 elsewhere.
Accordingly, η is chosen as

η(x) =

{
(min{4, 16x1 + 12}, 0) if x1 > − 3

4 and − 3
4 < x2 < − 1

2 ,

0 otherwise.

The material parameters are chosen as E = 1000, ν = 0.3 and κ = 5/6.
The discrete solutions and their error estimator terms are computed on a

sequence of uniformly refined meshes and on a sequence of meshes refined by
an adaptive algorithm with the steps Solve, Estimate, Mark, Refine. The error
estimator µ is used in the Dörfler marking with bulk parameter 1/2, see [Ver13]
for details. The initial triangulation is displayed in Figure 2. In the numerical
example from Subsection 4.1, the quality of the approximation was bounded
by the approximation of the circle and therefore, we restricted the presented
experiments to k = 0 and k = 1. In contrast to that, the full approximation
properties for k = 2 can be utilized in this example, and therefore the shown
results are mostly for k = 0 and k = 2.

The adaptively generated meshes for k = 0 and k = 2 and for t = 1 and t =
1/100 with approximately 7000 elements can be found in Figure 5. The mesh-
refinement for t = 1 occurs mostly at three places: Near the square (− 3

4 ,−
1
2 )

2,
where the force does not vanish, at the re-entrant corner (0, 0), and at some
of the other corners. The mesh-refinement at the re-entrant corner seems to
be stronger than at the other corners, which is in accordance with the local
regularity predicted by [RS11] which is H1+s(ωz) for some neighborhood ωz
of (0, 0) for s = 0.60404435890. In comparison to that, the predicted local
regularity at the corners (0,−1) and (1, 0) is s = 0.75834915, while for the other
corners it is s = 1. Possibly due to the force that concentrates on the lower left
of the domain, the corner (1, 0) is not refined for k = 0, while a slight mesh-
refinement can be observed at (0,−1). Since local H2 regularity is not enough to
exploit the full approximation properties for k = 2, we expect a local refinement
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(a) (b) (c) (d)

Figure 5: Adaptively generated triangulations with approximately 7000 ele-
ments for k = 0 and t = 1 (a), k = 2 and t = 1 (b), k = 0 and t = 1/100 (c),
and k = 2 and t = 1/100 (d).
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Figure 6: The different error estimator terms for t = 1/100 and k = 0 (left) and
k = 1 (right) on adaptively refined meshes for the numerical experiment on the
L domain from Subsection 4.2. When (− 3

4 ,−
1
2 ) is resolved by the triangulation,

the oscillations of η vanish and are therefore not included in the diagram.

at all corners for k = 2, which can in fact be observed. Moreover, for k = 2 the
refinement in the interior is not more or less equally distributed at the whole
square (− 3

4 ,−
1
2 )

2 as for k = 0, but it is concentrated at the corners of that
square. For t = 1/100 the solution develops a boundary layer and therefore, the
mesh-refinement concentrates at the boundary layer and at the singularity at
the re-entrant corner, but hardly any mesh-refinement takes place in the interior
of the domain, especially for k = 2. While for k = 0, the mesh-refinement at
the boundary is only observed at the free boundary, the mesh-refinement for
k = 2 takes place also at parts of the hard clamped boundary. This conforms
to the theory of [AF90] where it is explained that the boundary layer at the
hard clamped boundary does not affect the first two derivatives of ϕ. This is
why the low-order approximation with k = 0 does not suffer from a boundary
layer effect in the hard-clamped configuration, in contrast to the case k = 2,
where higher-order derivatives of ϕ enter the approximation bounds and scale
with negative powers of the thickness t.

In Figure 6, the single error estimator terms for t = 1/100 and k = 0 and
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Figure 7: The error estimator on uniform and adaptively refined meshes for
k = 0, 1, 2 and t = 1 (left) and t = 1/100 (right) for the numerical experiment
on the L domain from Subsection 4.2.

k = 2 on adaptively refined meshes are plotted against the number of degrees
of freedom. The error estimator term µ4 shows after a large preasymptotic
stagnation up to approximately 105 degrees of freedom a convergence rate of
ndof−(k+1)/2. The error estimator term µ3 shows for k = 2 also a convergence
rate of ndof−(k+1)/2, while for k = 0 it is slightly larger, which is in accordance
with Remark 5. The error estimator terms µ1 and µ2 show as in the numerical
example of Subsection 4.1 a better convergence rate of almost ndof−(k+2)/2. The
superconvergence result of [GS21] applies in general also to non-uniform meshes.
However, the superconvergence is only with respect to the maximal mesh-size to
the power s, where s is the elliptic regularity constant for the Poisson–Neumann
problem, in this case the limiting regularity is s = 2/3. The superior convergence
rate of µ1 and µ2 could be a hint towards the superconvergence of the error in
ϕ. Since only the whole error estimator is an upper bound of the error in
ϕ, it is, however, an open question, whether the error in ϕ shows a better
superconvergence behaviour as predicted by the theory.

In Figure 7 the error estimator µ is plotted against the number of degrees
of freedom for k = 0, 1, 2 and t = 1 and t = 1/100 on uniformly and adaptively
refined meshes. For t = 1, the error estimator for k = 1 and k = 2 show
a convergence rate of ndof−0.3 on uniform meshes, while for k = 0, a better
convergence rate of ndof−0.5 is observed. However, as µ lies still above the
error estimator for k = 1 and k = 2 on uniform meshes, it is assumed that
the better convergence rate is only a preasymptotic effect. The convergence
rate is in accordance to the predicted regularity of H1+s(Ω) with s = 0.6 . . . as
above. For k = 0, it seems that the adaptive refinement has no effect on the
convergence rate in this still preasymptotic regime. For k = 1 and k = 2, a clear
improvement to the optimal convergence rate ndof−(k+1)/2 can be observed for
adaptively refined meshes. For t = 1/100 the same asymptotic convergence
rates are observed except for the uniform refinement for k = 1 and k = 2.
In these two cases, the error estimator shows a convergence rate between 1/2
and 1 in terms of number of degrees of freedom. This is probably due to the
unresolved boundary layer for the uniform mesh-refinement. In contrast to
t = 1, all error estimator terms show a preasymptotic worse convergence rate
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up to approximately 105 degrees of freedom.

A Collection of formulas

The exact solution from [AF89b, Table 4] is given in polar coordinates (r, θ) as
follows. Given the material parameters E, ν, κ, and the thickness parameter t,
define the constants

λ = (1 + ν)−1Eκ/2, D = E/(12(1− ν2)), α =
√
12κ.

Given the right-hand side ℓ(r, θ) = cos θ, the rotation ϕ (given in radial and
angular parts) and the displacement w read

ϕr = [4r3/(45D) + 3ar2 + b− cλ−1t2 + r−1λ−1dt2I1(αr/t)] cos θ

ϕθ = [−r3/(45D)− ar2 − b+ cλ−1t− dαλ−1tI ′1(αr/t)] sin θ

w = [r4/(45D)− λ−1t2r2/3 + a(r3 − 8Dλ−1rt2) + br − cλ−1t2r] cos θ.

Here, I1 is the modified Bessel function of the first kind [AS64] of order 1, and
the functions involved in these expressions are given as follows

f = 15[(3α2 +α2ν + 8t2)I1(α/t)− 8αtI ′1(α/t)],

a = [−(4α2 +α2ν + 10t2)I1(α/t) + 10αtI ′(α/t)]/(2Df),
b = [(6α2 +α2ν + 14t2)I1(α/t)− 14αtI ′1(α/t)]/(6Df),
c = α2(1− ν)I1(α/t)/f , d = 2λ/(Df).

Note that η(r, θ) = r
(

sin2(θ)
− sin(θ) cos(θ)

)
satisfies − div η = ℓ.
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